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Abstract

Progressive disorders are highly heterogeneous. Symptom-based clinical classification of these 

disorders may not reflect the underlying pathobiology. Data-driven subtyping and staging 

of patients has the potential to disentangle the complex spatiotemporal patterns of disease 

progression. Tools that enable this are in high demand from clinical and treatment-development 

communities. Here we describe the pySuStaIn software package, a Python-based implementation 

of the Subtype and Stage Inference (SuStaIn) algorithm. SuStaIn unravels the complexity 

of heterogeneous diseases by inferring multiple disease progression patterns (subtypes) and 

individual severity (stages) from cross-sectional data. The primary aims of pySuStaIn are to enable 

widespread application and translation of SuStaIn via an accessible Python package that supports 

simple extension and generalization to novel modelling situations within a single, consistent 

architecture.
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1. Motivation and Significance

The Subtype and Stage Inference (SuStaIn) algorithm is a powerful tool for understanding 

the progression of heterogeneous diseases. SuStaIn uniquely identifies distinct disease 
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progression patterns (subtypes) that account for temporal change. This is valuable because 

many progressive diseases are heterogeneous in nature and can naturally be described 

by a set of distinct subtypes [1], [2],[3], [4]. SuStaIn has been applied to a number of 

neurodegenerative diseases, including Alzheimer’s disease [5][6], frontotemporal dementia 

[5] and multiple sclerosis (MS) [7]. It has also been being applied to progressive lung 

disease [8].

In contrast to SuStaIn, most disease progression models try to find a single coherent 

picture of how a disease evolves from early to late stages based on cross-sectional or 

short-term longitudinal snapshots of disease progression within individuals. Such models 

assume that all individuals follow the same pattern of progression [9], [10], [11], [12]. 

SuStaIn generalizes these models to infer multiple patterns of progression (from equivalent 

data). It does so via a spatiotemporal clustering approach that disentangles disease subtypes 

(i.e. distinct spatial patterns of progression) from disease stages (i.e. severity or the degree 

of temporal progression within a particular subtype). Importantly, the subtypes and stages 

inferred by SuStaIn cannot be resolved by clustering directly on subtype, which does not 

account for heterogeneity in disease severity within-cluster, or on stage, which does not 

account for subtype heterogeneity within-cluster.

The motivation for developing the pySuStaIn package is to expand the accessibility of 

the algorithm via an open-source Python implementation (originally MATLAB). This 

empowers more users to try the algorithm on their data sets and enables more developers 

to easily extend the code or compare it with other methods. Another major motivation is 

to increase the flexibility of the algorithm to handle multiple disease progression models. 

The original SuStaIn implementation was based on a linear z-score based likelihood 

function; pySuStaIn generalizes SuStaIn to handle arbitrarily defined data likelihood terms 

as derived classes within an object-oriented architecture. This allows direct plug-in of 

new models. As an initial demonstration, we implemented three models as derived classes 

within this framework: (i) the original continuous model of disease progression relative 

to a control population using the z-score based likelihood (ZScoreSustain); (ii) the ‘normal-

versus-abnormal’ model which uses a data likelihood based on a mixture of normal and 

abnormal distributions, as in the Event Based Model (MixtureSustain; [9], [13],[14]); and 

(iii) a model for discrete ordinal data, that can be used for biomarkers based on visual 

ratings, neuropathological ratings or certain cognitive tests (OrdinalSustain)[15].

The pySuStaIn package is intended to be flexible and easy to use: the user chooses the type 

of likelihood and sets a few parameters controlling the number of subtypes to be inferred, 

the number of Markov chain Monte Carlo (MCMC) iterations and expectation maximization 

(EM) start-points, and whether to use parallelization. It is also intended to be easy to extend: 

new disease progression models can be added as implementations of AbstractSustain with 

an appropriately defined likelihood. Simulation code and Jupyter notebooks are provided to 

help users understand these functionalities.
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2. Software Description

pySuStaIn is written in Python 3 and uses the NumPy and SciPy numerical packages. It 

uses the Pathos package for parallelizing the start-points of several EM-based computations 

described later. We used Pathos instead of Python’s default multiprocessing package as 

it allows separate random seeds across processes, which is important because pySuStaIn 

makes extensive use of randomly permuted sequences. The following sections describe 

pySuStaIn’s software architecture and its major functionalities. Several code snippets are 

included to aid understanding.

2.1 Software Architecture

The SuStaIn algorithm was described in detail by Young et al. [5]. Briefly, SuStaIn infers 

increasingly complex models of disease progression using a set of cross-sectional training 

samples (a subjects-by-features matrix). Ideally, these samples should adequately capture 

the dynamics of some underlying heterogeneous disease, in terms of both the variability 

of progression and disease severity. Given such data, SuStaIn begins by inferring a single 

sequence of events that characterizes disease progression from early to late stages. Each 

successive iteration increases model complexity by adding a subtype, up to a specified 

maximum. The original implementation [5] used a z-score based data likelihood to find the 

maximum likelihood event sequence for each subtype. Each biomarker was associated with 

a fixed set of z-score based events; an event corresponded to a biomarker value exceeding 

(for example) one, two or three standard deviations relative to a control population mean. 

pySuStaIn generalizes the algorithm to accept customizable data likelihoods, e.g., based on 

a mixture model. The user is free to choose the data likelihood that best fits their problem 

from among the available implementations (Figure 1), or to contribute their own.

The core functionality of the algorithm is implemented within the AbstractSustain class, 

which, as its name suggests, is an abstract class that cannot be instantiated directly. As 

shown in Figure 1, each child class then implements its own _calculate_likelihood_stage(), 

_optimise_parameters() and _perform_mcmc() methods, all of which depend on the child 

class’ particular data likelihood function. Each child class also has a __sustainData member 

variable which is an instance of an AbstactSustainData-derived class. In the case of the 

ZscoreSustain class, this is a ZscoreSustainData object with an internal data variable 

containing z-scored biomarkers for all subjects, where z-scoring is done externally. For 

MixtureSustain, this is a MixtureSustainData object with internal L_yes and L_no matrices 

storing the probabilities that a biomarker measure belongs, respectively, to the patient or 

control distributions of a mixture model. Storing the probabilities rather than the data itself 

allows for complete flexibility in the form of the probability distribution used to model 

the probability an event has or hasn’t occurred. These matrices are typically generated 

via a mixture modelling procedure that can be either performed in pySuStaIn or done 

externally. In the example code provided (simrun.py), mixture models are built for each 

biomarker using either Gaussian mixture modelling (setting sustainType to mixture_gmm) 

or kernel density estimation mixture modelling (setting sustainType to mixture_kde)[14]. 

OrdinalSustain similarly stores an internal OrdinalSustainData object with prob_nl and 

prob_score matrices respectively storing the probabilities of each biomarker being ‘normal’ 
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(similar to the expected score in a control population) or having each particular score. As 

with MixtureSustain, this formulation allows complete flexibility for the user to choose the 

form of the distributions.

To aid in understanding our implementation, we briefly explain some of the most important 

methods within AbstractSustain. The _estimate_ml_sustain_model_nplus1_clusters() 

method within run_sustain_algorithm(), which starts the algorithm after initialization, is 

responsible for inferring the desired number of subtypes. It is based on the principle 

that splitting an existing subtype into two subtypes is computationally much simpler than 

splitting a whole dataset into multiple subtypes. Initially, the _find_ml() function uses 

greedy expectation maximization (EM) to find a maximum likelihood based biomarker 

sequence that describes all subjects’ progression (i.e. a one-subtype model). Once this 

sequence is inferred, two separate methods generalize the algorithm to multiple subtypes. 

The first is _find_ml_split(), depicted in Figure 2a, which finds the best split of an existing 

event sequence into two subtypes. Within this method, the n subjects described by a 

sequence are randomly split into two subgroups and greedy EM is run separately for each 

subgroup to find an optimal sequence describing that subgroup’s progression. The second 

is _find_ml_mixture(), which uses the newly split sequence and the unsplit sequences from 

the previous iteration as a starting point to optimise the full set of sequences. For example, 

as depicted in Figure 2b, if SuStaIn is trying to infer a three-subtype model based on two 

previously inferred sequences S1 and S2, it will try two different splits and evaluate how 

well each of them fits the data. It will split S1 into S1,1 and S1,2 and use greedy EM to 

find maximum likelihood sequences starting with S1,1, S1,2 and S2. Similarly, it will split 

S2 into S2,1 and S2,2 and do the same with S1, S2,1 and S2,2. Using maximum likelihood it 

will choose which of these two sets of optimized sequences best describes the whole training 

dataset and choose that set as the new three-subtype model. To find a four-subtype model 

the algorithm then splits each of the three subtypes and finds which of the three resulting 

four-subtype models best describes the data and so on.

Once the sequences have been inferred using the above procedure, 

_estimate_uncertainty_sustain_model() uses MCMC to estimate the positional uncertainties 

for each sequence. Each sequence is permuted by swapping two randomly chosen places and 

the likelihood of the data under the permutation is evaluated. This procedure is performed a 

set number of times (typically one hundred thousand or one million). From this a positional 

variance diagram (PVD) can be built to visualize how often each biomarker appears in each 

position (see [9] for further explanation).

2.2 Software Functionalities

The major functionalities of pySuStaIn are: (i) flexible choice of data likelihood; (ii) 

data preparation, which depends on the likelihood; (iii) SuStaIn-based inference to find 

biomarker progression sequences for the specified number of subtypes; (iv) visualizations of 

the inferred sequences; (v) estimation of the most likely subtype and stage of each subject 

based on the inferred model; and (vi) tools to aid in model selection. These functionalities 

are depicted in Figure 3 and described in greater detail in the following subsections.
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2.2.1 Flexible choice of data likelihood—One of the most important functionalities 

of pySuStaIn is that it allows users to choose among the existing implementations of 

AbstractSustain and to easily add new ones. Each represents a different underlying disease 

progression model, defined by a unique data likelihood. For example, ZscoreSustain 
represents continuous accumulation of abnormality relative to a control population using 

a z-score based likelihood while MixtureSustain models transitions from normal to abnormal 

measures using a mixture model based likelihood. OrdinalSustain models transitions from 

one score to another using a categorical likelihood. Other disease progression models can 

easily be added by deriving from AbstractSustain and AbstractSustainData. Importantly, in 

all such derived classes the core algorithm is unchanged: it always uses greedy EM and 

MCMC to infer sequences of events (however defined) that best explain the available data.

2.2.2 Data preparation—Data preparation varies depending on which data likelihood is 

used. In the case of the z-score likelihood, the ZscoreSustain class assumes that users will 

z-score the input data themselves and hence there is no data preparation in this case. For 

clarity, z-scoring should be done with respect to a control population, so that z-score based 

events can be interpreted as departures from normality. In simrun.py this functionality is 

showcased when sustainType is set to zscore.

In the case of the mixture model likelihood, as mentioned above, MixtureSustain’s 

constructor expects L_yes and L_no likelihood matrices. While users are free to build 

their own mixture models to generate these matrices, pySuStaIn implements Gaussian 

mixture models (GMMs) and kernel density estimation based mixture models (KDE-MMs), 

both of which have been previously used with the Event Based Model [9], [13],[14]. 

Within simrun.py, simulated subjects assigned earliest stages are used as controls and those 

in latest stages as cases. Mixture models are then fit using either fit_all_gmm_models 

or fit_all_kde_models, depending on whether sustainType is set to mixture_gmm or 

mixture_kde, respectively. As a general rule, GMMs should be used when the normal and 

abnormal distributions for each biomarker are suspected to be normally distributed while 

KDE-MMs should be used in more general cases when these values are not necessarily 

Gaussian, e.g., they are heavy-tailed or asymmetric.

2.2.3 SuStaIn-based inference—Once data has been prepared, pySuStaIn is ready 

to run the SuStaIn algorithm to infer the specified number of subtypes. After an 

AbstractSustain type object (specifically, a ZscoreSustain, MixtureSustain or OrdinalSustain 
object) is initialized and run_sustain_algorithm() is called, SuStaIn proceeds to infer 

iteratively more complex models, beginning with a one-subtype model describing all 

subjects’ progression and ending with an N_S_max-subtype model, with N_S_max passed 

in on initialization. As SuStaIn can be computationally demanding, particularly with a large 

sample size, a large number of biomarkers (especially if the z-score likelihood is used), 

and/or a high N_S_max, pickle files are used to save the progress of the algorithm at each 

iteration of this procedure. Pickle files are saved within the/pickle_files subfolder of the 

output_folder directory, which is also passed in on instantiation. This allows the program to 

be restarted so that if, for example, the program has been previously run with N_S_max set 
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to two and is subsequently set to three. In this case the algorithm does not have to recompute 

the one-subtype and two-subtype models to find a three-subtype model.

SuStaIn can also be run within a cross-validation scheme via the 

cross_validate_sustain_model() function, which accepts a list of test sample indices for each 

fold. The training indices for a fold are the set difference between all training samples and 

the given test samples. SuStaIn is then run on the fold’s training data, up to the specified 

number of subtypes, with each model saved as a fold-specific pickle file.

2.2.4 Visualization of inferred subtypes—Once a SuStaIn model has been fit, 

positional variance diagrams (PVDs) are an intuitive way of visualizing each subtype’s 

inferred event ordering while accounting for the MCMC-based positional uncertainty 

estimates. For example, Figure 4a depicts a PVD showing the true sequences from a 

three-subtype model used to generate simulated data. Each biomarker has three well-defined 

z-score based events, with no uncertainty in the ordering. Figure 4b on the other hand, 

depicts a PVD of SuStaIn’s inferred sequences, where the uncertainty in the positioning of 

certain events is clearly seen.

pySuStaIn generates PVDs for both full models (i.e. trained on all samples) and cross-

validated models. Cross-validated PVDs are formed by finding the best one-to-one match 

between each fold’s and the full model’s sequences (based on Kendall’s tau correlation 

measure) so that subtypes’ MCMC samples can be stacked across folds. This is done 

because changing the training data (as in cross-validation) can change the ordering of events 

within inferred subtypes. Figures 4b and 4c depicts PVDs from the full and cross-validated 

models respectively, showing the additional uncertainty in the cross-validated version, as 

expected.

2.2.5 Subtype and stage estimation—Given a SuStaIn model, consisting of the 

maximum likelihood and MCMC sequences, the subtype_and_stage_individuals() function 

estimates a most likely subtype and stage for each training sample. This is done by 

first calculating a probability distribution over all of the possible subtypes and stages 

for every subject based on the model and the given subject’s biomarker values. To find 

the most likely subtype we sum over all possible stages, choosing the subtype with the 

highest marginal probability. Similarly, to find the most likely stage, we sum over all 

subtypes, choosing the most probable stage for every subject. Figures 4d and 4e depict 

true versus estimated subtypes and stages for the inferred model built on simulated z-

score data in simrun.py. The simulation writes the estimated subtype and stages to the 

Subject_subtype_stage_estimates.csv file. pySuStaIn can also estimate the subtypes and 

stages for unseen test samples via the subtype_and_stage_individuals_newData() function, 

which expects data in the same format as the training data (z-scored in ZscoreSustain; 

L_yes, L_no in MixtureSustain; prob_nl, prob_score in OrdinalSustain). Importantly, this 

function can be used to assess the stability of individual-level subtype assignments. 

For example, after training a SuStaIn model on data from subjects’ baseline visits, the 

subtype_and_stage_individuals_newData() function can be called on the same (or a subset 

of) subjects’ follow-up samples.
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Note that users are free to derive alternative subtype and stage assignments using the 

three-way prob_subtype_stage matrix returned by this function (see Section 2.3).

2.2.6 Tools for model selection—SuStaIn infers models of increasing complexity 

up to a maximum number of subtypes specified by N_S_max. Users must use their own 

discretion to select the most appropriate model. In general, models with more subtypes 

will better describe the training data (at the risk of overfitting), but will be harder to 

interpret. pySuStaIn provides several tools to aid model selection: (i) an MCMC likelihoods 

figure (MCMC_likelihoods.png), to help in visually comparing models’ in-sample model 

fits (see Figure 5f); (ii) after cross-validation is finished, it prints to the terminal the 

cross-validation information criterion (CVIC) for one-subtype to N_S_max-subtype models 

[5]; and (iii) out-of-sample log likelihoods, averaged across MCMC samples, for each 

cross-validation fold as both a figure (Log_likelihoods_cv_fold.png; Figure 5g) and a file 

(Log_likelihoods_cv_fold.csv).

It is generally recommended to select models using either the CVIC or out-of-sample 

log likelihoods (either visually and/or via statistical tests between models of increasing 

complexity) than via in-sample MCMC likelihoods, as cross-validation approximates the 

generalizability of models to unseen data.

2.3 Sample code snippets

The following code snippets show how to initialize a ZscoreSustain object and run SuStaIn.

Z_vals = np.array([[1, 2, 3]] * N) # define z-score event thresholds for 

each of N biomarkers

Z_max = np.array([5] * N) # maximum z-score for each biomarker

N_iterations_MCMC = int(1e6) # number of MCMC iterations

N_S_max = 3 # maximum model complexity (here 3 subtypes)

N_startpoints = 25 # number of EM startpoints

use_parallel_startpoints = True # parallelize the EM computation across 

startpoints

sustain = ZscoreSustain(data, Z_vals, Z_max, SuStaInLabels, 

N_startpoints, N_S_max, N_iterations_MCMC, output_folder, dataset_name, 

use_parallel_startpoints)

where data is a matrix of size M × N, where M is the number of training samples and 

N is the number of features and SuStaInLabels is a list of biomarker names for plotting. 

Z_vals specifies the z-score event thresholds for each biomarker as a matrix. In the above 

example, each of the N biomarkers is assigned three z-scores (1, 2 and 3). Users can also 
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assign different numbers and values of z-scores each biomarker by setting some values in the 

z_vals to zero. For example, the following code:

Z_vals = np.array([[1, 2, 3]] * N)

Z_vals[0][0] = 0

sets the first biomarker’s z-scores to 0, 2 and 3 and the rest of the biomarkers’ z-scores to 1, 

2, 3 as before. If this version of Z_vals is passed to the ZScoreSustain constructor, the first 

biomarker will only have two associated z-score thresholds (2 and 3) and overall there will 

be 3N-1 stages in the inferred sequences rather than 3N. By setting some elements of Z_vals 

to zero in this way, the user can fully customize the set of z-scores for each biomarker.

Once the sustain object has been initialized SuStaIn can be run via:

samples_sequence, \

samples_f, \

ml_subtype, \

prob_ml_subtype, \

ml_stage, \

prob_ml_stage, \

prob_subtype_stage = sustain.run_sustain_algorithm()

where sample_sequences and samples_f are the event sequences and fractions of subjects 

per subtype across MCMC samples, ml_subtype and prob_ml_subtype are the maximum 

likelihood subtype and associated subtype probability per sample, and ml_stage and 

prob_ml_stage are maximum likelihood stage and stage probability per sample. The M × 

N_stages × N_S_max matrix prob_subtype_stage stores the full probability distributions 

over all possible subtypes and stages for every sample, from which we derive the 

prob_ml_subtype and prob_ml_stage vectors.

Additionally, an instructional Jupyter notebook is also available in the/notebooks 

subdirectory.

3. Illustrative Examples

Illustrative examples of pySuStaIn are shown in Figures 4 and 5 for both the z-score and 

mixture likelihood styles of SuStaIn, which are the most commonly used implementations 

at present. These are produced by the simrun.py simulation code available in the/sim 

subdirectory. The simulator proceeds by randomly sampling a subtype (between zero and 

N_S_ground_truth, the number of ground truth subtypes, set to three in both cases) and 

stage (between zero and the total number of stages) for a set of 800 subjects. Ground truth 
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subtypes are sampled from a discrete distribution with probabilities of 0.5, 0.3 and 0.2 

assigned to the three subtypes. Ground truth stages are sampled from a uniform distribution.

Using randomly generated ground truth sequences (shown in Figures 4a and 5a) and these 

subtype and stage assignments, a training dataset is generated for input to the SuStaIn 

algorithm. The maximum number of subtypes to infer, N_S_max, is also set to three. Figures 

4b and 5b show the inferred sequences for the three subtype models. In both cases there is 

a close correspondence to the true sequences, showing the ability of SuStaIn to recover 

the true underlying patterns of biomarker progression in a purely data-driven manner. 

Importantly, SuStaIn has a built-in quantification of uncertainty (positional variance, evident 

when comparing the inferred sequence in 4b to ground truth in 4a) which realistically 

reflects under-sampling across stages. Figures 4d and 4e depict the correspondence between 

the true (randomly generated) subtypes and stages of the training subjects and their 

estimated counterparts for the z-score likelihood simulation. Figures 5f and 5g depict the 

in-sample (MCMC likelihoods) and out-of-sample (cross-validation fold likelihoods) for the 

mixture simulation, showing that, as expected, the three-subtype model better explains the 

training data than simpler models.

4. Impact

Chronic diseases present enormous personal and societal challenges that will likely increase 

with the aging of worldwide populations. These include neurodegenerative diseases such 

as Alzheimer’s, Parkinson’s, and MS, as well as respiratory diseases such as chronic 

obstructive pulmonary disease (COPD). Understanding such complex multifactorial diseases 

necessarily involves accounting for heterogeneity using methods that group subjects with 

similar spatiotemporal progression patterns. SuStaIn is unique in its ability to find such 

subtypes in an objective, data-driven manner, using cross-sectional information from a 

suitably diverse set of samples.

The pySuStaIn package is intended to make SuStaIn widely accessible, easy to use and 

applicable to different modelling scenarios. It is already having a significant impact on 

the basic understanding of a variety of neurodegenerative diseases [16] and, in the longer 

term, will impact both clinical trials and clinical practice. pySuStaIn’s key features are: (i) 

it simplifies the process of implementing new subtyping models; (ii) it broadens the reach 

of the algorithm through Python; (iii) it is substantially faster than the original MATLAB 

implementation, due to several code optimizations, enabling more complex models to be 

fit; (iv) it has parallelized EM start-points for additional speed; (v) it integrates previously 

disparate disease progression models into a single package; and (vi) it adds both simulations 

and notebooks to make SuStaIn easier to understand and use.

SuStaIn has primarily been used to identify data-driven subtypes from continuous biomarker 

measures, such as those obtained from neuroimaging (e.g. multi-modal MRI, PET) or lung 

imaging (e.g. CT). Ordinal SuStaIn extends the algorithm to handle a variety of discrete 

ordinal data including visual ratings of images, neuropathological ratings and clinical and 

neuropsychological test scores. Four recent studies illustrate how pySuStaIn has already 

enabled researchers to better understand both neurodegenerative and lung diseases:
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• It has been used to characterize the spatiotemporal spread of Alzheimer’s related 

tau protein pathology throughout the brain. This is the largest study using 

tau PET imaging to date, analyzing over 1100 individuals from across five 

studies, with the aim of capturing as much tau heterogeneity as possible. This 

study used regional standardized update value ratios (SUVRs) derived from tau 

PET imaging as input to ZscoreSuStaIn. It found four distinct subtypes, two 

of these were consistent with previous studies and two were novel subtypes 

which resembled atypical variants of Alzheimer’s. This study used the z-score 

likelihood, so that the interpretation of abnormality was relative to cognitively 

normal individuals [6]. Importantly, this study demonstrated that SuStaIn’s 

individual-level subtype assignments are stable over time, showing that 89% of 

individuals were either assigned the same subtype at both baseline and follow-up 

or progressed from stage zero into a subtype. As a further validation of SuStaIn, 

the four identified subtypes were also replicated in a separate sample using a 

different radiotracer.

• A related study investigated the spread of Alzheimer’s related amyloid and tau 

protein pathologies using PET imaging in 400 individuals from a single study. 

This study used regional SUVRs from both amyloid PET and tau PET as input to 

MixtureSuStaIn. It found that subjects fell into two basic subtypes: an amyloid-

first subtype, in which amyloid pathology first appears in the brain, and a tau-

first subtype. This model favors the dual pathway hypothesis of Alzheimer’s 

progression over the amyloid cascade hypothesis, the prevailing amyloid-centric 

model. This study used the mixture model likelihood, interpreting disease stages 

as transitions from distinctly normal to distinctly abnormal measurements [17].

• SuStaIn has also been used to find MRI-based subtypes of MS. This study 

used T1-weighted, T2-weighted and T2-FLAIR MRI-based features as input to 

ZscoreSuStaIn. It found that there are three distinct MRI-driven subtypes are 

better associated with disability progression than the current subtyping system 

that is based on four symptom-based subtypes. Importantly, the study also 

showed that only one of the identified subtypes showed a significant treatment 

response in randomised controlled trials. This study used the z-score likelihood 

[7].

• SuStaIn identified two major patterns of lung damage in Chronic Obstructive 

Pulmonary Disease (COPD) [8]: ‘tissue-airway’, which affected lung tissue early 

on, and ‘airway-tissue’, which affected the lung airways first. These patterns 

could be used to identify otherwise healthy smokers at risk of COPD at follow-

up, suggesting that SuStaIn can be used for very early stratification in COPD.

To date pySuStaIn has been developed and used by researchers at UCL, along with close 

collaborators. However, the intended user group for this package is the wider community of 

researchers and clinicians who are focussed on understanding neurodegenerative and other 

progressive diseases. We anticipate that pySuStaIn will facilitate this, as has been the case 

with event-based model code that is now finding broader use among the community [18].
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5. Conclusions

We have presented pySuStaIn, a python-based implementation of the SuStaIn algorithm, 

a paradigm-shifting approach to understanding heterogeneity within progressive processes 

such as chronic diseases. pySuStaIn aims to widen the accessibility of this algorithm via 

an open source Python implementation. Our object-oriented implementation enables user-

defined sub-models, which can be easily added to in the future, increasing the applicability 

of the algorithm. Inclusivity and accessibility is enhanced by providing code examples, 

visualizations to aid model interpretation, and tools for model selection.
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Figure 1. 
The architecture of pySuStaIn.
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Figure 2. 
Core computations within the _estimate_ml_sustain_model_nplus1_clusters() method of 

AbstractSustain.
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Figure 3. 
Depiction of the major functionalities of pySuStaIn, as a sequence of operations that begins 

with an input biomarker data matrix, followed by a data preparation step that depends on 

the chosen data likelihood, then the SuStaIn algorithm run on both full and cross-validated 

data and finally a set of outputs consisting of: (i) visualizations of the inferred models; (ii) 

estimates of the most likely subtype and stage for training and test subjects; and (iii) a set of 

model selection tools.
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Figure 4. 
Schematic of simulated z-scored data as implemented in simrun.py. Inference of three 

subtypes via ZScoreSustain based on the simulated input data, with: (plot a) true event 

sequences for each subtype; and (b) sequences inferred by SuStaIn given a (c) subjects × 

features input matrix of z-scores for subjects with randomly-sampled subtypes and stages. 

A comparison of estimated versus true subtypes and stages are depicted in (d) and (e), 

respectively.
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Figure 5. 
Schematic of simulated mixture model data as implemented in simrun.py, with the two 

available mixture model types shown (mixture_GMM or mixture_KDE, based on Gaussian 

mixture modelling or kernel density estimation, respectively). Inference of three subtypes 

using MixtureSustain on the simulated input data (L_yes and L_no matrices). Each matrix is 

a subjects × features matrix storing the probability of subjects’ observations belonging to the 

mixture-model-derived case (L_yes) or control (L_no) distribution. Figures shown are from 

the mixture_GMM style; those from the mixture_KDE style are very similar.
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