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Background. Influenza vaccine effectiveness (VE) against a spectrum of severe disease, including critical illness and death, re-
mains poorly characterized.

Methods. We conducted a test-negative study in an intensive care unit (ICU) network at 10 US hospitals to evaluate VE for preventing 
influenza-associated severe acute respiratory infection (SARI) during the 2019–2020 season, which was characterized by circulation of 
drifted A/H1N1 and B-lineage viruses. Cases were adults hospitalized in the ICU and a targeted number outside the ICU (to capture a 
spectrum of severity) with laboratory-confirmed, influenza-associated SARI. Test-negative controls were frequency-matched based on 
hospital, timing of admission, and care location (ICU vs non-ICU). Estimates were adjusted for age, comorbidities, and other confounders.

Results. Among 638 patients, the median (interquartile) age was 57 (44–68) years; 286 (44.8%) patients were treated in the ICU 
and 42 (6.6%) died during hospitalization. Forty-five percent of cases and 61% of controls were vaccinated, which resulted in an 
overall VE of 32% (95% CI: 2–53%), including 28% (−9% to 52%) against influenza A and 52% (13–74%) against influenza B. VE 
was higher in adults 18–49 years old (62%; 95% CI: 27–81%) than those aged 50–64 years (20%; −48% to 57%) and ≥65 years old 
(−3%; 95% CI: −97% to 46%) (P = .0789 for interaction). VE was significantly higher against influenza-associated death (80%; 95% 
CI: 4–96%) than nonfatal influenza illness.

Conclusions. During a season with drifted viruses, vaccination reduced severe influenza-associated illness among adults by 
32%. VE was high among young adults.
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In the United States, influenza vaccination is recommended 
annually for everyone at least 6 months old without a contra-
indication to vaccination [1–3]. Because influenza viruses con-
tinue to evolve, influenza disease burden and the effectiveness 
of seasonal influenza vaccination vary from season to season 
[4]. Prior studies have consistently demonstrated the effective-
ness of influenza vaccination for preventing influenza infection 
among ambulatory and hospitalized patients [3, 5–8]. Previous 

reports from small studies suggest that seasonal influenza vac-
cination may provide greater protection against intensive care 
unit (ICU) admissions than non-ICU hospital admissions, as 
well as shorten the length of ICU stay [9–11]. However, the 
effectiveness of influenza vaccination for preventing the most 
severe manifestations of influenza infection remains poorly 
characterized.

The 2019–2020 US influenza season started earlier than 
usual, was severe, and was characterized by intense early circu-
lation of influenza B-Victoria lineage viruses, with cocirculation 
of influenza A(H1N1)pdm09 viruses [12, 13]. Studies have re-
ported limited antigenic similarity (ie, “drift”) between the sea-
sonal vaccine viruses used during the 2019–2020 season and the 
circulating influenza B and some subclades of A(H1N1)pdm09 
viruses [14–16]. Available estimates suggest modest vaccine ef-
fectiveness (VE) (~39%) for prevention of ambulatory visits and 
hospitalizations in this season with circulation of 2 drifted vir-
uses, but the VE for prevention of critical influenza illness has 
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not been explored [16]. In an ICU network of 10 US hospitals, 
we evaluated the effectiveness of influenza vaccination for the 
prevention of severe influenza-associated illness among adults 
during the 2019–2020 influenza season.

METHODS

We conducted a prospective observational study using a test-
negative design to estimate influenza VE for preventing se-
vere influenza-associated illness, including hospitalization, 
ICU admission, acute organ failure, and death [17–21]. The 
study was conducted by the Influenza and Other Viruses in 
the Acutely Ill (IVY) Network, a multicenter network funded 
by the Centers for Disease Control and Prevention (CDC). The 
study protocol was approved by the Institutional Review Board 
at Vanderbilt University Medical Center. Written informed 
consent was obtained from each patient or a legally authorized 
representative.

Study Population

We enrolled hospitalized adults with signs and symptoms of se-
vere acute respiratory infection (SARI) from 10 October 2019 
to 28 February 2020 at 10 hospitals in 9 US states. Detailed el-
igibility criteria are shown in Supplementary Table 1. The en-
rollment strategy, which is detailed in Supplementary Table 2, 
prioritized enrollment of critically ill influenza cases and test-
negative controls, while also enrolling representative samples of 
hospitalized, non–critically ill cases and controls.

Study Procedures

After enrollment, trained study personnel interviewed patients 
(or surrogate informants if the patient was unable to answer 
questions) to collect data, including self-report of influenza 
vaccination for the current (2019–2020) and prior (2018–2019) 
season. Study personnel collected a midturbinate nasal and 
oropharyngeal swab for viral testing. Study personnel also ab-
stracted data from the medical record, including death, ICU 
admission, and development of acute organ failure, defined as 
receipt of invasive or noninvasive mechanical ventilation, vaso-
pressor support, new renal replacement therapy, or extracorpo-
real membrane oxygenation.

Test-Positive Cases and Test-Negative Controls

The results of all clinically obtained influenza reverse tran-
scription–polymerase chain reaction (RT-PCR) tests com-
pleted between 72 hours before and 72 hours after hospital 
presentation were recorded. Additionally, all respiratory sam-
ples collected for the study were shipped to the study labora-
tory at Vanderbilt for RT-PCR influenza testing using CDC 
primers and protocols. Test results with a cycle threshold of 40 
or less were considered positive for influenza and with a cycle 
threshold of 40 or greater were considered indeterminate. 
Influenza-positive specimens were further tested to determine 

A subtypes (H1N1pdm09 and H3N2) and B lineages (Victoria 
and Yamagata).

Study patients with SARI who tested positive for influ-
enza by either a clinically obtained RT-PCR or central labora-
tory RT-PCR test were classified as cases. Patients with SARI 
who tested negative for influenza by all tests were classified as 
controls. Patients with indeterminate influenza status (cycle 
threshold ≥40) by RT-PCR were not included in VE analyses.

Genetic Characterization of Detected Influenza Viruses

Influenza-positive specimens with a cycle threshold value of less 
than 30 underwent further genetic characterization at CDC, in-
cluding whole-genome sequencing [22]. Phylogenetic analysis 
was conducted to determine hemagglutinin (HA) genetic clades 
and subclades in sequenced influenza A viruses [12, 13, 23].

Influenza Vaccination Verification

Research personnel conducted a systematic search of electronic 
medical records and state vaccination registries, and contacted 
relevant pharmacies, clinics (eg, primary care providers), 
payors, and other venues for evidence of influenza vaccina-
tion. Research personnel called patients/surrogates to clarify 
discordant information between initial self/surrogate-report 
of vaccination and results of systematic searches. Patients with 
verified receipt of an influenza vaccine more than 13 days prior 
to illness onset for the current season were classified as vaccin-
ated. Patients without verified receipt of vaccination or vaccina-
tion after illness onset for the current season were classified as 
unvaccinated. Patients who had verified vaccination 0–13 days 
prior to illness onset were excluded from the VE analyses.

Study Covariates

Covariates, identified a priori, included study site, age, sex, 
race/ethnicity, calendar time (categorized as tertiles generated 
based on site-specific influenza activity using disease-onset 
dates of influenza cases) [24], insurance status, enrollment lo-
cation (ICU vs non-ICU), days from illness onset to specimen 
collection for influenza testing, chronic medical conditions (in-
cluding cardiovascular and pulmonary diseases; kidney and 
gastrointestinal diseases; neurological, psychiatric, and gastro-
intestinal diseases; malignancies; and hematological, autoim-
mune, and other immunosuppressive conditions), and frailty 
(assessed using a questionnaire derived from Fried and col-
leagues [25]) [7, 26].

Statistical Analyses

We summarized patients’ characteristics by influenza infec-
tion status (influenza cases vs test-negative controls) and 
verified vaccination status (vaccinated vs unvaccinated). 
Influenza VE within the full study population (ie, for the 
prevention of influenza-associated SARI) was calculated 
as follows: (1 − adjusted odds ratio of cases compared with 
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controls for being vaccinated) × 100%. The adjusted odds 
ratio was calculated using multivariable unconditional lo-
gistic regression that modeled the association between 
vaccination and influenza status, while adjusting for the 
study covariates listed above. Vaccine effectiveness was re-
ported in percentages with 95% confidence intervals (CIs). 
Missing data for covariates (including 4 variables with up to 
13 missing values, ~2% of total observations) were imputed 
using multiple imputation with chained equations and 20 
imputed datasets were generated for multivariable regression 
analyses [27].

Several planned secondary analyses were conducted to es-
timate influenza VE in prespecified subgroups, including the 
following: (1) age groups (18–49, 50–64, and ≥65  years), (2) 
influenza-associated ICU admission, (3) influenza-associated 
acute organ failure, and (4) influenza-associated death. For 
these assessments, we added corresponding interaction terms 
with vaccination status to the main regression model, and VE 
estimates were derived from the multivariable regression coeffi-
cients. A post hoc subgroup assessment of VE by race/ethnicity 
was also conducted. Vaccine effectiveness was also estimated 
by influenza virus type (A and B) and the most common sub-
type/lineage by restricting influenza cases to those from the 
specific type/lineage [5]. Exploratory VE estimates by the most 
common vaccine types (quadrivalent and trivalent high-dose) 
were provided.

Because previous reports suggest that vaccination in previous 
years could influence VE for the current season, we also con-
ducted separate estimates incorporating verified vaccination in-
formation for the previous season (2018–2019) [5, 28]. This and 
other sensitivity analyses are detailed in Supplementary Table 3.

Statistical significance for effectiveness estimates was defined 
as a 95% CI excluding the null value. For assessing differences in 
VE by subgroups, we considered P values less than .15 as statis-
tically significant, which is sufficient for interpreting interaction 
between 2 dichotomous variables when effect size is expected to 
be moderate to high (eg, absolute difference in VE >25%) [29, 
30]. Analyses were conducted in R version 4.0.3 (http://www.r-
project.org) and Stata version 16.1 (StataCorp, College Station, 
TX).

RESULTS

Study Patients

From 10 October 2019 through 28 February 2020, 998 eligible 
patients were approached for participation in the study; 725 of 
these patients consented for participation and 6 later withdrew 
from the study. Of the 719 enrolled patients who did not with-
draw from the study, 81 were excluded from primary analysis 
due to indeterminate influenza infection status (n = 9), ina-
bility to verify vaccination status (n = 65), or verified vaccina-
tion within 13 days prior to symptom onset (n = 7) (Figure 1 

and Supplementary Figure 1). Among 638 patients included in 
the primary analysis, the median (interquartile range) age was 
57  years (44–68  years) and 336 (52.7%) were female. In this 
study sample enriched with ICU patients, 286 (44.8%) patients 
were treated in the ICU, 254 (39.8%) experienced acute organ 
failure, and 42 (6.6%) died during hospitalization.

Among the 638 patients included in the analyses, 309 (48.4%) 
were influenza cases, including 207 influenza A  cases [166 
A(H1N1)pdm09, 14 A(H3N2), 27 A without a subtype deter-
mined], 100 influenza B cases (77 B/Victoria, 3 B/Yamagata, 
20 B without lineage determined), and 2 influenza cases with 
co-detections of A(H1N1)pdm09 and B/Victoria. A total of 339 
(53.1%) patients were vaccinated for the current (2019–2020) 
season, including 138 (44.7%) of 309 influenza cases and 201 
(61.1%) of 329 controls.

Compared with controls, influenza cases were younger, 
more likely to be Hispanic, and had fewer healthcare en-
counters during the prior year, lower frailty scores, and fewer 
comorbidities (Table 1). Compared with unvaccinated patients, 
patients who were vaccinated were older, more likely to be 
White non-Hispanic, more likely to have government insur-
ance, and had more healthcare encounters during the prior year, 
higher frailty scores, and more comorbidities.

Genetic Characterization of Influenza Viruses

Among 309 influenza cases, 120 had viruses characterized by 
whole-genome sequencing, including 70 A(H1N1)pdm09, 
4 A(H3N2), 43 B/Victoria, and 3 B/Yamagata. All sequenced 
A(H1N1)pdm09 viruses belonged to the hemagglutinin 6B.1A 
group. Eighteen A(H1N1)pdm09 viruses belonged to subclade 
5A viruses with additional amino acid changes in K130N, 
N156K, L161I, V250A, and E506D (5A + 156K viruses); 43 be-
longed to subclade 5A viruses with additional amino acid sub-
stitutions D187A and Q189E in the HA protein (5A + 187A, 
189E viruses); and 9 belonged to other subclades. All sequenced 
A(H3N2) viruses belonged to the 3C.2a1b group. Of the 43 B/
Victoria viruses sequenced, 42 viruses belonged to clade V1A.3 
and 1 belonged to clade V1A.1. All sequenced B/Yamagata vir-
uses belonged to clade Y3 [14, 15, 31]. Recent assessments have 
shown that A(H1N1)pdm09 5A + 156K viruses were poorly 
matched by the 2019–2020 influenza vaccine formulation. 
Moreover, the V1A.3 B/Victoria viruses showed limited simi-
larity with the vaccine formulation components [1, 12, 13].

Vaccine Effectiveness

In the primary multivariable analytical model, VE for the pre-
vention of influenza-associated SARI was 32% (2% to 53%). 
Vaccine effectiveness was higher among adults aged 18–49 years 
old (62%; 95% CI: 27% to 81%) than those aged 50–64 years old 
(20%; 95% CI: −48% to 57%) and those aged 65 years or older 
(−3%; 95% CI: −97% to 46%) (P value for interaction = .0789) 
(Table 2).

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab462#supplementary-data
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In subgroup analysis, VE was higher for the prevention of 
influenza-associated death than for prevention of nonfatal 
influenza (P = .1136). The estimated VE for the prevention 
of influenza-associated death was 80% (4% to 96%). Most of 
the 21 patients with influenza who died were young or mid-
dle-aged adults (median age: 53 years) as compared with the 21 
test-negative control patients who died (median age: 68 years) 

(Supplementary Tables 4 and 5). No significant differences in 
VE were observed among subgroups defined by race/ethnicity, 
ICU admission, or acute organ failure (Table 2).

Vaccine effectiveness for preventing SARI caused by influ-
enza A  was 28% (−9% to 52%) and by influenza B was 52% 
(13% to 74%), with similar estimates for the most frequently 
detected subtype/lineage. Similar to the pattern observed in the 

Figure 1. Flow diagram of patient enrollment. Abbreviation: LAR, legally authorized representative.
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Table 1. Characteristics of Study Participants by Case-Control and Vaccination Status

Characteristic Casesa (n = 309) Controlsa (n = 329) Vaccinatedb (n = 339) Not Vaccinatedb (n = 299)

Vaccinated for influenza,b n (%) 138 (45) 201 (61) … …

Age, median (IQR), years 56 (41–65) 59 (46–70) 62 (52–72) 51 (36–62)

Age group, n (%)     

 18–49 years 117 (38) 95 (29) 71 (21) 141 (47)

 50–64 years 109 (35) 99 (30) 113 (33) 95 (32)

 ≥65 years 83 (27) 135 (41) 155 (46) 63 (21)

Male sex, n (%) 152 (49) 150 (46) 152 (45) 150 (50)

Race/ethnicity, n (%)     

 Black non-Hispanic 76 (25) 84 (26) 78 (23) 82 (27)

 White non-Hispanic 170 (55) 206 (63) 222 (65) 154 (52)

 Hispanic 46 (15) 30 (9) 33 (10) 43 (14)

 Other race, non-Hispanic 17 (6) 9 (3) 6 (2) 20 (7)

Site, n (%)     

 Baystate Medical Center 23 (7) 22 (7) 27 (8) 18 (6)

 Beth Israel Deaconess 11 (4) 9 (3) 12 (4) 8 (<1)

 Hennepin County Medical Center 21 (7) 23 (7) 23 (7) 21 (7)

 Intermountain Medical Center 24 (8) 16 (5) 19 (6) 21 (7)

 Montefiore Medical Center 36 (12) 45 (14) 35 (10) 46 (15)

 Ohio State Medical Center 22 (7) 20 (6) 23 (7) 19 (6)

 Oregon Health and Sciences 34 (11) 35 (11) 32 (9) 37 (12)

 University of Colorado 29 (9) 28 (9) 27 (8) 30 (10)

 Vanderbilt University 76 (25) 101 (31) 100 (29) 77 (26)

 Wake Forest 33 (11) 30 (9) 41 (12) 22 (7)

Insurance, n (%)     

 Government 185 (60) 214 (65) 230 (68) 169 (57)

 Private 98 (32) 102 (31) 106 (31) 94 (31)

 None 26 (8) 13 (4) 3 (<1) 36 (12)

Healthcare visits in past year, n (%)     

 0 43 (14) 29 (9) 17 (5) 55 (19)

 1 20 (7) 25 (8) 22 (6) 23 (8)

 ≥2 237 (79) 271 (83) 294 (88) 214 (73)

ED visits past year, n (%)     

 0 106 (35) 99 (30) 95 (28) 110 (38)

 1 58 (19) 71 (22) 72 (21) 57 (20)

 ≥2 136 (45) 155 (48) 168 (50) 123 (42)

Hospital admissions in past year, n (%)     

 0 141 (47) 125 (38) 122 (36) 144 (49)

 1 57 (19) 73 (22) 73 (22) 57 (20)

 ≥2 103 (34) 128 (39) 140 (42) 91 (31)

 Frailty score,c median (IQR) 1 (0–3) 2 (1–3) 2 (1–3) 1 (0–3)

 Time between symptom onset and first     

 RT-PCR influenza test, median (IQR), days 2 (1–4) 2 (1–4) 2 (1–4) 2 (1–4)

Smoking/vaping history, n (%) 181 (59) 192 (58) 192 (57) 181 (61)

Tertile of seasonal influenza Activityd     

 1 (Initial one-third of season) 105 (34) 88 (27) 91 (27) 102 (34)

 2 (Middle one-third of season) 97 (31) 87 (26) 99 (29) 85 (28)

 3 (Last one-third of season) 107 (35) 154 (47) 149 (44) 112 (37)

Comorbidities, n (%)     

 Cardiovascular/pulmonary 218 (71) 266 (81) 289 (85) 195 (65)

 Endocrine/kidney 130 (42) 183 (56) 207 (61) 106 (35)

 Immunosuppressive condition 100 (32) 163 (50) 158 (47) 105 (35)

 Neurologic/psychiatric/gastrointestinal 126 (41) 136 (41) 159 (47) 103 (34)

Enrollment in ICU, n (%) 129 (42) 157 (48) 150 (44) 136 (45)

Influenza infection,a n (%) 309 (100) - 171 (57) 138 (41)

Influenza A,a n (%) 207 (67)  99 (30) 108 (36)

 A(H1N1)pdm09 166 (54)  83 (24) 83 (28)

 H3N2 14 (5)  4 (1) 10 (3)
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main analysis, VE against influenza A and B estimates tended to 
be higher, but not significantly different, among younger com-
pared with older adults (Figure 2 and Supplementary Table 6); 
VE estimates by vaccine types were consistent with the main 
findings (Supplementary Table 6). Compared with patients who 
were not vaccinated in either the current or previous influenza 
season, patients vaccinated only during the current season or 
during both current and previous season had similar VE esti-
mates—49% (19% to 67%) and 44% (9% to 66%), respectively 
(Figure 3 and Supplementary Table 6).

Sensitivity Analyses

When age was modeled with a flexible spline function, VE for 
the prevention of SARI varied significantly with age (P = .0242), 
with higher VE again observed among younger adults 
(Supplementary Figure 2A). Higher VE among younger adults 
was also observed for the prevention of ICU admission and 
acute organ failure (Supplementary Figure 2B, 2C). There were 
no significant differences in estimates based on presence of car-
diopulmonary or immunosuppressive conditions, although the 
VE estimates for patients with immunosuppressive conditions 
was only 17% (−44% to 52%) (Supplementary Table 7).

The alternate analysis that summarized relevant covariates 
through calculation of vaccination propensity scores and 
stabilized inverse probability of treatment weighting yielded VE 
results for the prevention of SARI (35%; 6% to 55%) that were 
nearly identical to those from the primary analysis (Figure 3 
and Supplementary Table 7). Supplementary Figure 3 displays 
the standardized mean differences between cases and controls 
before and after weighting, indicating that the distribution of 
covariates was well balanced after weighting. Last, influenza 
vaccination was not significantly associated with lower odds 
of death among influenza-negative controls, but it was associ-
ated with lower odds of death among influenza-positive cases 
(P-interaction = .035) (Supplementary Table 7).

DISCUSSION

During the 2019–2020 influenza season in the United States, 
characterized by unusually early and intense influenza B 

activity as well as circulation of drifted A(H1N1)pdm and B/
Victoria viruses [12, 13], influenza vaccination was associ-
ated with a 32% reduction in the odds of severe, hospitalized, 
laboratory-confirmed influenza disease. Vaccine effectiveness 
against influenza A was 28% (−9% to 52%) and against influ-
enza B was 52% (13% to 74%). In a season with a relatively poor 
match between vaccine strains and circulating viruses [12, 13], 
influenza vaccination was modestly protective against the most 
severe manifestations of influenza infection.

Influenza VE varied with age, with high effectiveness against 
severe outcomes among young adults. Although this study was 
designed to enroll patients with SARI, and included a large 
subset of patients who were treated in an ICU, the median age 
of influenza-positive cases was only 56  years. Furthermore, 
among patients with laboratory-confirmed influenza infection 
who died, the median age was only 53 years. The vast majority 
of those fatal cases had no major underlying comorbidities, 
suggesting that their outcome could have been prevented if 
they did not develop influenza disease. Compared with pre-
vious VE studies [6, 7, 9], this study included younger patients 
with a higher mortality rate, suggesting that the effort to target 
enrollment of severely ill patients with critical illness caused by 
influenza was successful.

Although VE for the prevention of influenza-associated 
death was based on only 42 deaths, it is noteworthy that the 
estimated VE point estimate was higher (~80%) than the ef-
fectiveness estimates against other study outcomes. The 
higher level of protection against deaths when adjusted for 
age and other potential confounders reflected the markedly 
lower vaccination rates (14%) among patients with influenza-
associated death than test-negative controls overall (61%) and 
test-negative controls who died (62%). Thus, we suspect that 
the observed influenza-associated deaths were potentially pre-
ventable with vaccination. Additional studies of severe influ-
enza illness, possibly combining data across multiple seasons 
to increase sample size, will be important to conclusively es-
timate VE against death. These observations contribute to the 
accumulating body of evidence supporting the effectiveness of 
influenza vaccines for the prevention of influenza-associated 
death [32, 33].

Characteristic Casesa (n = 309) Controlsa (n = 329) Vaccinatedb (n = 339) Not Vaccinatedb (n = 299)

Influenza B,a n (%) 100 (32)  38 (12) 62 (21)

 Victoria 77 (25)  30 (9) 47 (16)

 Yamagata 3 (1)  2 (1) 1 (<1)

Abbreviations: IQR, interquartile range; ED, emergency department; ICU, intensive care unit; RT-PCR, reverse transcription-polymerase chain reaction.
aParticipants who tested positive for influenza by RT-PCR were classified as cases, while those who tested negative were classified as controls. Counts may not add up to totals due to 
incomplete typing or subtyping.
bParticipants who had verified receipt of an influenza vaccine for the 2019–2020 season at least 13 days before illness onset were classified as vaccinated, while those who did not have veri-
fied receipt of an influenza vaccine for the 2019–2020 season were classified as unvaccinated. Patients with vaccine receipt 0–13 days prior to illness onset were excluded from the analysis.
cThe frailty score ranged from 0 (not frail) to 5 (very frail) according to the classification described by Fried and colleagues [25].
dTertile of seasonal influenza activity divided the 2019–2020 influenza season into the initial one-third of the season, middle one-third of the season, and last one-third of the season for each 
site based on local influenza activity [4].

Table 1. Continued
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Results of this study build upon the findings of previous, 
smaller studies that have also demonstrated influenza VE for 
preventing severe influenza illness. Among 101 adults hospital-
ized in the ICU at 2 New Zealand hospitals during 3 consec-
utive influenza seasons, influenza vaccines were 82% effective 
in preventing ICU admissions [9]. Similarly, a study conducted 
among children admitted to the pediatric ICU during 2 con-
secutive influenza seasons in the United States reported an in-
fluenza VE of 74% for the prevention of ICU admission when 
cases were compared with ICU controls and 82% when com-
pared with community controls [34]. Furthermore, VE for the 
prevention of influenza-associated ICU admission was 81% 
among 227 US adult patients during the 2015–2016 season 
[7]. A recent study from Australia using hospital surveillance 
data for children and adults from 2010 through 2017 and a 
test-negative design reported 31% effectiveness in preventing 
influenza-associated mortality [32].

Acknowledging the widespread use of reliable molecular 
diagnostics for accurate clinical identification of influenza in-
fections, the current study applied a test-negative design that 
takes advantage of the rapid availability of clinical test results. 
This approach, referred to as the “real-time test negative de-
sign,” can be useful to optimize the case-to-test-negative control 
ratio and increase study efficiency by supervising the number 
of enrolled controls [21]. Importantly, all study patients needed 
to satisfy a clear operational definition of compatible disease 

(ie, SARI) and have an influenza test performed before they 
could be enrolled [19, 20, 35]. Although the test-negative de-
sign is considered the referent approach for determinations of 
influenza VE, some elements require careful consideration to 
ensure the validity of the estimates. As factors that may lead to 
differential healthcare utilization and influenza testing, we spe-
cifically accounted for cardiopulmonary and immunosuppres-
sive conditions in our main analysis and prespecified sensitivity 
analyses [18, 35].

This study had limitations. First, despite this being the largest 
US study to date evaluating influenza VE in critically ill ICU 
patients, the modest sample size resulted in limited precision of 
some results. Second, although the analysis accounted for sev-
eral confounding factors identified a priori, and our findings 
were robust in several prespecified secondary and sensitivity 
analyses, residual confounding is possible. Other factors, such 
as the prevaccination immunological status of participants, 
were not directly measured and accounted for. To examine po-
tential residual confounding in the death analysis, we exam-
ined the association between vaccination and death among 
influenza-negative controls. There was no association between 
vaccination and death among controls, increasing confidence 
that the observed association between vaccination and lower 
odds of influenza-associated death was due to vaccine effects 
and not residual confounding. Third, viral detections were 
identified from both clinical and research testing and viral loads 

Figure 2. Secondary analyses of influenza VE for the prevention of influenza-associated severe acute respiratory infection. Abbreviations: CI, confidence interval; VE, vac-
cine effectiveness.
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were not evaluated. Fourth, while viral sequencing revealed the 
circulation of drifted strains, only a fraction of influenza detec-
tions were successfully sequenced. Last, although patients were 
enrolled from 10 locations dispersed across the United States, 
enrollment occurred at academic medical centers and findings 
may not be directly applicable to other settings.

In summary, this large, prospective multicenter study dem-
onstrated that during the 2019–2020 influenza season, influenza 
vaccination was associated with a significant reduction in the risk 
of hospitalization with severe influenza disease, especially among 
younger adults. These findings suggest that vaccination decreases 
the risk of the most severe manifestations of influenza infection.
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Supplementary materials are available at Clinical Infectious Diseases online. 
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