Table 11.
Spline regression around the event day for South China Provinces.
Main Board |
SME/GEM |
||||||
Coef. |
SE |
t-Stat |
Coef. |
SE |
t-Stat |
||
(×100) | (×100) | (×100) | (×100) | ||||
−3.60 | 0.74 | −4.84 | −3.51 | 0.81 | −4.33 | ||
−0.44 | 0.47 | −0.96 | 0.50 | 0.56 | 0.89 | ||
−1.52 | 0.46 | −3.30 | −0.47 | 0.59 | −0.79 | ||
0.43 | 0.38 | 1.12 | 0.90 | 0.44 | 2.05 | ||
−0.26 | 0.19 | −1.42 | 0.86 | 0.75 | 1.14 | ||
−0.64 | 0.16 | −4.01 | −0.07 | 0.20 | −0.35 | ||
−0.81 | 0.35 | −2.31 | −0.70 | 0.43 | −1.62 | ||
−0.19 | 0.16 | −1.20 | 0.01 | 0.33 | 0.04 | ||
0.66 | 0.20 | 3.31 | 1.02 | 0.21 | 4.80 | ||
−0.11 | 0.16 | −0.73 | −0.08 | 0.26 | −0.31 | ||
−6.77 | 1.27 | −5.31 | −6.94 | 1.40 | −4.95 | ||
−0.11 | 0.40 | −0.29 | 0.73 | 0.41 | 1.79 | ||
2.19 | 0.16 | 13.33 | 2.99 | 0.21 | 14.58 | ||
2.01 | 0.25 | 8.08 | 2.90 | 0.18 | 16.00 | ||
0.98 | 0.08 | 12.46 | 1.88 | 0.15 | 12.81 | ||
1.10 | 0.29 | 3.75 | 0.68 | 0.39 | 1.73 | ||
−0.13 | 0.22 | −0.61 | −0.40 | 0.47 | −0.84 | ||
1.18 | 0.31 | 3.79 | 2.08 | 0.35 | 6.03 | ||
−0.63 | 0.24 | −2.60 | −0.70 | 0.28 | −2.50 | ||
0.55 | 0.36 | 1.53 | 0.48 | 0.42 | 1.12 | ||
2.47 | 0.31 | 7.84 | 3.63 | 0.34 | 10.71 | ||
Industry Fixed Effect | Yes | Yes | |||||
Province Fixed Effect | Yes | Yes | |||||
Adj. R-square (%) | 3.32 | 1.85 |
Note: This table reports the spline regression results of the coefficient estimates, standard errors (SE), -statistics (t-stat) and adjusted R-square. Standard errors are grouped at the province level. The regression specification is shown in Eq. (3). We use the daily return series of Main Board firms and SME/GEM firms in the South China provinces as the dependent variable. The sample period is between Dec. 2th, 2019 and Feb 23rd, 2020.