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Abstract

Genome-wide association studies (GWASs) have successfully identified loci of the human genome implicated in numerous
complex traits. However, the limitations of this study design make it difficult to identify specific causal variants or biological
mechanisms of association. We propose a novel method, AnnoRE, which uses GWAS summary statistics, local correlation
structure among genotypes and functional annotation from external databases to prioritize the most plausible causal
single-nucleotide polymorphisms (SNPs) in each trait-associated locus. Our proposed method improves upon previous
fine-mapping approaches by estimating the effects of functional annotation from genome-wide summary statistics,
allowing for the inclusion of many annotation categories. By implementing a multiple regression model with differential
shrinkage via random effects, we avoid reductive assumptions on the number of causal SNPs per locus. Application of this
method to a large GWAS meta-analysis of body mass index identified six loci with significant evidence in favor of one or
more variants. In an additional 24 loci, one or two variants were strongly prioritized over others in the region. The use of
functional annotation in genetic fine-mapping studies helps to distinguish between variants in high LD and to identify
promising targets for follow-up studies.

Introduction
Large-scale genotyping studies have great potential to enhance
our understanding of the genetic etiology of human complex
traits. Genome-wide association studies (GWASs), in which a
large number of single-nucleotide polymorphisms (SNPs) are
individually tested for association with an outcome of interest,
have been the primary study design for such investigations
(1). However, the findings from such analyses typically suggest
genomic loci with hundreds of kilobases in size, often containing
hundreds of SNPs that exceed the genome-wide significance
threshold.
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Patterns of linkage disequilibrium (LD) within such loci
present a challenge for researchers seeking to identify the true
causal variants. Functional validation in experimental organ-
isms is necessary to confirm findings from epidemiological
studies, but these experiments are costly and time-consuming.
Statistical fine-mapping methods can be useful to prioritize
variants for follow-up. There is a demand for methods that
use only summary association statistics rather than individual-
level data, to take advantage of large sample sizes available by
meta-analysis of GWAS across cohorts (2,3).

Functional annotation, which describes both protein-coding
genes and genomic regulatory elements, provides additional
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information about the potential biological relevance of SNPs
within a trait-associated locus. Several methods have been
proposed to integrate functional annotation into fine-mapping
of loci identified by GWAS. These methods attempt to jointly
model the influence of functional annotation categories and
the individual-level SNP effects, requiring computationally
demanding iterative algorithms or resampling procedures
and limiting the number of functional categories that can be
modeled simultaneously. Of these methods, only PAINTOR uses
summary statistics as input and incorporates both functional
annotation and LD structure into the fine-mapping analysis (4).

We propose AnnoRE, a random effects model for genetic
fine-mapping that integrates the genome-wide heritability
attributable to each functional annotation category to prioritize
the most likely causal SNPs within GWAS loci. This approach is
motivated by the omnigenic model for complex heritable traits,
which posits that a large number of causal SNPs influence the
phenotype. From a GWAS perspective, this implies that the true
SNP effect is non-zero for a substantial fraction of variants. We
model the distribution of these genetic effects as a function
of the annotations, where higher values of the random effects
variance correspond to greater probability of effects with large
magnitude.

Simulation studies compare the performance of AnnoRE to
previously published fine-mapping methods. Finally, we apply
AnnoRE to a large-scale GWAS meta-analysis of body mass index
(BMI) (5). A software implementation in R is available at https://
github.com/vafisher/AnnoRE/.

Results
Simulation study

AnnoRE was compared to four other fine-mapping approaches
(naïve GWAS, LASSO, GenoWAP and PAINTOR) in 20 simulated
scenarios each with one true causal SNP selected from a range
of annotation priority, in high or low LD with other SNPs in
the locus. Because the alternative approaches use a range of
estimands that are not directly comparable, performance was
summarized by ranking all SNPs in the locus by their relative
evidence of effect on the simulated phenotype and compar-
ing the ranking obtained for the causal SNP from the various
approaches. AnnoRE gave a higher ranking on average across
1000 replicates to the true causal SNP than comparison methods
for all selected causal SNPs, except in three scenarios where
the causal SNP was in at least the 90th percentile of functional
annotation, and PAINTOR gave a higher average ranking (Table 1
and Fig. 1). The causal SNPs that PAINTOR ranked higher than
AnnoRE were located in three or four of the annotation cate-
gories considered in the PAINTOR estimation, suggesting that
PAINTOR is powerful when the selected annotations contain the
true causal SNPs, but it is sensitive to the choice of annotation
categories included in the model. In fact, PAINTOR often failed to
converge entirely for SNPs not included in any of the annotation
categories it considered. AnnoRE is more robust to scenarios of
moderate evidence from annotation because it summarizes the
effects of a large number of annotation categories which are
estimated from genome-wide summary statistics.

All methods performed better in scenarios where the
simulated causal variant was in low LD with all other SNPs
in the locus than in patterns of high LD (top row of Fig. 1), except
for GenoWAP, which does not model LD. However, the improved
performance of GenoWAP at high LD variants is not consistent
across scenarios. The prior probabilities of causality used by
GenoWAP are different from the annotations used by AnnoRE

and PAINTOR in these analyses, possibly accounting for the
discrepancy. Additionally, the EM algorithm used by PAINTOR
to estimate simultaneously the annotation-level heritability
enrichment and the SNP-level effects was unable to converge in
simulation scenarios where the true causal SNP was not located
in any of the top five most highly enriched annotation categories,
which were the only annotation data provided to PAINTOR. The
developers of PAINTOR, in showing its application to practical
data, used a stepwise selection procedure to choose a set of
annotations for inclusion in the final model based on goodness-
of-fit statistics from K fine-mapping models, each with only one
annotation category included. However, the annotation feature
selection step is outside the scope of this project, so PAINTOR
results are presented based only on the scenarios that reached
convergence.

Real-data analysis

In the analysis of summary statistics from 77 loci with genome-
wide significant associations with BMI in the GIANT consortium
meta-analysis of European ancestry studies, 6 loci contained
results exceeding the locus-specific significance threshold. In
each of these cases, the top SNP selected by fine-mapping was
different from the SNP with lowest GWAS P-value, though all
of the top fine-mapping SNPs did exceed genome-wide signif-
icance in the GWAS results (Table 2).

The strongest fine-mapping signal, rs1477196, identified by
the AnnoRE is in the FTO locus on chromosome 16 (Fig. 2), which
has been studied extensively in the genetics of obesity (6). Iden-
tified in association with obesity in previous publications (7,8),
this SNP is located in a haplotype block with two other highly
associated SNPs, rs17817449 and rs9939609. However, the ran-
dom effect variance for rs1477196 is higher than that of the other
SNPs on the haplotype due to its inclusion in the super enhancer
and H3K27ac histone mark annotation categories, both of which
were estimated to contain enriched heritability signal for BMI by
LD score regression.

In the ANKDD1B locus on chromosome 5, the top GWAS signal
is located in an intron of the gene, while the top SNP selected by
AnnoRE, rs34358, is a stop gain mutation in an exon of the gene,
located in a highly conserved region across vertebrate species, a
ChIP-seq peak and DNaseI hypersensitive site.

The BDNF (brain-derived neurotrophic factor) gene on chro-
mosome 11 has been implicated in numerous psychiatric and
neurological diseases (9,10). Both the top GWAS hit in this locus,
rs11030104, and the top SNP selected by AnnoRE fine-mapping,
rs988748, are located in conserved regions in introns of this gene.
The SNP selected by AnnoRE fine-mapping is included in the
super enhancer, fetal DNaseI hypersensitive site, and H3K4me3
peak annotation categories, while the SNP with lowest GWAS
P-value is not in these important categories.

AnnoRE identified the SNP with lowest GWAS P-value as the
most likely causal variant in 13 (16.8%) of the 77 loci analyzed.
Among the remaining loci, the median GWAS ranking of the
top fine-mapping SNPs was 14, and the median AnnoRE fine-
mapping ranking of the top GWAS SNP was 9. Remarkably, only
39 (51%) of the top SNPs identified by AnnoRE attained genome-
wide significance (P < 5 × 10−8) in univariate GWAS analysis.

To assess the ability of our fine-mapping method to discrimi-
nate between SNPs in the locus, we computed the ratio between
the random effect Wald statistics of the top-ranked SNP, and the
second- and third-ranked SNPs. In 17 (22%) of the loci, the signal
at the top-ranked SNP was more than twice as strong as the
second ranked, and in 30 (39%) of loci, the top-ranked signal was
more than twice the third-ranked signal.

https://github.com/vafisher/AnnoRE
https://github.com/vafisher/AnnoRE
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Table 1. Selected causal SNP characteristics for simulated studies: minor allele frequency (MAF), overall LD lj = ∑
k∈locus rjk in the bottom

quartile (low) or top quartile (high) within the locus, and percentile of annotation score
∑

d ajdτd

Causal SNP MAF Overall LD Annotation
Percentile

Average rank at causal SNP

GWAS LASSO GenoWAP PAINTOR AnnoRE

rs9974258 0.413 Low 10 69.2 55.3 1191.3 NA 23.0
rs77960433 0.037 Low 20 1602.2 48.1 2076.9 2129.2 14.4
rs433893 0.381 Low 30 42.1 52.5 1466.8 NA 13.5
rs2830795 0.278 Low 40 1931.4 49.8 946.1 2142.6 13.9
rs2830794 0.493 Low 50 1414.6 52.1 1003.7 2098.7 19.3
rs189506146 0.305 Low 60 52.1 50.6 1333.0 28.3 6.8
rs235952 0.193 Low 70 59.0 45.2 1201.8 13.8 6.6
rs235938 0.467 Low 80 59.9 50.8 1212.5 18.6 6.8
rs235936 0.495 Low 90 54.4 50.9 1040.7 4.1 7.0
rs2830854 0.393 Low 100 53.7 49.7 1704.9 1.8 6.5
rs381814 0.286 High 10 70.5 67.7 1090.4 2044.7 29.9
rs229093 0.299 High 20 75.0 22.6 981.3 NA 52.1
rs7281968 0.33 High 30 77.4 NA 32.7 NA 49.5
rs229087 0.303 High 40 72.0 NA 27.2 1938.1 53.8
rs229061 0.305 High 50 88.4 NA 505.6 NA 58.3
rs229060 0.305 High 60 72.6 NA 99.4 146.6 34.1
rs162497 0.331 High 70 76.1 58.4 86.3 154.2 28.3
rs229063 0.305 High 80 81.5 NA 473.9 165.8 30.7
rs371445 0.292 High 90 82.5 72.9 327.0 78.7 15.9
rs162508 0.282 High 100 72.3 NA 73.2 5.2 25.4

Methods used to evaluate simulated data are compared in terms of average rank of the true causal variant across 1000 replicates. Rankings of ‘NA’ appear where LASSO
was unable to estimate several SNPs due to high collinearity with other variants in the locus, and where the PAINTOR algorithm did not converge for four scenarios
where the causal SNP was not located in any of the most relevant annotations included in the PAINTOR model.

Figure 1. Box plots depicting the quartiles of ranking of simulated causal SNP within fine-mapping locus by all methods under comparison, and whiskers extending

1.5 times the interquartile range, truncated to only show rankings in the top 500 SNPs. Note that LASSO was unable to obtain estimates in six high LD scenarios due

to extreme collinearity, and PAINTOR estimation did not converge when the causal SNP was not included in any of the five annotation categories considered by that

analysis.

Discussion
This paper presents AnnoRE, a method for genetic fine-mapping
incorporating functional annotation. This model uses random
effects to perform multiple regression with smoothing of the
SNP effect estimates dependent on their functional annotation,

so that SNPs in categories with enriched heritability receive
less shrinkage relative to those without evidence of biologi-
cal function. This method performed favorably in comparison
with existing approaches for genetic fine-mapping with func-
tional annotation in simulated trait-associated genomic loci. In
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Table 2. Top-ranked SNPs for BMI from random effects fine-mapping (AnnoRE) and GWAS analysis in each of the loci with AnnoRE results
attaining locus-wide significance

SNP Chr: position Nearest
gene

LD D′

and r2
MAF GWAS β̂ GWA.pval AnnoRE

β̃

Wald
scores

AnnoRE
pval

GWA
rank

AnnoRE
rank

rs1477196 16:53808258 FTO 1.0 0.28 −0.058 3.22E−72 −0.147 348.049 1.13E−77 50 1
rs1558902 16:53803574 0.41 0.45 0.082 7.51E−153 0.014 2.930 0.087 1 31
rs34358 5:74965122 ANKDD1B 0.96 0.35 0.023 2.31E−12 0.037 37.200 1.07E−09 11 1
rs2112347 5:75015242 0.87 0.38 −0.026 6.19E−17 −0.001 0.368 0.544 1 56
rs988748 11:27724745 BDNF 0.99 0.22 −0.041 5.90E−23 −0.027 33.935 5.70E−09 16 1
rs11030104 11:27684517 0.89 0.20 0.041 5.56E−28 0.003 0.729 0.393 1 43
rs11676272 2:25141538 ADCY3 1.0 0.48 0.032 1.12E−21 0.031 28.952 7.42E−08 3 1
rs10182181 2:25150296 0.99 0.50 −0.031 8.78E−24 −0.009 5.028 0.025 1 4
rs1048932 11:115044850 CADM1 0.90 0.50 −0.019 9.43E−10 −0.019 17.367 3.08E−05 2 1
rs12286929 11:115022404 0.57 0.43 0.022 1.31E−12 0.002 1.884 0.170 1 7
rs1800437 19:46181392 QPCTL 0.99 0.18 0.035 1.73E−17 0.022 12.912 3.27E−04 3 1
rs2287019 19:46202172 0.89 0.15 0.036 4.59E−18 0.002 1.159 0.282 1 10

LD measures D′ and r2 quantify association between the top SNPs identified by the two methods.

real-data analysis of a GWAS of BMI, AnnoRE identified candi-
date causal SNPs with plausible biological function.

AnnoRE makes no assumptions regarding the number of true
causal signals, because all SNPs in a given locus are included
as predictors in the random effects model. This approach is
compatible with the omnigenic or infinitesimal models of inher-
itance, which hypothesize that complex traits are influenced by
large numbers of genetic variants with small effect magnitudes
(11,12). Under this model, we assume that a locus contain-
ing functional elements that affect trait outcomes may contain
several causal SNPs modifying the protein product of genes
or regulatory elements that control gene expression. However,
existing fine-mapping methods generally assume a model of
inheritance in which only a few SNPs are truly causal, and all
other association signals are artifacts of confounding due to
LD. In regions of high LD, the tagging effect of numerous weak
signals may substantially influence test statistics, in ways that
cannot be captured by a model that assumes zero effect sizes at
all but a few SNPs.

Using a two-stage procedure for the estimation of the
annotation-level effects and the SNP-level effects allows for
improvements in computational efficiency while exploiting
information about the annotation effects from all genome-wide
test statistics. Thus, AnnoRE is able to account for systematic
enrichment of association signal below the genome-wide signif-
icance level to identify functional categories that are more likely
to contain causal SNPs. On the other hand, the AnnoRE approach
assumes that the relative enrichment of trait heritability among
functional categories is consistent genome-wide. If a given
annotation category is important only in specific genomic
locations, AnnoRE may fail to identify causal SNPs in that
category. All implementations in this paper have used estimates
of the annotation-specific heritability enrichment parameter τk

from LD score regression, but alternative estimators, such as
SumHer (13), could be substituted without modification of the
fine-mapping model.

The repeated use of summary statistics from the same GWAS
to generate τ̂ to define random effect distributions and also the
association statistics within a given locus could lead to inflated
Type 1 error, arising when a SNP with strong trait association
increases the estimated heritability of its own annotations, thus
giving itself an advantage in the fine-mapping model. This risk
will be greatest when few loci contribute a majority of the trait

heritability or when few SNPs per annotation strongly influ-
ence the estimates τ̂ . For complex traits with large numbers of
causal variants distributed across the genome, the estimates of
heritability enrichment will be less sensitive to the association
statistics within any specific locus, reducing the risk of bias. We
demonstrate that the estimates from the GWAS of BMI in our
real data application do not depend strongly on the summary
statistics in any specific locus. However, if external estimates of
heritability enrichment are available, these could also be used in
AnnoRE to eliminate this source of potential bias entirely.

The AnnoRE method shows superior performance to naïve
GWAS ranking, LASSO penalized regression and GenoWAP (14) in
simulation studies across a range of LD structures and annota-
tion scenarios. PAINTOR (4) showed superior performance when
the five annotation categories provided for its model included
at least three containing the causal variant. Because PAINTOR is
only capable of considering a few annotation categories simul-
taneously, it is at a disadvantage for causal variants outside of
those annotations and must be conduct several times to build a
small set of strongly enriched annotations, requiring substantial
computation time. AnnoRE ranked the true causal variant in the
top 10% by ordering of the fine-mapping statistics, on average
across the 1000 simulation replicates, even in simulation scenar-
ios where LASSO and PAINTOR were unable to obtain estimates
at all.

In our analysis of loci identified by a large GWAS meta-
analysis of BMI, we found six loci where the top variant identified
by random effects fine-mapping exceeded a locus-wide signifi-
cance threshold. In all of these cases, the top SNP selected during
fine-mapping was in very high LD with the most significant
GWAS signal, with D′ statistic greater than 0.9 in all six loci.
The D′ statistic accounts for differences in allele frequency,
whereas the standard correlation statistic r2 cannot attain its
maximum value of one between SNP genotypes with different
allele frequencies. In these six loci, the SNPs selected as most
significant by AnnoRE fine-mapping are located in annotation
categories with greater plausible functional relevance than the
top SNPs selected by GWAS. In 25 additional loci, the AnnoRE
test statistic at the top SNP is more than twice the magnitude
at the third-ranked SNP. These loci are promising candidates for
further exploration, as the fine-mapping analysis distinguishes
one or two SNPs with stronger evidence of causality relative to
others in the locus.
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Figure 2. Plots of local LD structure, −log10 GWAS P-values and –log10 AnnoRE P-values in six loci with significant fine-mapping results. Horizontal lines in each scatter

plot show genome-wide (GWAS) and locus-wide (AnnoRE) significance thresholds, respectively. Physical length in kilobase (kb) refers to the number of base pairs (in

1000s) from beginning to end of locus, defined by nominally associated SNPs less than 500 kb from the strongest GWAS association.

Our proposed method addresses the problem of collinearity
due to high LD among sets of SNPs within a locus by defining
random effect variances that depend on SNP annotation. The
resultant estimator is similar to a penalized method such as
ridge regression (15), with the smoothing penalty differing by
SNP annotation. Thus, even if two SNPs are in perfect LD, the

one with stronger annotation evidence will receive a larger
effect estimate. For this reason, it is desirable to include many
annotation categories in the estimation of variance components
to ensure that differences in annotation allow the estimator to
prioritize the genetic variants within LD blocks. However, the
variance component estimates may be unstable when there
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is high correlation among the annotation marks themselves,
as may be the case for tissue-specific annotation of the same
signal across similar tissues. Further work is required to identify
optimal sets of annotation categories for use in fine-mapping
studies.

One limitation of AnnoRE is the fact that the distribution of
the test statistics is conditional upon the variance components
estimated by LD score regression and does not account for
the uncertainty in these estimates. Large GWAS sample sizes
reduce the variability of these estimates, making this simplifying
assumption more acceptable. This method is designed to iden-
tify causal SNPs in common allele frequency ranges and may be
less powerful in the case of rare variants, as is also the case for
other existing fine-mapping methods.

Another limitation is that the incorporation of LD struc-
ture assumes that the study sample is drawn from a popula-
tion with homogeneous ancestry. If a study contains multiple
ancestry groups, AnnoRE could be performed in each group
separately, with different ancestry-specific LD matrices, then
combined through meta-analysis. Extension of this method to
admixed populations, where patterns of LD cannot be summa-
rized in a single static matrix, remains a potential direction for
future work.

As a linear function of the GWAS summary statistics,
AnnoRE is computationally efficient relative to other fine-
mapping approaches that incorporate genomic annotations.
Its most demanding procedure is the inversion of a matrix with
dimension equal to the number of nominally significant SNPs
in a given fine-mapping locus, usually at most a few hundred.
In contrast, the best-performing comparator method, PAINTOR,
uses an iterative expectation–maximization algorithm to jointly
estimate the effect enrichment per annotation category and the
individual SNP effects, which can be computationally prohibitive
with many loci or many annotation categories.

In summary, we have proposed a framework to prioritize
variants with known biological relevance that are associated
with the phenotype independently of other variants in the locus.
Integrating local LD structure and functional annotation, this
proposed approach can either be applied to individual-level data
or to GWAS summary statistics data. The resulting SNPs are
promising candidates for the functional follow-up studies that
are necessary to translate findings from genetic epidemiology
towards increased understanding of human biology and clinical
applications.

Materials and Methods
Random effects model

We estimate the AnnoRE model from GWAS summary statistics
and local LD in a population-matched reference panel as an
approximation of the genetic correlation structure. Suppose that
a given fine-mapping locus contains M SNPs, with allelic effect
estimates β̂j, standard errors SEs(β̂j) and allele frequencies p̂j

available from a study with Nj unrelated subjects contributing
to analysis at SNP j. Additionally, suppose that the LD matrix �̂

of pairwise Pearson correlations between all M SNPs is available
from a reference panel of the same ancestral population as the
GWAS sample.

These summary statistics are calculated in terms of the SNP
genotypes Xj, the length-N column vectors of the matrix X, with
a simple linear regression model at each SNP j:

y = Xjβj + εj

By assumption, the subjects are unrelated, so εj ∼ N(0, σ 2
j INj

).
If all genotypes were independent, i.e. if there was no tag-

ging due to LD and the GWAS effect estimates at a given SNP
represented only the causal effect of that SNP and independent
residual error, the asymptotic distributions of the least squares
estimators β̂j = (XT

j Xj)
−1Xjy would give rise to the GWAS test

statistics:

Zj = β̂j

SE
(
β̂j

) ∼ N

(
βj

√
Nj

σ 2
j

, 1

)

Following the CAVIAR model (16), define the non-centrality

parameter λj = βj

√
Nj

σ2
j

, which is related to the statistical power to

detect a significant association between genotype j and the trait
of interest.

Allowing for genotype correlation within the locus yields the
LD-induced non-centrality parameter �j = ∑

i rijλi where rij =
1√
NiNj

XiXT
j is the LD (Pearson correlation) between SNPs i and j.

Then, the multivariate distribution of the vector Z of Wald
statistics across the locus is

Z | β ∼ MVN (�, �)

where � is the LD matrix, which may be approximated from a

reference panel. Define S = diag
(√

Nj

σ2
j

)
�, so that � = Sβ, yielding

a multiple regression model

Z = Sβ + η

where η ∼ N(0, �).
We define the effect distribution of each SNP by annotation-

specific functional variance components. For the implementa-
tion presented here, we estimate annotation-specific functional
variance components by the LD score regression method of
partitioning heritability (17), but other estimators may be substi-
tuted. This method uses GWAS summary statistics to estimate
enrichment of association signals across a large number of func-
tional categories. Annotation describing C functional categories
is summarized in a (M × C) matrix A of binary indicators ajk = 1
if SNP j is included in functional category k and zero otherwise.

We define a random effect for each standardized SNP by a
Gaussian distribution with mean zero and variance Var(βj) =∑

k ajkτk where the sum is taken over all annotation categories
containing SNP j. The annotation-specific variance component
τk represents the coefficient of expected per-SNP heritability in
category k. These variance components may be estimated by
the LD score regression method for partitioning heritability, with
negative estimates truncated at zero. The factor hloc is defined
as the expected heritability per SNP within each fine-mapping
locus, relative to the genome-wide heritability per SNP. Inclusion
of this factor adjusts the random effect variances for the strength
of the observed genetic association within the locus.

hloc =
(
heritability in locus

)
/
(
#of SNPs in locus

)
(
total trait heritability

)
/
(
#of SNPs in GWAS

)

The vector of SNP effects β ∼ N(0, H) is modeled as ran-
dom effects with independent Gaussian distributions, where
H = diag(hlocAτ ). The best linear unbiased predictor (BLUP)
is obtained by maximizing the joint distribution of Y and β
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conditional on H and the residual variance σ 2
R . This estimator is

given by

β̃ =
[

XTX
σ 2

R

+ H−1

]−1
XTy
σ 2

R

and its variance–covariance matrix, conditionally on the matrix
H that specifies random effect variances as a function of the
annotation coefficients tau

Cov
(
β̃|H

)
=

[
XTX
σ 2

R

+ H−1

]−1

This is a well-known result in the theory of random effects
models and coincides with the estimator implemented in SAS
PROC MIXED (18).

Note that, under this model, genotype vector standardization
encodes the assumption that less frequent variants will have
larger effect sizes, as we would expect due to negative selection.

From the diagonal elements of this covariance matrix, we
may construct a Wald test statistic, conditional on τ ,for the effect
of each SNP in the locus: β̃j/SE(β̃j). The BLUP for this regression
is

β̃ =
[
ST�−1S + H−1

]−1
ST�−1Z

Variances of the individual SNP effect estimates are given by
the diagonal elements of the matrix [ST�−1S + H−1]

−1
, which may

be used to define Wald statistics for the estimators. These test
statistics Wj = β̃j/SE(β̃j) follow an asymptotic standard normal
distribution under the null hypothesis βj = 0, conditional on the
random effect variances τ̂ (19).

This model formulation accommodates heterogeneous SNP
effects in such a way that variants in biologically active genomic
elements are more likely to be causal and avoids assumptions on
the number of true causal variants per locus. The random effects
distribution here refers to the distribution across all SNPs in the
genome, rather than individuals in the population, so that two
subjects with the same genetic profile are assumed to have the
same predisposition to the phenotype of interest.

Simulation study

We simulated GWAS results in a 1 megabase region from
28 000 000 to 29 000 000 base pairs on chromosome 21. This locus
was selected as subjectively representative of GWAS results,
which are commonly defined as a 500 kilobase region around a
a lead SNP with smallest p-value. The simulation locus contains
the genes ADAMTS1 and ADAMTS5, and numerous GWAS
variants associated with diverse traits including Alzheimer’s
disease (20), bone mineral density (21) and blood protein levels
(22). Four recombination hotspots divide the region into distinct
LD blocks, and a majority of the GWAS variants in the locus
are located in blocks that contain regulatory elements but
no gene coding regions. Using HAPGEN2 (23), we constructed
synthetic samples of size N = 10 000 from haplotypes of the 379
individuals of European ancestry included in the Phase 1 of
the 1000 Genomes Project (24). This reference panel contained
M = 2159 SNPs in the locus of interest.

Annotation-specific variance components τ̂ were estimated
from the GIANT Consortium GWAS of BMI (5) for 52 regulatory
annotation categories from the ENCODE project (25), to define
the random effect distributions for all SNPs in the locus. Negative
estimates τ̂d were truncated at zero, effectively removing 28
annotation categories from the model, representing no evidence

of enriched heritability in these categories. To assess the sensi-
tivity of fine-mapping within the locus to the repeated use of the
same data set in estimating the variances of the SNP effects and
predicting the joint effects conditional on those variances, we
repeated the LD score regression procedure with a subset of the
GWAS results excluding all variants in the fine-mapping locus.

We defined 20 simulation scenarios, each with one causal
SNP chosen to explore a range of genetic architectures. For
each causal SNP scenario, we created 1000 phenotype replicates,
fixing SNP-specific heritability at h2 = 0.001 and calculating
the genetic effect size to account for different allele frequencies
between the scenarios.

Causal SNPs were selected in scenarios of both high and
low total LD with other variants in the region. High and low LD
SNPs were defined as those with total LD lj = ∑

k r2
jk in the top

or bottom quartile for the locus. To assess the contribution of
annotation across methods, we considered scenarios with one
causal SNP near the deciles of the distribution of random effects
variances

∑
d ajd τ̂d, where the sum is taken over all annotation

categories in the model. Table 1 presents the characteristics of
the selected causal variants.

In these simulated samples, we compared the ranking
by AnnoRE with (1) a naïve GWAS approach based solely
on marginal association P-values, (2) LASSO regression using
subject level genotype and phenotype data, (3) PAINTOR (4)
with the top five most highly enriched annotation categories
[conserved regions, extended H4K5me1 peaks, extended H3K9ac
peaks, H3K9ac peaks and extended Super Enhancers (26)] and
(4) GenoWAP, using prior probabilities of causality pre-computed
from NHGRI GWAS catalog training data (27,28).

Real-data analysis

BMI is an important risk factor for numerous diseases, such
as Type 2 diabetes, hypertension and heart disease. It is highly
heritable, with twin study estimates of the genetic contributions
accounting for 49–90% of trait variance (29). The Genetic Investi-
gation of ANthropometric Traits (GIANT) consortium is an inter-
national collaboration studying the genetic basis of anthropo-
metric phenotypes including BMI. We performed AnnoRE analy-
sis fine-mapping with summary statistics from the GIANT GWAS
meta-analysis of BMI in 322 154 subjects of European ancestry (5).
This study reported 77 loci with the strongest signals separated
by at least 500 kb and reaching genome-wide significance (P <

5×10−8) in the European ancestry sample. Summary statistics for
all reported SNPs within a 500 kb radius of the most significantly
associated markers were extracted for fine-mapping, with LD
information from the 1000 Genomes Project Phase 1 European
ancestry reference panel.

We assessed the impact of repeated use of GWAS summary
statistics for estimation SNP effect variances obtained from
LD score regression and fine-mapping analysis. For each locus
attaining genome-wide significance, we performed LD score
regression with a subset of GWAS summary statistics excluding
the SNPs at that locus, then calculated the Pearson correlation
between the random effect variance estimates per SNP from LD
scores including and excluding that locus. The mean correlation
across the 77 genome-wide significant loci was 0.9994, and
the minimum value was 0.9773 at the rs13021737 locus. From
this sensitivity analysis, it is concluded that the results within
each locus would not be affected by this repeated use of the
GWAS statistics, supporting the use of genome-wide heritability
partition estimates for all fine-mapping.
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Within each locus, we defined a locus-specific significance
threshold by Bonferroni correction based on the number of SNPs
included in the fine-mapping analysis, to adjust for multiple
testing of the BLUP Wald statistics.
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