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Abstract

Load sensing total knee replacement (TKR) implants are useful tools for monitoring prosthesis 

health and providing quantitative data to support patient claims of pain or instability. However, 

powering such devices throughout the entire life of the knee replacement is a challenge, and self-

powered telemetry via energy harvesting is an attractive solution. In this study, we implemented 

vertical contact mode triboelectric energy harvesters inside a knee implant package to generate 

the power required for embedded digitization and communications circuitry. The harvesters 

produce small-scale electric power from physiologically relevant loads transmitted through the 

knee. Experiments were performed on a joint motion simulator with an instrumented package 

prototype between the polyethylene bearing and tibial tray. The amplitude and the pattern of the 

power output varied with the input loadings. Under sinusoidal loading the maximum apparent 

power harvested was around 7μW at (50–2000)N whereas, under vertical compressive gait loading 

the harvesters generated around 10μW at average human knee loads of (151–1950)N and 20μW 

when the maximum applied load was increased by 25%. Full six degrees of freedom (6-DoF) gait 

load/motions at 0.67Hz produced 50% less power due to the slower loading rate. The results show 

the potential of developing a triboelectric energy harvesting-based self-powered instrumented knee 

implant for long-term in vivo knee joint force measurement.

Index Terms

Knee implant package prototype; Triboelectric energy harvesting; Total knee replacement; In vivo 
force measurement; Joint motion simulator; Biomedical sensor

I. Introduction

Total knee replacement (TKR) is a common surgical treatment for end-stage knee 

osteoarthritis, performed over 600K times per year in the USA alone [1]–[3] and much 

of the surgeries is occurring in younger patients [4]. While generally considered a largely 

successful procedure for alleviating pain and restoring mobility, relatively high revision 

rates, and low patient satisfaction due to issues related to prosthesis component wear, 

loosening, and instability persist [5], [6]. These problems may all be symptoms of sub-

*Corresponding author: Shahrzad Towfighian is with the Department of Mechanical Engineering, Binghamton University, New York, 
13902 USA, stowfigh@binghamton.edu. 

HHS Public Access
Author manuscript
IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2021 December 17.

Published in final edited form as:
IEEE ASME Trans Mechatron. 2021 December ; 26(6): 2967–2976. doi:10.1109/tmech.2021.3049327.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



optimal load transfer across the tibiofemoral joint [7]; however, routine direct measurement 

of load transfer across the knee during activities of daily living is not part of the post-

operative continuum of care for TKR patients. This is due to the lack of simple, low-cost, 

and commercially-available embedded sensors available for use in TKR implants.

Several embedded sensor systems have been developed to measure tibiofemoral forces. 

Kaufman et al. introduced the earliest instrumented implant device that had strain gauges to 

measure tibiofemoral forces in vitro [8]. The first reported usage of a sensor-embedded total 

knee implant in a patient was that of D’Lima et al. [9]–[11]. This device incorporated four 

load cells, and a wireless micro-transmitter to measure and transmit in vivo tibial forces. 

Bergmann et al. also published several in-depth analyses of knee forces and moments on 

five subjects using the similar concept of an instrumented knee implant [12]–[14]. These 

investigations from the D’Lima and the Bergmann group were groundbreaking in the field of 

instrumented tibial prosthesis. Their results showed the feasibility of long-term in vivo load 

measurements after a TKR surgery; however, the only real problem is that their designs were 

limited by the external coil power source. These instrumented implants were powered via 
inductive coupling with an external coil wrapped around the knee. This requirement could 

limit patient mobility, and prevents continuous (e.g. 24 hours) data collection.

Self-powered load sensors have recently been proposed as a solution for enabling continuous 

real-time measurement of joint loads, and have been described in previous studies. 

Electromagnetic induction is one of the methods of power generation that was integrated 

into the knee implant design by Luciano et al. [15]. However, this mechanism may degrade 

the implant functions and is not viable for different implant designs as it requires major 

changes to the structure of the implants. Piezoelectric (PZT) power harvesting has become 

a popular method for converting mechanical energy into usable electrical energy [16], [17]. 

Platt et al. demonstrated the feasibility of in vivo power generation from the deformation 

of PZT ceramics inserted on a tibial tray [18], [19]. Almouahed et al. presented a knee 

implant prototype that can harvest power, and identify the center of pressure from four 

piezoelectric transducers placed inside a modified knee implant [20], [21], and later, 

the prototype was optimized to a more power-efficient and biocompatible design [22]. 

However, such modification of the traditional implant design could lead to complications in 

performing the already developed surgical technique. In a recent study, Safaei et al. showed 

a similar concept of energy harvesting, and sensing from embedded PZT ceramics that did 

not require modifications into the implant design, and can be used with traditional, and 

FDA-approved tibial components [23]. Despite these promising works, the PZT ceramics 

have some drawbacks including non-biocompatibility, low power density, and complicated 

fabrication process (polarization at extremely low temperature) compared to some newer 

methods of energy harvesting.

Triboelectric energy harvesting is a relatively recent invention for converting mechanical 

motion to usable electrical energy that has a broad range of material selections, unlike 

the piezoelectric mechanism that is limited to few ceramics that often contain lead. It 

has been developed for a wide range of sensor applications, [24] including biomedical 

systems [25]. It generates electricity from the physical contact between two different 

materials through contact electrification and electrostatic induction. Although the contact 
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electrification phenomena are known for thousands of years, the understanding of the 

concept remains elusive. The contact charging behavior of two materials depends on the 

intrinsic material properties such as the atomic surface structure and the external driving 

parameters such as contact force, humidity, surface contamination, and dielectric breakdown 

of air [26]. Moreover, friction plays a significant role in the charge generation process and 

also in the surface wears and stability of the output of a triboelectric system. The high 

friction coefficient is found beneficial for improving the electrical output of sliding-mode 

triboelectric generators [27]. Although not in the area of the triboelectric harvester, the 

frictional models on micro-motion systems [28] can be useful in modeling the frictional 

behavior in a sliding-mode triboelectric harvester. However, in a vertical contact-mode 

triboelectric harvester such as the harvesters used in this study, friction occurs between 

the micro-patterned surfaces when the layers engage in the vertical direction and are more 

difficult to model. Mechanical deformation at the contact surfaces also influences the charge 

generation and has been investigated in our previous works [29], [30].

High efficiency at low frequency, low cost, high power density (313W/m2 [24]), and simple 

fabrication are some of the advantages of triboelectric energy harvesting over other methods 

[31] that convert mechanical impact [32], [33] or pressure to electricity. Triboelectric 

self-powered pressure sensors have been developed rapidly in recent years [34]–[36]. The 

triboelectric pressure sensors have a wider detection limit, better sensitivity, and greater 

stability than other existing pressure sensing technologies [37]. Because of these attributes, 

this technology has great potential for biomedical implants but has not received enough 

attention.

The idea of using a triboelectric generator/harvester (TEG) for powering a digitized circuit, 

and measuring the tibiofemoral forces, was first proposed by members of our group [38]. 

They also presented preliminary tests of a biocompatible triboelectric harvester inserted 

between a UHMWPE bearing and a tibial tray under gait loading [39], [40]. However, 

the preliminary designs [38]–[40] need significant improvements in several aspects. In this 

study, a new packaged harvester design is introduced, which can address some of the major 

drawbacks of our previous studies. The proposed harvester design has an optimized shape 

for the TKR as it closely follows the shape of the tibial tray. The new tibial-shaped harvester 

generates more power compared to the previous design that had a rectangular shape. More 

specifically, the proposed packaged harvesters can generate more power with less amount of 

load transmitting through the PDMS layer. It is possible because the package is innovatively 

designed for higher stiffness, and the harvesters have an optimal surface area that more 

effectively uses the available spaces on a tibial tray. Moreover, the previous prototypes 

lacked a proper package design for housing the harvester layers. The rubber springs used in 

between the harvester layers failed under average gait loads and led to the harvester damage 

in excessive loads. The Ti package made of Ti6Al4V used in this study is properly designed 

to be strong enough against shear forces (prevent sliding) and 6-DOF gait loads. It has a 

fatigue strength of 550 MPa and stiffness of 3190 N/mm [41]. Herein, two tibial-shaped 

TEG configurations were installed in a package prototype and tested on a joint motion 

simulator. This was the first attempt to evaluate the performance of triboelectric harvester 

output inside a package prototype, designed for versatile commercial knee implants. We 

experimentally measured the power output of the harvesters across external resistance under 
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varying sinusoidal and human walking gait loads. We also investigated the effect of a 

parallel connection between the harvesters by conducting separate experiments on each 

harvester.

II. Materials and methods

A. Package prototype

A tibial tray shaped package with elastic materials located along the periphery is required 

to encapsulate the TEGs, and the accompanying electronics for data acquisition, data 

transmission, and energy storage. Based on the TEG’s working mechanism that is dependent 

on the contact and separation of triboelectric materials, the package provides a net deflection 

of 0.2 mm at the maximum compressive load in the gait cycle (2600 N) while not exceeding 

the fatigue limit of the Ti6Al4V (550 MPa) [42]. We hypothesize that this small amount of 

deflection under load due to the compliance of the package would not be enough to have 

any noticeable effect on the patient’s gait. Future human cadaver testing can verify this 

assumption. The elastic materials, along the periphery, undertook the shape of a series of 

stacked beams. Based on a size 7 Stryker Triathlon Knee System (Stryker, Kalamazoo, MI), 

the interlocking mechanism was reverse engineered on the inferior and superior surfaces 

of the package. The package prototype was manufactured by selective laser melting (SLM) 

using the Renishaw AM 400 (Wotton-under- Edge, UK). Ti6Al4V was used because of its 

biocompatibility, and relatively lower modulus of elasticity when compared with other metal 

alloys. A side view of the package prototype is shown in Figure 1(d). The current prototype 

adds approximately 16 mm to the overall height of the tibial component. The prototypical 

nature of the current iteration required increased thickness that we can reduce in future 

iterations. Furthermore, the overall thickness can be reduced by using the thinnest possible 

poly bearings from the currently available ranges (9 mm to 19 mm) in the Triathlon system.

B. Harvester-package configuration and assembly

One of the challenging tasks of this study was to fit two triboelectric harvester parts inside of 

the package prototype for economic, and optimum use of the housing spaces. The harvester 

parts were designed to closely follow the contour of the tibial tray. In Figure 1, 3D design 

views of the harvesters and the package are demonstrated. With this design, the harvesters 

can generate power over 5μW, and the area requirement (around 1cm2) for a digitized circuit 

of the sensory systems necessary for signal processing, and data logging of a smart knee 

implant [38]. The vertical contact mode triboelectric harvesters used in this study consist 

of two major parts, an upper Titanium (Ti) electrode, and a lower polydimethylsiloxane 

(PDMS) insulator coated on another Ti layer that acts as a back electrode. PDMS and Ti 

were chosen because both are biocompatible, and they make a suitable triboelectric pair for 

power generation. The electrodes were CNC machined in two opposite orientations from 

0.5mm thick Ti plates at Progressive Tool Co. Endicott, NY. The surface area of a left- 

and a right-oriented electrode is 9.5cm2 and 9.2cm2 respectively. The upper Ti electrodes 

have micropatterned surfaces (100μm sawtooth ridges), and the lower PDMS layers are 

spin-coated on a flat and a patterned Ti electrode. PDMS was fabricated following the same 

process described in our previous work [30] and the thicknesses of the PDMS layers are 

in the range of 180 – 200μm. Two harvester configurations were made with the upper Ti 
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electrodes part facing a reverse oriented (i) flat, and (ii) patterned PDMS-Ti electrode for the 

lower part.

For each configuration, a right- and a left-oriented harvester were assembled in the medial, 

and the lateral side of the package compartment. The assemblies were created such that 

when knee-motion force was transmitted, the upper Ti electrode and the lower PDMS layer 

had enough contact to generate the power needed for the sensing application. To accomplish 

this, two 1.5mm plastic spacers on the inside compartment, and one 0.25mm and one 0.1mm 
plastic spacer on the inner surface of the lid were mounted. Then, the upper, and the lower 

electrodes were wired on their backside for connection purposes and attached to the spacers. 

These spacers were used to reduce the gap required between the upper and the lower 

tribolayers to generate the power demanded by the frontend electronic system of the smart 

knee implant [43]. Moreover, these plastic spacers act as an electrical insulator between the 

Ti package, and the harvester parts. The important parameters such as the device area, gap 

between the upper and lower tribolayers, size and shape of the micro-patterns, the thickness 

of the dielectric layer, and the external resistance were kept the same to the best of our 

ability for each harvester. Figure 2 (a–d) shows the components and their arrangement in 

building up the final assembly used in the experiments.

C. Experimental setup

The harvester-package prototypes were tested on a six-degrees-of-freedom (6-DoF) servo-

hydraulic joint motion simulator (AMTI VIVO, Watertown, MA, USA). Several experiments 

were performed using the two types of harvester-package assemblies. The harvester 

configurations for these assembly types are illustrated in Figure 3 (b). As shown in Figure 

3 (a) each assembly was mounted in between the tibial tray, and the UHMWPE bearing. A 

size 7 tibial tray (Triathlon, TKR Stryker, Kalamazoo, MI) was secured to a custom fixture 

connected to the lower actuator of the AMTI VIVO joint simulator using dental cement 

(Dentstone, Kulzer, LLC, South Bend, IN). A size 7 femoral component was affixed to 

a femoral component holder designed to interface with the abduction arm of the AMTI 

VIVO joint simulator using polymethylmethacrylate (PMMA) cement (Bosworth Fastray, 

Keystone Industries, Myerstown, PA). The energy harvesting system was fully assembled 

by interlocking a 9 mm thick condylar stabilized (CS) UHMWPE bearing to the superior 

surface of the prototype. The harvesters were connected with a 220MΩ external resistance 

in parallel for all the experiments except for the one TEG experiments (section III-B) when 

each harvester was measured individually. The voltage and the current outputs from the 

harvesters were measured with Keithley 6514 electrometer. Apparent power outputs are 

calculated by multiplying RMS voltage with corresponding RMS current results for Figure 

6, 7, and 9. Since current results for the sinusoidal experiment on flat PDMS harvester 

were not measured, RMS powers (V2/R) are calculated for Figure 5. A schematic of the 

experimental setup is shown in Figure 4.

Most of the experiments of this study were performed using the compression gait cycle 

(1-DOF gait) of the joint simulator. It is referred as 1-DOF gait in the rest of the paper. The 

other degrees of freedom such as anteroposterior translation (AP), mediolateral translation 

(ML), internal-external rotation (IE), and abduction-adduction (AA) maintained a load of 0N 
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or 0Nm while the flexion degree of freedom was set to 00. Nevertheless, one assembly was 

tested under a 6-DoF gait with the same experimental setup, to compare the electrical output 

results between 6-DoF and 1-DOF gait. The simulated gait loads used in this study were 

based on previously measured tibiofemoral loads [14].

The harvester-package prototype assemblies were further tested under varying magnitudes 

of sinusoidal, and gait cyclic motions. While the minimum of the sine forces was kept 

constant at 50N for the Ti6Al4V package-harvester assemblies, the maximum sinusoidal 

force was varied from 400N to 2000N. For gait cyclic experiments, the previously reported 

average minimum-maximum knee loads of (151 – 1950)N from human walking motions 

were applied. Additionally, experiments were conducted for a 25% increase and a 25% 

reduction of the minimum and maximum gait loads.

III. Results

A. Effect of input loads and motions

The effects of different types of input loads and motions on the performance of the Ti6Al4V 

package-harvester configurations (Figure 3) are presented here. The RMS power outputs at 

various maximum sinusoidal loads are shown in Figure 5. Increment of maximum load (400 

– 2000)N had statistical significant (p < 0.05; t – test) effect on the harvesters’ power output 

(0.1 − 7)μW. The power consumption of a previously designed frontend electronic system is 

approximately 5.35μW [43], which enables exclusive powering from the harvester at 2000N. 

Although there is statistical significant (p < 0.05; t − test) difference between the output 

from the two harvester configurations, it does not follow a linear trend for the sinusoidal 

experiment.

The 1-DOF gait variation results are illustrated in Figure 6. It shows a quantitative analysis 

of the apparent power output for the 25% increment, and the reduction of the minimum and 

the maximum of the gait loads from walking. While the highest apparent power of 20μW 
was measured for the harvester configuration with flat PDMS at 151 – 2437N, the lowest 

apparent power of 5μW was found for the harvester configuration with patterned PDMS at 

151 – 1462N.

The six-degrees-of-freedom simulator creates closer to the real gait cycle. The performance 

of the Ti6Al4V package-harvester setup under a 1-DOF and a 6-DoF gait test are depicted 

in Figure 7. The power output under the 6-DoF gait was almost 50% less than the power 

output from the 1-DOF gait test. For 6-DoF gait (Figure 8b), the loads on the package were 

transmitted via 3 translations and 3 rotations at 0.67Hz, and for 1-DOF gait (Figure 8a), the 

same amount of loads were applied at 1Hz in the vertical direction only. The corresponding 

RMS voltage recorded was 36.97V, and 29.42V for 1-DOF, and 6-DoF gait, respectively 

(Figure 8c, Figure 8d). The corresponding RMS current recorded was 0.23μA, and 0.15μA 
for 1-DOF, and 6-DoF gait, respectively (Figure 8e, Figure 8f).

B. Effect of parallel connection

At 151 − 1950 N of 1-DOF gait loading, the generators at the medial and the lateral 

side of the package compartment for each Ti6Al4V package-harvester assembly were 

Hossain et al. Page 6

IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2021 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tested separately with a 220MΩ external resistance. As shown in Figure 9, the apparent 

power outputs from these individual tests are distinct and consistent for the two harvester 

configurations. Under the same 1-DOF gait and the same experimental setup, two TEGs 

in parallel connection produced more power than one TEG generated on average for each 

configuration. The apparent power harvested from two harvesters in parallel connection 

is 2.9, and 2.5 times higher than the average single harvester output for the flat, and the 

patterned PDMS harvester configuration, respectively. The reason for higher output is that 

when two such generators are connected in parallel, the output current is increased by some 

amount that depends on the internal impedance of the harvesters and the load resistance of 

the circuit. The circuit analysis for single, parallel, and series connection are included in 

the Appendix. It proves that the current and power output across the load resistance for two 

TEGs in parallel is higher than a single TEG.

IV. Discussion and conclusions

In this study, we integrated two vertical contact mode triboelectric energy harvester 

configurations into a 3D printed package for measuring tibiofemoral forces in knee implants. 

Two identical harvesters from each configuration were assembled inside the medial and 

the lateral side of the package compartment of the Ti6Al4V package and placed between 

the UHMWPE bearing and the tibial tray of the AMTI VIVO joint motion simulator. 

Each assembly was tested under different sinusoidal and walking gait loads. The statistical 

difference observed in the apparent power output with varying loads between the patterned 

and the flat PDMS harvester configuration was below our expectation. Although patterned 

PDMS should increase the contact surfaces [36] and produce larger outputs, it generated 

slightly less power than the flat PDMS harvester at most sinusoidal and all 1-DOF gaits. 

This can be due to the fact that the patterned surfaces of Ti and PDMS are not aligned, 

which causes a random engagement of the two surfaces, and can ultimately cause smaller 

output. The perfect alignment of two micro patterned surfaces is cumbersome; may deviate 

over time, and is not advised for total knee replacement applications. As a result our 

comparison on the patterned PDMS, and flat PDMS harvester does not follow the expected 

trends.

For 1-DOF gait experiments, increasing the maximum load always significantly (p < 0.05; 

t – test) increased the output of the harvester. The minimum load correlates to the initial 

separation distance between the two layers of each generator. A lower minimum value shows 

a larger initial gap, which should result in higher output because of the capacitive effect 

of the harvester. However, we see the highest output is achieved for the minimum loads of 

113 N, 189 N, and 151 N, respectively, which do not follow the expected trend. Although 

these changes in the initial gap were not measured experimentally; it is possible that, the 

gaps were below and above an optimum. This conclusion is based on our previous work that 

showed a gap for which a vertical contact mode TEG produces the maximum power [40]. 

That is why the power output in this study did not vary linearly for the different minimum 

and the same maximum gait loads.

The apparent power output recorded under the average 1-DOF gait of 151 − 1950N at 

1Hz were around 10μW, which is almost twice the power consumption of 5.32 μW of a 
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previously designed frontend electronic system for the harvester [43]. This property enables 

powering the processing circuit entirely from the gait loading, and assures a self-powered 

system. The harvester-package setup generated even more power at higher gait loads. 

Moreover, we expect the power to get increased at higher frequencies [38]. Our testing 

using the 6-DoF gait had less output than the 1-DOF gait mainly because of lower frequency 

selection for the 6-DoF gait test. At lower frequency, the amount of the surface contact 

between the tribolayers of the harvesters at a given time was less in 6-DoF gait compared 

to the 1-DOF gait. Since the surface charge density of a triboelectric generator is directly 

proportional to the surface contact area up to a saturation limit [30], the harvesters under 

6-DoF gait generated less power than the harvesters under 1-DOF gait. However, we believe 

the harvesters can generate enough power (around 5μW) required for running a digitization 

circuitry of a sensor system.

In the future, we will implement a sensor system into the available space inside the 

harvester-package assembly, and test the in vitro characteristics of the energy harvesting, 

and the sensing system for simulated activities of daily living.

Some of the limitations of the proposed device are as follows:

1. Current methods of harvester installation into the package is lacking perfection. 

The installation method should be more managed to allow control over the gap 

between harvester layers inside the package.

2. It is reported in the literature that, the gap between the tribolayers has effects on 

the harvesters’ output. However, it was not possible to measure the gaps once the 

harvesters were installed and set for the experiments. Thus, lack of knowledge 

about the gap in each of the harvesters in the package compartment, is another 

limitation of this study. Moreover, current procedure of using spacers to reduce 

the gap is not accurate enough to obtain an optimum gap.

3. The surface of the PDMS layers can be damaged from dynamic contact with 

the upper Titanium electrode. The current design is more durable compared to 

our previous works because of stronger package design. However, the reliability 

and the robustness of the current system will be tested in our future work by 

testing under millions of cycles. Although by improving the package strength 

in the current design, risks of failure have been reduced significantly, it is not 

resilient against failures such as damage of package/harvester materials in the 

system [44].

4. The current design needs to be optimized. Because a more compliant design with 

a similar energy harvesting system can improve the efficiency of the system. 

However, there is a trade-off limit between the strength and durability of a 

compliant mechanism that can be determined from experiments or mathematical 

modeling such as the topology optimization technique [45].
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Appendix

The electrical model for a triboelectric harvester can be analyzed following Niu et al. [46]. 

The behavior of such harvester is modeled with three circuit elements: an ac source voltage 

VM, a variable capacitor CM, and an internal resistance r. The variable capacitor CM and 

the internal resistance r are the components of the source impedance Z. In Figure 10 the 

lumped-parameter electrical model of the triboelectric harvester for three different circuit 

connections are shown. The theoretical power output across the load resistance R for each of 

the circuit model is derived here.

For one TEG with an external load resistance (Figure 10a) the power output across R is,

P0, single = I2R (1)

Applying KVL, the current I can be obtained as:

IZ + IR + V M = 0
I = − V M

R + Z
(2)

From equation 1 and 2,

P0, single = 1
R + Z

2
V M

2 R (3)

For two TEGs in parallel with an external load resistance (Figure 10b) the power output 

across R is,

P0, parallel = IR
2 R (4)

At node o, IR = I1 + I2 (5)

Applying KVL in loop 1 an 2 the following two equations can be obtained,

−V M1 − I1Z1 + I2Z2 + V M2 = 0 (6)

−V M2 − I2Z2 − IRR = 0 (7)

Let VM1 = VM2 = VM, Z1 = Z2 = Z as the harvesters are identical. Thus, equation 5, 6 & 7 

can be written in following matrix format.
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−Z Z
R R + Z

I1
I2

=
0

−V M
(8)

Solving equation 8, I1 and I2 can be obtained as:

I1
I2

=
− V M

2R + Z

− V M
2R + Z

(9)

From equation 5 and 9,

IR = − 2V M
2R + Z (10)

From equation 4 and 10,

P0, parallel = 1
2R + Z

2
4V M

2 R (11)

For two TEGs in series with an external load resistance (Figure 10c) the power output across 

R is,

P0, series = I2R (12)

Applying KVL, the current I can be obtained as:

−V M1 − IZ1 − V M2 − IZ2 − IR = 0
I = − V M1 + V M1

R + Z1 + Z2
(13)

Set VM1 = VM2 = VM, Z1 = Z2 = Z in equation 13

I = − 2V M
R + 2Z (14)

From equation 12 and 14,

P0, series = 1
R + 2Z

2
4V M

2 R (15)

Set the impedance as
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Z = r + 1
jωCM

= r − j 1
ωCM

and rewrite the power expressions.

From Equation 3,

P0, single = 1
(R + r) − j 1

ωCM

2

V M
2 R

= V M
2 R

(R + r)2 + 1
ωCM 2

(16)

From Equation 11,

P0, parallel = 1
(2R + r) − j 1

ωCM

2

4V M
2 R

= 4V M
2 R

(2R + r)2 + 1
ωCM 2

(17)

From Equation 15,

P0, series = 1
(R + 2r) − j 2

ωCM

2

4V M
2 R

= 4V M
2 R

(R + 2r)2 + 4
ωCM 2

(18)

According to the equation 16,17 and 18, the power output from two TEGs in parallel 

connection is larger than the single and the series connection. The actual numerical 

differences in these three outputs depend on the load and internal resistance variables. 

Based on the impedance matching, the two TEGs in parallel can provide up to some x the 

power of a single harvester. If two resistances are equal, the power increment in the parallel 

connection will reach close to 4x times. However, if the two resistances are not equal, this 

power increment will be reduced to a number less than 4x. These theoretical results of 

power increment are also found in the experimental results (Figure 9). Although we assumed 

that the selected load resistance and the internal resistance were equal in the experiment, 

the highest power increment recorded in a parallel connection was 2.9x times the single 

connection. Thus, our impedance matching analysis might not be perfect, and this power 
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increment can be enhanced more close to 4x times by more accurate impedance matching in 

the parallel circuit.
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Fig. 1. 
3D design view of harvesters and packages. (a) Harvester configuration with patterned 

PDMS. (b) Harvester configuration with flat PDMS. (c) Design view of Titanium(Ti6Al4V) 

package. (d) Fabricated real view of the Titanium(Ti6Al4V) package.
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Fig. 2. 
Assembly of two harvester configurations inside the package. (a) Attachment of the 

upper tribo-parts to the package lid. (b) Setup of the lower tribo-parts inside the package 

compartment. (c) An exploded view of the assembly parts. (d) Assembly view after fittings 

of the harvester inside the package.
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Fig. 3. 
(a) Mounting of a harvester package assembly on the VIVO joint motion simulator. (b) 

Ti6Al4V made package prototype and two harvester configurations setup on the simulator. 

Configurations 1 and 2 contain a Ti layer coated with a flat and a patterned PDMS layer at 

the bottom, respectively. The top layer of the two is the same patterned Ti layer.
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Fig. 4. 
A schematic of the experimental setup
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Fig. 5. 
RMS power outputs at different maximum sinusoidal loads for the Ti6Al4V package-

harvesters assemblies. The minimum of the sinusoidal loads was 50N and the frequency 

was 1 Hz. Uncertainties on the mean RMS power calculated from 3 sets of 7 cycles of the 

corresponding voltage signals are shown in error bars.
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Fig. 6. 
Apparent power outputs at various 1-DOF gait cycles (period of the signals = 1 sec) for 

the Ti6Al4V package-harvesters assemblies. Uncertainties on the mean apparent power 

calculated from 3 sets of 7 cycles of the corresponding voltage and the current signals are 

shown in error bars.
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Fig. 7. 
Apparent power output from a 1-DOF, and a 6-DoF gait test. Tests were performed on the 

package-harvester configuration 2 (Patterned PDMS) for the load range of 151 − 1950N at a 

frequency of 1Hz, and 0.67Hz for the 1-DOF and 6-DoF gait, respectively. Uncertainties on 

the mean apparent power calculated from 3 sets of 7 cycles of the corresponding voltage and 

the current signals are shown in error bars.
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Fig. 8. 
(a)–(b) Force response from the knee simulator under 1-DOF, and 6-DoF gait loading of 

151–1950N. (c)–(d) The corresponding voltage measurement for 1-DOF, and 6-DoF gait 

loading. (e)–(f) And the respective current measurement for 1-DOF, and 6-DoF gait loading. 

The input signal frequency was 1Hz, and 0.67Hz for the 1-DOF and the 6-DoF gait tests, 

respectively.
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Fig. 9. 
Apparent power output comparison between two harvesters and one harvester connection. 

Each test was conducted under 151 – 1950 N of 1-DOF and 1 Hz frequency. Uncertainties 

on the mean apparent power calculated from 3 sets of 7 cycles of the corresponding voltage 

and the current signals are shown in error bars.
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Fig. 10. 
Lumped-parameter electrical model for (a) one TEG with an external load resistance, Two 

TEGs in (b) parallel connection, and (c) series connection with an external load resistance.
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