Table 10.
Spline regression around the event day for North China Provinces.
Main Board |
SME/GEM |
||||||
Coef. |
SE |
t-Stat |
Coef. |
SE |
t-Stat |
||
(×100) | (×100) | (×100) | (×100) | ||||
−0.09 | 0.59 | −0.15 | −0.30 | 0.94 | −0.32 | ||
−0.14 | 0.53 | −0.27 | 0.53 | 0.93 | 0.57 | ||
−0.22 | 0.81 | −0.27 | −0.99 | 0.81 | −1.22 | ||
−0.28 | 0.32 | −0.86 | −0.12 | 0.94 | −0.13 | ||
−1.62 | 0.62 | −2.61 | −3.27 | 0.38 | −8.63 | ||
−0.06 | 0.40 | −0.15 | −0.04 | 0.27 | −0.16 | ||
−0.77 | 0.35 | −2.24 | −0.87 | 0.26 | −3.32 | ||
0.51 | 0.62 | 0.82 | −0.56 | 0.17 | −3.34 | ||
0.71 | 0.44 | 1.61 | 2.03 | 0.83 | 2.46 | ||
−1.20 | 0.50 | −2.43 | −2.42 | 0.24 | −10.10 | ||
−1.60 | 0.41 | −3.94 | −3.27 | 0.69 | −4.71 | ||
0.65 | 0.41 | 1.58 | 1.34 | 0.38 | 3.48 | ||
1.53 | 0.31 | 4.92 | 2.03 | 0.69 | 2.92 | ||
−0.33 | 0.41 | −0.82 | −0.61 | 0.59 | −1.04 | ||
−0.33 | 0.26 | −1.27 | −0.93 | 0.27 | −3.47 | ||
−0.10 | 0.54 | −0.19 | −1.58 | 0.46 | −3.45 | ||
−1.26 | 0.77 | −1.65 | −1.71 | 0.27 | −6.36 | ||
0.96 | 0.76 | 1.25 | 0.67 | 0.66 | 1.01 | ||
0.34 | 0.50 | 0.69 | 2.13 | 0.27 | 7.90 | ||
0.07 | 0.38 | 0.18 | −0.81 | 0.38 | −2.11 | ||
1.48 | 0.46 | 3.23 | 2.33 | 0.69 | 3.36 | ||
Industry Fixed Effect | Yes | Yes | |||||
Province Fixed Effect | Yes | Yes | |||||
Adj. R-square (%) | 0.67 | 1.25 |
Note: This table reports the spline regression results of the coefficient estimates, standard errors (SE), -statistics (t-stat) and adjusted R-square. Standard errors are grouped at the province level. The regression specification is shown in Eq. (3). We use the daily return series of Main Board firms and SME/GEM firms in the North China provinces as the dependent variable. The sample period is between Dec. 2th, 2019 and Feb 23rd, 2020.