
Impact of intraoperative data on risk prediction for mortality 
after intraabdominal surgery

Xinyu Yan, MS1, Jeff Goldsmith, PhD1, Sumit Mohan, MD2,3, Zachary A. Turnbull, MD, 
MBA4, Robert E. Freundlich, MD, MS, MSCI5, Frederic T. Billings, IV, MD, MSc5, Ravi P. 
Kiran, MD6,3, Guohua Li, MD, DrPH7,3, Minjae Kim, MD, MS7,3,*

1Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, 
NY

2Department of Medicine, Division of Nephrology, Columbia University Medical Center, New York, 
NY

3Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 
NY

4Department of Anesthesiology, Weill Cornell Medicine, New York, NY

5Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN

6Department of Surgery, Division of Colorectal Surgery, Columbia University Medical Center, New 
York, NY

7Department of Anesthesiology, Columbia University Medical Center, New York, NY

Abstract

*Correspondence: Minjae Kim, MD, MS, Assistant Professor, Department of Anesthesiology, Columbia University Medical 
Center, 622 West 168th Street, PH 5, Suite 505C, New York, NY 10032, Tel: 212.305.6494, Fax: 212.305.2182, 
mk2767@cumc.columbia.edu.
Xinyu Yan helped in the design and conduct of the study, including data analysis and manuscript preparation. Mr. Yan approved the 
final manuscript and attests to the integrity of the original data and analysis reported in this manuscript.
Jeff Goldsmith helped in data analysis and manuscript preparation. Dr. Goldsmith approved the final manuscript and attests to the 
integrity of the original data and analysis reported in this manuscript.
Sumit Mohan helped in data analysis and manuscript preparation. Dr. Mohan approved the final manuscript and attests to the integrity 
of the original data and analysis reported in this manuscript.
Zachary A. Turnbull helped in data analysis and manuscript preparation. Dr. Turnbull approved the final manuscript and attests to the 
integrity of the original data and analysis reported in this manuscript.
Robert E. Freundlich helped in data analysis and manuscript preparation. Dr. Freundlich approved the final manuscript and attests to 
the integrity of the original data and analysis reported in this manuscript.
Frederic T. Billings helped in data analysis and manuscript preparation. Dr. Billings approved the final manuscript and attests to the 
integrity of the original data and analysis reported in this manuscript.
Ravi P. Kiran helped in data analysis and manuscript preparation. Dr. Kiran approved the final manuscript and attests to the integrity of 
the original data and analysis reported in this manuscript.
Guohua Li helped in data analysis and manuscript preparation. Dr. Li approved the final manuscript and attests to the integrity of the 
original data and analysis reported in this manuscript.
Minjae Kim helped in the design and conduct of the study, including data analysis and manuscript preparation. Dr. Kim approved the 
final manuscript and attests to the integrity of the original data and analysis reported in this manuscript and is the archival author.

Conflicts of Interest: None.

Presented at the American Society of Anesthesiologists’ Annual Meeting (Virtual), October 2020.

HHS Public Access
Author manuscript
Anesth Analg. Author manuscript; available in PMC 2023 January 01.

Published in final edited form as:
Anesth Analg. 2022 January 01; 134(1): 102–113. doi:10.1213/ANE.0000000000005694.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Background: Risk prediction models for postoperative mortality after intraabdominal surgery 

have typically been developed using preoperative variables. It is unclear if intraoperative data add 

significant value to these risk prediction models.

Methods: With IRB approval, an institutional retrospective cohort of intraabdominal surgery 

patients in the 2005–2015 American College of Surgeons National Surgical Quality Improvement 

Program was identified. Intraoperative data were obtained from the electronic health record. 

The primary outcome was 30-day mortality. We evaluated the performance of machine 

learning algorithms to predict 30-day mortality using (A) baseline variables and (B) baseline 

+ intraoperative variables. Algorithms evaluated were: 1) logistic regression with elastic net 

selection, 2) random forest (RF), 3) gradient boosting machine (GBM), 4) support vector machine 

(SVM), and 5) convolutional neural networks (CNN). Model performance was evaluated using 

the area under the receiver operator characteristic curve (AUC). The sample was randomly 

divided into a training/testing split with 80%/20% probabilities. Repeated 10-fold cross-validation 

identified the optimal model hyperparameters in the training dataset for each model, which were 

then applied to the entire training dataset to train the model. Trained models were applied to the 

test cohort to evaluate model performance. Statistical significance was evaluated using P<0.05.

Results: The training and testing cohorts contained 4322 and 1079 patients, respectively, with 

62 (1.4%) and 15 (1.4%) experiencing 30-day mortality, respectively. When using only baseline 

variables to predict mortality, all algorithms except SVM (AUC 0.83 [95% CI 0.69–0.97]) 

had AUC >0.9: GBM (AUC 0.96 [0.94–1.0]), RF (AUC 0.96 [0.92–1.0]), CNN (AUC 0.96 

[0.92–0.99]), and logistic regression (AUC 0.95 [0.91–0.99]). AUC significantly increased with 

intraoperative variables with CNN (AUC 0.97 [0.96–0.99]; P=0.047 vs. baseline), but there was no 

improvement with GBM (AUC 0.97 [0.95–0.99]; P=0.3 vs. baseline), RF (AUC 0.96 [0.93–1.0]; 

P=0.5 vs. baseline), and logistic regression (AUC 0.94 [0.90–0.99]; P=0.6 vs. baseline).

Conclusions: Postoperative mortality is predicted with excellent discrimination in 

intraabdominal surgery patients using only preoperative variables in various machine learning 

algorithms. The addition of intraoperative data to preoperative data also resulted in models with 

excellent discrimination, but model performance did not improve.

Introduction

Perioperative risk stratification is a critically important aspect of surgical patient 

management. Many clinical tools have been developed to assess the risk of mortality and 

other complications following surgery, and risk stratification has typically been performed 

using preoperative data.1–3 However, perioperative risk stratification should not be thought 

of as a singular event, but as a dynamic process where risk information is continuously 

updated as new data become available. The electronic capture of intraoperative management 

data has facilitated the development of risk prediction tools using the intraoperative period 

as an additional source of data,4,5 but the specific utility of intraoperative data for mortality 

risk stratification has not been clearly delineated.

Patient factors are extremely important in assessing postoperative mortality risk, perhaps 

more so than surgical factors,6 and preoperative models for mortality have excellent 

performance characteristics.1,2 Although we recently demonstrated that intraoperative data 
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meaningfully contributed to risk prediction models for postoperative acute kidney injury,7 it 

is not readily apparent if intraoperative data can also improve risk stratification models for 

mortality as the performance of risk prediction models have varying performance based on 

the specific complication being assessed.8 Intraoperative data improved prediction models 

for combined morbidity and mortality in cardiac surgery patients,9 but it is not clear if 

improvement would be seen for all outcomes if assessed individually. Thus, we questioned 

whether intraoperative data were necessary to optimize the performance of risk stratification 

models for postoperative mortality, or if preoperative data were sufficient for this purpose.

We used a cohort of patients at a large academic institution undergoing intraabdominal 

general surgery to determine whether the addition of intraoperative data to a preoperative 

prediction model for postoperative mortality improved its performance. Intraabdominal 

surgery represents a major class of surgical patients with significant risk of morbidity and 

mortality. We evaluated several machine learning algorithms [1) logistic regression with 

elastic net selection, 2) random forest, 3) gradient boosting machine, 4) support vector 

machine, and 5) convolutional neural network] for the prediction of 30-day mortality, 

comparing the performance of a preoperative model containing only baseline patient data 

and surgical procedure information to an intraoperative model containing both preoperative 

and intraoperative data. Our aim is to provide perioperative physicians with important 

insights on the ways in which intraoperative data can be utilized to stratify surgical patients 

based on their risk for subsequent mortality.

Methods

Patient selection

This study was approved by the Columbia University Medical Center (CUMC; New York, 

NY) IRB, including waiver of consent. This is a retrospective study of intraabdominal 

surgery patients at CUMC participating in the American College of Surgeons National 

Surgical Quality Improvement Program (ACS NSQIP) from 2005–2015. A different 

subset of the initial cohort was evaluated for the outcome of acute kidney injury.7 

The study was guided by the TRIPOD10 framework. There were 14,606 patients in the 

ACS NSQIP at CUMC from 2005–15 (Figure 1). Patients with missing or incomplete 

Anesthesia Information Management Systems (AIMS; CompuRecord, Philips Medical 

Systems, Eindhoven, The Netherlands) data were excluded. Intraabdominal procedures were 

identified using the Clinical Classifications Software for Services and Procedures (Agency 

for Healthcare Research and Quality, Rockville, MD) (Supplemental Table 1). Outpatient 

procedures were excluded as they have a low risk for mortality. The final cohort included 

5401 patients.

Preoperative and intraoperative variables

Variables included in the analyses are listed in Supplemental Tables 2 and 3. Preoperative 

patient characteristics and demographic data – including comorbidities and laboratory data – 

were collected from the ACS NSQIP. Missing data were present in preoperative laboratory 

values and body mass index (BMI; kg/m2) (Supplemental Table 4). No missing data were 

present in intraoperative variables. Missing laboratory data were imputed using medians 
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within patient groups defined by American Society of Anesthesiologists Physical Status 

(ASA PS) and emergency status. Missing BMI values were imputed with whole sample 

average BMI. Intraoperative variables were obtained from the AIMS and reflect routine 

clinical care. AIMS data were stored in a relational database (Microsoft SQL Server 

Enterprise 12.0, Redmond, WA) and extracted using structured query language queries.

Intraoperative data were collected as previously described.7 Continuously streamed variables 

(e.g., blood pressure, anesthetic agent concentration) were captured by the AIMS. Other 

variables were manually entered by the anesthesia provider (e.g., medications, fluids, 

etc.). For most medications, the total dose administered to the patient was determined. 

Exceptions include mannitol (Yes/No), furosemide (Yes/No), ketorolac (Yes/No), and 

individual antibiotics (Yes/No). We created a variable indicating the number of distinct 

antibiotics administered, as well as a separate variable indicating the number of distinct 

antibiotics not including cefazolin, as this was the most commonly used antibiotic. For fluids 

(both inputs and outputs), total volumes were determined. Blood pressure data (both invasive 

and non-invasive) were captured in 15-second intervals. If an interval had both invasive and 

non-invasive measurements, the invasive measurement took precedence. Linear interpolation 

was used to assign values to intervals without a recorded blood pressure. For this analysis, 

we measured the duration of time (min) with mean arterial pressure below 55 mm Hg, 

60 mm Hg, and 65 mm Hg, and the time-weighted average below the same 3 thresholds 

(mm Hg × min). For each inhaled anesthetic (sevoflurane, desflurane, isoflurane, and nitrous 

oxide), two variables were created: 1) a binary variable indicating its use (Yes/No) and 2) 

the cumulative exposure (%-hours), calculated as the average end-tidal concentration (%) 

multiplied by the duration of exposure (hours).

Clinical end point

The primary outcome was 30-day mortality, as recorded in the ACS NSQIP dataset.

Statistical Analysis

The analysis plan was approved prior to data analysis. Models were developed in two 

phases: A) preoperative model incorporating patient characteristics, demographics, and 

surgical procedure category; and B) intraoperative model incorporating both preoperative 

and intraoperative variables. The following machine learning algorithms to predict 30-day 

mortality were evaluated: 1) logistic regression with elastic net selection, 2) random forest 

(RF), 3) gradient boosting machine (GBM), 4) support vector machine (SVM), and 5) 

convolutional neural network (CNN). For RF, the Gini index was used as the splitting 

rule. For GBM, decision trees were used as the weak learners and AdaBoost11 as the loss 

function. Training data were centered and scaled before fitting the logistic regression, SVM 

and CNN models. That is, each predictor was subtracted by its mean and divided by its 

standard deviation.

We used a machine learning framework to tune, train, and test the models to maximize 

performance while guarding against overfitting.12 The dataset was randomly split by the 

outcome into training (80%) and testing (20%) datasets. Sampling was done within the 

levels of the outcome in order to balance the distribution of patients with mortality within 
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the splits. Of the 5401 patients in the sample, 4322 (80.0%) were allocated to the training 

dataset. Model hyperparameters, which are model parameters not directly learned from 

the data, were optimized (“tuned”) with repeated 10-fold cross-validation in the training 

dataset. The optimal hyperparameters, maximizing the cross-validation mean area under 

the receiver operator characteristic curve (AUCROC), were applied to the entire training 

dataset to identify model parameters (“training”). The trained models were applied to the 

testing dataset to evaluate model performance (“testing”), assessed using the AUCROC, 

area under the precision-recall curve (AUCPR), and calibration plots. The PR curve plots 

recall (sensitivity) on the x-axis and precision (positive predictive value) on the y-axis 

to summarize the tradeoff between positive predictive value and sensitivity at different 

probability thresholds. Point estimates and 95% confidence intervals (CI) for AUCROC 

and AUCPR were computed with 2000 bootstrap replicates.13 Statistical significance was 

evaluated using P<0.05.

For interpretable algorithms, variable importance measures (RF and GBM) and odds ratios 

(logistic regression) evaluated the relative importance of individual variables. For GBM, 

relative importance measures14 were used, and for RF, Gini impurity15 was used.

Statistical analyses were performed using R Studio (version 1.2.5019; R Studio, Inc., 

Boston, MA) and R (version 3.6.1; The R Foundation for Statistical Computing, Vienna, 

Austria). The R package pROC13 calculated AUCROC and compared the AUCROCs of the 

preoperative and intraoperative models. The R package precrec16 calculated AUCPR. The 

R package caret17 identified optimal tuning parameters and then fit the final model with 

the optimal parameters. Logistic regression used the R packages glmnet18 and Matrix.19 

Random forest used the R packages ranger20 and e1071.21 GBM used the R package gbm.22 

SVM used the R package e1071. Finally, CNN used the R package nnet.23

Results

Preoperative and intraoperative variables among patients with and without 30-day 
mortality

Of the 4322 patients in the training dataset, 62 (1.4%) died within 30 days of surgery. Many 

preoperative patient characteristics and comorbidities were significantly different between 

patients with and without mortality (Table 1). Patients who died were older, more likely 

to undergo emergent procedures, and had higher rates of risk factors such as diabetes, 

hypertension, and preoperative sepsis/septic shock. The procedure categories with the 

highest mortality risk were ‘exploratory laparotomy’ (12%; 16/129), ‘colorectal resection’ 

(4.3%; 20/469), and ‘excision, lysis peritoneal adhesions’ (3.5%; 2/57). There were no 

statistically significant differences in preoperative characteristics between the training and 

testing datasets (data not shown).

There were also many differences in intraoperative variables between patients with and 

without mortality (Table 2; Supplemental Table 3). Patients who died had longer duration 

of hypotension, greater estimated blood loss, and received larger doses of vasopressor 

medications, while also having received larger volumes of fluids such as albumin 5%, 

red blood cells, colloids, and fresh frozen plasma. There were no statistically significant 
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differences in most intraoperative variables between the training and testing datasets (data 

not shown). There were statistical differences in cumulative isoflurane exposure and the 

proportion of patients receiving nitrous oxide (data not shown), but these differences likely 

had negligible effects on the models.

Comparison of model performance in preoperative and intraoperative machine learning 
models

When using only preoperative data, the AUCROCs in the test set for GBM, RF, CNN, and 

logistic elastic net were 0.96 [95% CI 0.94–0.99], 0.96 [95% CI 0.92–1.00], 0.96 [95% 

CI 0.92–0.99], and 0.95 [95% CI 0.91–0.99], respectively (Table 3; ROC curves in Figure 

2). SVM had lower discrimination with an AUCROC of 0.83 [95% CI 0.69–0.97]. When 

intraoperative data were added to the preoperative model, the AUCROCs in the test set 

for GBM, RF, CNN, logistic elastic net, and SVM were 0.97 [95% CI 0.95–0.99], 0.97 

[95% CI 0.96–0.99], 0.97 [95% CI 0.95–0.99], 0.95 [95% CI 0.91–0.99], and 0.88 [95% 

CI 0.75–1.00], respectively. The AUCROCs for the preoperative and intraoperative models 

were significantly different only in the CNN model (P=0.029).

Model performance was also assessed with AUCPR. When using only preoperative data, 

the AUCPRs in the test set for GBM, RF, CNN, logistic elastic net, and SVM were 0.48 

[95% CI 0.25–0.70], 0.30 [95% CI 0.16–0.55], 0.30 [95% CI 0.14–0.57], 0.30 [95% CI 

0.14–0.55], and 0.12 [95% CI 0.05–0.30], respectively (Supplemental Table 5; PR curves 

in Supplemental Figure 1). When intraoperative data were added to the preoperative model, 

the AUCPRs in the test set for GBM, RF, CNN, logistic elastic net, and SVM were 0.50 

[95% CI 0.25–0.73], 0.53 [95% CI 0.30–0.75], 0.37 [95% CI 0.18–0.63], 0.43 [95% CI 

0.20–0.67], and 0.31 [95% CI 0.10–0.54], respectively. The AUCPRs for the preoperative 

and intraoperative models were significantly different in the RF (P=0.01) and SVM (P=0.01) 

models.

Calibration plots are displayed in Figure 3. The logistic regression and SVM models 

were well-calibrated, while GBM, RF, and CNN had evidence of underestimating or 

overestimating mortality risk in portions of the calibration plots, particularly in the 

intraoperative models.

Variable importance measures in machine learning models

Metrics regarding relative feature importance were available for certain machine learning 

algorithms (Supplemental Figure 2). Variables with high relative importance included both 

preoperative characteristics, such as age, functional dependence, and mechanical ventilation, 

and intraoperative variables such as vasopressor use (e.g., norepinephrine, epinephrine, and 

vasopressin).

Discussion

We used a machine learning approach to predict 30-day mortality in patients undergoing 

intraabdominal surgery at a single academic medical center. For 4 out of the 5 machine 

learning algorithms evaluated, there was excellent performance, as measured by model 

discrimination, when the models were trained using preoperative patient characteristics and 
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surgical procedure, mimicking the preoperative phase of risk stratification. We then assessed 

the incremental value of adding intraoperative data to these models and found that while 

the intraoperative models also had high performance, they did not perform significantly 

better than models using only preoperative data. Our results suggest that while postoperative 

mortality after intraabdominal surgery is well-predicted by patients’ underlying medical 

conditions and intended surgical procedure, the addition of intraoperative data leads to 

models that have equally high performance.

Anesthesiologists were early proponents of perioperative risk stratification with the 

development of the ASA PS,24 which has held up over time as a reliable indicator of 

postoperative morbidity and mortality risk.25 While the ASA PS is somewhat subjective, 

other risk stratification measures have been developed, such as the Physiological and 

Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM)26 

that incorporates physiological variables. These measures are evaluated prior to surgery, and 

preoperative data have been used to develop many well-performing risk stratification models 

for postoperative mortality.1–3

The advent of AIMS and electronic health records have made the automated capture of 

data possible, and combined with machine learning approaches, there has been tremendous 

interest in using these additional data sources to improve perioperative risk stratification. 

Indeed, machine learning using automated capture of preoperative data outperformed the 

ASA PS and other traditional risk stratification metrics such as the Charlson comorbidity 

score.27,28 Automated methods also outperformed the highly-regarded but resource-intensive 

ACS NSQIP calculator.29,30 It is clear that the availability of electronic patient data has the 

potential to improve risk stratification in the perioperative period.

The specific benefits of including intraoperative data in mortality prediction models remain 

unclear. Deep learning using intraoperative features produced well-performing prediction 

models for postoperative mortality,4,5 but these models did not outperform traditional 

methods.4,31 Few studies have directly compared preoperative and intraoperative models 

to assess the incremental value of intraoperative data. Datta et al.32 report that the 

addition of intraoperative data improved the performance of risk prediction models for 

in-hospital mortality and other complications, such as mechanical ventilation, neurological 

complications, cardiovascular complications, and acute kidney injury. We also found 

that intraoperative data improved models to predict acute kidney injury.7 The value of 

intraoperative data in predicting surgical outcomes likely varies by the specific outcome 

being evaluated.

We incorporated a host of intraoperative variables designed to represent various aspects 

of intraoperative care, such as blood pressure, vasopressor use, fluid management, and 

anesthetic drug administration. Many studies of the intraoperative period focus on one 

specific aspect of management (e.g., hypotension)33 but may not adequately account for 

related aspects that also contribute to adverse outcomes (e.g., vasopressor use). Our models 

incorporated a wide array of intraoperative variables and machine learning algorithms 

can account for complex relationships between predictor variables. Many intraoperative 

variables ranked high in terms of variable importance (Supplemental Figure 2), indicating 
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large effects on model performance, but these analyses are not designed to provide detailed 

inference on these variables. Future studies may provide a better understanding of the 

specific relationships between individual variables and mortality through “interpretable” 

machine learning methodologies.34

Risk prediction for mortality may have different implications than risk prediction for other 

complications. Surgeons may decline to operate on a patient with a high mortality risk 

(or patients may refuse surgery),35 but it is not clear if a high predicted risk of other 

complications, especially potentially reversible complications such as acute kidney injury, 

would preclude a complicated surgical procedure. For certain conditions, surgeons may 

choose to operate on a high-risk patient, but perform only a minimal, palliative procedure. 

Perioperative mortality attributable to anesthesia has dramatically decreased over time,36 and 

this may be an additional reason why intraoperative data did not improve our models. Our 

models only include patients who had a surgical procedure, so their utility to assist in the 

decision to proceed with surgery in a high-risk patient will have to be further evaluated.

There are several differences between our study and others in the literature. We focus on 

a cohort of intraabdominal surgery patients but many studies include broader categories 

of surgical procedures,4,5,32 and model performance may be affected by the underlying 

patient population. Another important aspect of model building using intraoperative data 

are the specific variables used in the models. For example, intraoperative data include 

streams of physiological data (e.g., blood pressure every minute), but some degree of data 

transformation is required (e.g., min, max, mean, standard deviation of blood pressure). The 

specific variables used vary across studies, and the extent to which these differences account 

for variation in results is not clear. The type of data may also play a role. For preoperative 

variables, we used data from the ACS NSQIP which has both advantages and disadvantages 

compared to automatically captured electronic health record data.37 In addition, machine 

learning models predominantly use data from a single institution, so institutional differences 

may account for differences in the results.

While intraoperative data did not improve model performance using our primary metric 

(AUCROC), there were suggestions of improved performance with AUCPR (Supplemental 

Table 5). The AUCPR has advantages in evaluating performance in imbalanced datasets.38 

However, we are cautious in our interpretation of these results as AUCPR was not our 

primary metric for assessing model performance. In addition, our models were tuned to 

optimize AUCROC, and training the models to optimize AUCPR may have produced more 

optimal results for assessing performance. The AUCROC has consistent interpretations 

based on its value, but it is difficult to judge model performance based on the AUCPR value 

alone. The AUCPR of an uninformative model is the baseline event rate, in our case 0.014, 

and all models had AUCPR values much greater than this baseline rate. As the AUCPR only 

considers precision (positive predictive value) and recall (sensitivity), true negative results 

are ignored and a larger sample may be required as a large proportion of patients would be 

considered true negatives in our analyses.

Our study is subject to certain limitations. The models were developed using data from 

completed cases, and as such, it is not clear whether there are modifiable factors that 
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can be altered to change the final outcome. However, this study is an initial step towards 

this goal and future work will delineate the role of modifiable factors, both preoperative 

and intraoperative, that can improve clinical outcomes after surgery. Machine learning 

models benefit from larger sample sizes, and it is possible that a larger sample would have 

altered our results. Imbalanced datasets may affect model performance,39 but we did not 

specifically perform any data preprocessing, such as oversampling, as our models performed 

well without this additional step. As an alternative assessment of model performance, we 

evaluated the precision-recall curve, which may better assess performance in imbalanced 

datasets.40 In addition, some well-performing models had evidence of miscalibration, 

particularly in the intraoperative models, and may benefit from recalibration.41

In conclusion, our analyses demonstrate that both preoperative data and intraoperative 

data can be used to develop well-performing models to predict postoperative mortality in 

intraabdominal surgery patients. However, in terms of model building, we did not find 

evidence that intraoperative models outperformed models using only preoperative data. 

Intraoperative data, nonetheless, has tremendous clinical value but we must determine the 

specific ways in which this data can be used to improve the care of surgical patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary of Terms

ACS NSQIP American College of Surgeons National Surgical Quality 

Improvement Program

AIMS Anesthesia Information Management System

ASA PS American Society of Anesthesiologists Physical Status

AUC area under the curve

AUCPR area under the precision-recall curve
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AUCROC area under the receiver operator characteristic curve

BMI body mass index

CI confidence interval

CNN convolutional neural network

CUMC Columbia University Medical Center

GBM gradient boosting machine

RF random forest

SVM support vector machine
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Key Points Summary

Question:

Does the addition of intraoperative data to a preoperative model for 30-day mortality after 

intraabdominal surgery improve the model’s performance?

Findings:

Using several machine learning algorithms, 30-day mortality was predicted with 

excellent discrimination using only preoperative data, with negligible improvement after 

adding intraoperative data.

Meaning:

Surgical mortality is well predicted using preoperative patient characteristics, including 

comorbidities, risk factors, and surgical procedure.
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Figure 1. 
Selection of inpatient intraabdominal surgery procedures, 2005–15. ACS NSQIP, American 

College of Surgeons National Surgical Quality Improvement Program; AIMS, anesthesia 

information management system.
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Figure 2. 
Area under the receiver operator characteristic curve for preoperative and intraoperative 

machine learning models to predict 30-day mortality in intraabdominal surgery patients. 

Algorithms evaluated were (A) gradient boosting machine (GBM), (B) random forest (RF), 

(C) convolutional neural networks (CNN), (D) logistic regression (logistic), and (E) support 

vector machine (SVM).
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Figure 3. 
Calibration plots of predicted mortality risk (x-axis) vs. observed mortality (y-axis) in 

intraabdominal surgery patients. Plots for models using only preoperative data and both 

preoperative and intraoperative data (intraoperative) are displayed for gradient boosting 

machine (A and B), random forest (C and D), convolutional neural network (E and F), 

logistic regression (G and H), and support vector machine (I and J) models. The subjects are 

divided into 10 groups using the 45th, 70th, 85th, 90th, 95th, 97th, 98.5th, 99th, and 99.5th 

percentiles of the predicted probability of the fitted model. Groups are divided unequally to 

account for the right-skewed distribution of predicted probabilities and to focus on patients 

with high predicted probabilities. Mean predicted probability and 30-day mortality are 

calculated within each group. All plots reflect calibration in the test dataset.
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Table 1.

Preoperative characteristics and surgical procedure category for intraabdominal surgery patients, by 30-day 

mortality status.

Total Died Alive

Variable 4322 62 (1.4%) 4260 (99%) P-Value

Age (years) 53 (18) 72 (14) 53 (18) <0.0001

Female 2517 (58%) 39 (63%) 2478 (58%) 0.5

Race 0.3

 White 1882 (44%) 23 (37%) 1859 (44%)

 Hispanic 1358 (31%) 20 (32%) 1338 (31%)

 Black 495 (11%) 11 (18%) 484 (11%)

 Other 481 (11%) 8 (13%) 473 (11%)

 Asian 106 (2%) 0 (0.0%) 106 (2.5%)

Emergency 1130 (26%) 36 (58%) 1094 (26%) <0.0001

Body Mass Index (kg/m2) 31 (9.9) 28 (8.1) 31 (9.9) 0.03

Diabetes 759 (18%) 21 (34%) 738 (17%) 0.001

Hypertension 1872 (43%) 51 (82%) 1821 (43%) <0.0001

Chronic Obstructive Pulmonary Disease 70 (1.6%) 7 (11%) 63 (1.5%) <0.0001

Current Smoker 565 (13%) 12 (19%) 553 (13%) 0.2

Dyspnea 374 (8.7%) 16 (26%) 358 (8.4%) <0.0001

Mechanical Ventilation 36 (0.8%) 17 (27%) 19 (0.4%) <0.0001

Functionally Dependent 188 (4.3%) 31 (50%) 157 (3.7%) <0.0001

Ascites 31 (0.7%) 6 (10%) 25 (0.6%) <0.0001

Estimated Glomerular Filtration Rate (mL/min/1.73 m2) 87 (30) 63 (47) 87 (29) <0.0001

Preoperative Transfusion 28 (0.6%) 7 (11%) 21 (0.5%) <0.0001

Bleeding Disorder 28 (0.6%) 7 (11%) 21 (0.5%) <0.0001

Preoperative Steroid 28 (0.6%) 7 (11%) 21 (0.5%) <0.0001

Disseminated Cancer 122 (2.8%) 9 (15%) 113 (2.7%) <0.0001

Wound Infection 28 (0.6%) 7 (11%) 21 (0.5%) <0.0001

Preoperative Renal Insufficiency/Dialysis 28 (0.6%) 7 (11%) 21 (0.5%) <0.0001

Preoperative Sepsis/Septic Shock 252 (5.8%) 23 (37%) 229 (5.4%) <0.0001

Albumin (g/dL) 4.1 (0.6) 3.1 (0.8) 4.1 (0.6) <0.0001

Alkaline Phosphatase (U/L) 99 (92) 126 (126) 98 (92) 0.01

Bilirubin (mg/dL) 0.9 (1.5) 1.2 (1.0) 0.9 (1.5) 0.07

Blood Urea Nitrogen (mg/dL) 16 (9.3) 29 (21) 16 (8.9) <0.0001

Hematocrit (%) 39 (5.2) 33 (7.0) 39 (5.1) <0.0001

International Normalized Ratio (Unitless) 1.1 (0.2) 1.4 (0.5) 1.1 (0.2) <0.0001

Platelets (103/μL) 266 (94) 248 (135) 266 (94) 0.12

Partial Thromboplastin Time (sec) 31 (6.5) 36 (13) 31 (6.3) <0.0001

Aspartate Aminotransferase (U/L) 35 (108) 169 (747) 33 (56) <0.0001

Sodium (mmol/L) 138 (2.9) 137 (4.5) 138 (2.9) 0.004

White Blood Cells (103/μL) 9.0 (4.3) 13 (8.4) 9.0 (4.2) <0.0001
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Total Died Alive

Variable 4322 62 (1.4%) 4260 (99%) P-Value

Procedure Category <0.0001

 Colorectal resection 469 (11%) 20 (32%) 449 (11%)

 Exploratory laparotomy 129 (3.0%) 16 (26%) 113 (3%)

 Ileostomy and other enterostomy 450 (10%) 8 (13%) 442 (10%)

 Other operating room gastrointestinal therapeutic procedures 449 (10%) 7 (11%) 442 (10%)

 Small bowel resection 129 (3.0%) 3 (4.8%) 126 (3.0%)

 Excision, lysis peritoneal adhesions 57 (1.3%) 2 (3.2%) 55 (1.3%)

 Other operating room lower gastrointestinal therapeutic procedures 166 (3.8%) 2 (3.2%) 164 (3.8%)

 Cholecystectomy and common duct exploration 572 (13%) 2 (3.2%) 570 (13%)

 Appendectomy 615 (14%) 1 (1.6%) 614 (14%)

 Gastric bypass and volume reduction 813 (19%) 1 (1.6%) 812 (19%)

 Procedures on spleen 26 (0.6%) 0 (0.0%) 26 (0.6%)

 Colostomy, temporary and permanent 18 (0.4%) 0 (0.0%) 18 (0.4%)

 Gastrectomy, partial and total 77 (1.8%) 0 (0.0%) 77 (1.8%)

 Other hernia repair 352 (8.1%) 0 (0.0%) 352 (8.3%)

For continuous variables, the mean and (standard deviation) are displayed for each group and compared with the t-test. For categorical variables, 
counts and (%) are displayed for each group and compared with the chi-square test.
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Table 2.

Intraoperative variables for intraabdominal surgery patients, by 30-day mortality status.

Total Died Alive

Variable 4322 62 (1.4%) 4260 (99%) P-Value

Minutes with MAP <55 mm Hg 2.8 (6.4) 6.5 (10) 2.7 (6.3) <0.0001

Minutes with MAP <60 mm Hg 7.7 (15) 16 (22) 7.6 (14) <0.0001

Minutes with MAP <65 mm Hg 18 (27) 31 (41) 18 (27) <0.001

Time Weighted Average with MAP <55 mm Hg (mm Hg*mins) 14 (35) 43 (100) 13 (33) <0.0001

Time Weighted Average with MAP <60 mm Hg (mm Hg*mins) 40 (82) 100 (162) 39 (80) <0.0001

Time Weighted Average with MAP <55 mm Hg (mm Hg*mins) 104 (180) 221 (305) 102 (177) <0.0001

Albumin 5% (mL) 118 (351) 298 (510) 115 (347) <0.0001

Albumin 25% (mL) 0.3 (7.3) 0.0 (0.0) 0.3 (7.3) 0.8

Lactated Ringer’s (mL) 2604 (1731) 2707 (1992) 2603 (1727) 0.6

Other Crystalloid Fluids (mL) 65 (368) 411 (990) 60 (348) <0.0001

Red Blood Cells (mL) 52 (276) 495 (1165) 45 (235) <0.0001

Colloids (mL) 27 (144) 89 (231) 26 (143) <0.001

Fresh Frozen Plasma (mL) 15 (165) 294 (1023) 11 (107) <0.0001

Platelets (mL) 2.6 (36) 32 (121) 2.2 (33) <0.0001

Cryoprecipitate (mL) 0.1 (4.4) 0.0 (0.0) 0.1 (4.4) 0.9

Ascites (mL) 16 (352) 56 (287) 16 (352) 0.4

Estimated Blood Loss (mL) 263 (720) 947 (2958) 253 (627) <0.0001

Urine Output (mL) 287 (388) 409 (592) 285 (384) 0.01

Phenylephrine (mg) 0.80 (2.4) 2.4 (4.8) 0.78 (2.4) <0.0001

Ephedrine (mg) 5.9 (12) 12 (31) 5.8 (11) <0.0001

Norepinephrine (mg) 0.04 (0.4) 0.94 (2.4) 0.03 (0.3) <0.0001

Vasopressin (units) 0.26 (1.8) 4.7 (8.2) 0.20 (1.4) <0.0001

Epinephrine (mg) 0.004 (0.1) 0.202 (1.0) 0.001 (0.02) <0.0001

Dopamine (mg) 0.041 (2) 2.4 (16) 0.007 (0.4) <0.0001

Labetalol (mg) 2.3 (8.9) 2.2 (7.1) 2.3 (9.0) 0.9

Esmolol (mg) 2.7 (13) 8.2 (29) 2.6 (13) <0.001

Metoprolol (mg) 0.28 (1.7) 0.29 (1.2) 0.28 (1.7) 1.0

Hydralazine (mg) 0.009 (0.2) 0.081 (0.6) 0.008 (0.2) 0.02

Enalaprilat (mg) 0.001 (0.038) 0.000 (0.000) 0.001 (0.038) 0.9

Clonidine (mg) 0.0001 (0.003) 0.0000 (0.0) 0.0001 (0.003) 0.9

Nicardipine (mg) 0.006 (0.085) 0.005 (0.038) 0.006 (0.085) 0.9

Nitroglycerin (mcg) 0.000 (0.02) 0.000 (0.000) 0.0004 (0.02) 0.9

Mannitol (Yes/No) 2 (0.05%) 0 (0%) 2 (0.05%) 1.0

Furosemide (Yes/No) 79 (1.8%) 8 (13%) 71 (1.7%) <0.0001

Ketorolac (Yes/No) 1088 (25%) 4 (6.5%) 1084 (25%) 0.001

Sevoflurane (Yes/No) 3632 (84%) 51 (82%) 3581 (84%) 0.8

Sevoflurane (%-Hours) 3.2 (3.1) 3.0 (3.7) 3.2 (3.1) 0.6

Desflurane (Yes/No) 1308 (30%) 10 (16%) 1298 (30%) 0.02
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Total Died Alive

Variable 4322 62 (1.4%) 4260 (99%) P-Value

Desflurane (%-Hours) 2.3 (5.6) 1.0 (4.1) 2.4 (5.6) 0.06

Isoflurane (Yes/No) 691 (16%) 21 (34%) 670 (16%) <0.001

Isoflurane (%-Hours) 0.5 (1.3) 0.4 (0.8) 0.5 (1.3) 0.7

Nitrous Oxide (Yes/No) 2403 (56%) 26 (42%) 2377 (56%) 0.04

Nitrous Oxide (%-Hours) 8.7 (20) 8.6 (23) 8.7 (20) 1.0

Number of distinct antibiotics administered 0.9 (0.5) 0.9 (0.7) 0.9 (0.5) 0.4

Number of distinct antibiotics administered (not including cefazolin) 0.6 (0.6) 0.7 (0.7) 0.5 (0.6) 0.01

Propofol (mg) 218 (231) 89.3 (131) 220 (232) <0.0001

Midazolam (mg) 1.9 (8.5) 11 (70) 1.8 (1.2) <0.0001

Fentanyl (mg) 0.3 (0.2) 0.3 (0.3) 0.3 (0.2) 0.6

Morphine (mg) 1.8 (4.3) 1.5 (3.5) 1.8 (4.3) 0.6

Hydromorphone (mg) 0.6 (0.9) 0.4 (0.7) 0.6 (0.9) 0.1

Remifentanil (mg) 0.040 (0.3) 0.035 (0.3) 0.040 (0.3) 0.9

Operative Time (min) 162 (108) 177 (139) 162 (108) 0.3

For continuous variables, the mean and (standard deviation) are displayed for each group and compared with the t-test. For categorical variables, 
counts and (%) are displayed for each group and compared with the chi-square test.
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Table 3.

Area under the curve of the receiver operator characteristic curve of preoperative and intraoperative models to 

predict 30-day mortality in intraabdominal surgery patients.

Algorithm

Preoperative Model Intraoperative Model

AUC 95% CI AUC 95% CI P-value*

Gradient Boosting Machine 0.96 [0.94, 0.99] 0.97 [0.95, 0.99] 0.4

Random Forest 0.96 [0.92, 1.00] 0.97 [0.96, 0.99] 0.3

Convolutional Neural Network 0.96 [0.92, 0.99] 0.97 [0.95, 0.99] 0.029

Logistic Regression 0.95 [0.91, 0.99] 0.95 [0.91, 0.99] 0.9

Support Vector Machine 0.83 [0.69, 0.97] 0.88 [0.75, 1.00] 0.6

AUC, area under the curve of the receiver operator characteristic curve; CI, confidence interval.

AUCs are reported as applied in the test cohort.

Intraoperative model includes both preoperative and intraoperative variables.

*
P-value compares the preoperative model to the intraoperative model using deLong’s test.
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