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Abstract

Youth obesity is a major public health concern due to associated physical, social, and 

psychological health consequences. While rates and disparities of youth obesity levels are known, 

less research has explored spatial clustering patterns, associated correlates of spatial clustering, 

comparing patterns in urban and rural areas. Therefore, this study 1) examined spatial clustering 

of youth weight status, 2) investigated sociodemographic correlates of spatial clustering patterns, 

and 3) explored spatial patterns by level of urbanization. This study occurred in a southeastern 

US county (pop:474,266) in 2013. Trained physical education teachers collected height and weight 

for all 3rd-5th grade youth (n = 13,469) and schools provided youth demographic attributes. BMI 

z-scores were calculated using standard procedures. Global Moran’s Index and Anselin’s Local 

Moran’s I (LISA) were used detect global and local spatial clustering, respectively. To examine 

correlates of spatial clustering, BMI z-score residuals from a series of four linear regression 

models were spatially analyzed, mapped, and compared. SAS 9.4 and GeoDA were used for 

analyses; ArcGIS was used for mapping. Significant, positive global clustering (Index = 0.04,p < 

0.001) was detected. LISA results showed that about 4.7% (n = 635) and 7.9% (n = 1058) of the 

sample were identified as high and low obesity localized spatial clusters (p < 0.01), respectively. 

Individual and neighborhood sociodemographic characteristics accounted for the majority of 

spatial clustering and differential patterns were observed by level of urbanization. Identifying 
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geographic areas that contain significant spatial clusters is a powerful tool for understanding the 

location of and exploring contributing factors to youth obesity.
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1. Introduction

Childhood obesity has been recognized as a major public health problem of the 21st 

century due to the wide array of physical, social, and emotional health consequences that 

often accompany overweight and obesity in youth (Ogden, Carroll, Kit, & Flegal, 2014; 

Reilly et al., 2003; Strong et al., 2005). Studies have also documented that overweight and 

obese youth have a higher risk for increased weight status into adolescence and adulthood 

(Cunningham, Kramer, & Narayan, 2014; Wang & Beydoun, 2007). and persistent adult 

obesity is related to decreased quality of life, increased rates of chronic disease and 

healthcare costs, as well as increased morbidity and mortality (Sallis, Floyd, Rodríguez, 

& Saelens, 2012; Wang, McPherson, Marsh, Gortmaker, & Brown, 2011). Disparities in 

childhood obesity rates also exist in most developed countries; in the U.S. youth who are 

low-income, racial/ethnic minorities, and live in the southeastern U.S. have higher rates of 

overweight and obesity (Singh et al., 2007, 2008).

Researchers and practitioners have recognized complex causes of youth obesity, with many 

individual, interpersonal, community, environmental, and societal factors contributing to 

weight status (Han, Lawlor, & Kimm, 2010; Pereira, Nogueira, & Padez, 2018; Xu, Wen, 

& Wang, 2015). As a result, multidisciplinary theoretical models are frequently employed 

frameworks to understand the childhood obesity determinants and patterns at a population 

level (McLeroy, Bibeau, Steckler, & Glanz, 1988; Pereira et al., 2018; Sallis et al., 2006, 

2012; Story, Kaphingst, Robinson-O’Brien, & Glanz, 2008; Xu et al., 2015). Integrating 

advanced spatial analytical tools and analyses with childhood obesity research is one 

example of applying a multidisciplinary approach to a widespread public health problem 

in order to advance this area of research.

Spatial variables and analyses are essential elements when exploring geographic patterns 

of health outcomes, which relies on computer-based geographic information systems (GIS) 

software and technology to visualize, measure, and conduct analyses (Auchincloss, Gebreab, 

Mair, & Roux, 2012; Casey et al., 2014; Jerrett, Gale, & Kontgis, 2010). Although 

broad public health literature has seen an increase in the use of GIS applications, obesity-

related research could benefit from continued application of spatial tools and analyses 

when examining patterns and determinants (Auchincloss et al., 2012). Many studies 

documenting the prevalence of obesity distribution by geographic areas have aggregated 

data at administratively-defined units (e.g., census tracts, ZIP codes, cities, states) to 

analyze and describe the prevalence or rates of overweight or obesity (Auchincloss et al., 

2012; Ford, Mokdad, Giles, Galuska, & Serdula, 2005; Koh, Grady, & Vojnovic, 2015; 

Singh et al., 2007, 2010; Wang & Beydoun, 2007); these methodologies have served as a 
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critical foundation for understanding obesity rates locally, nationally, and internationally. 

Utilizing global and local spatial clustering analyses to explore localized patterns that are not 

necessarily constrained by administrative units can offer unique insight into individual-level 

geographic obesity patterns (Huang, Moudon, Cook, & Drewnowski, 2015;Laraia et al., 

2014; Penney, Rainham, Dummer, & Kirk, 2014; Pouliou & Elliott, 2009).

To date, two of the primary spatial tools that have been most used in public health 

research are spatial proximity (i.e., measuring the distance between two points) and spatial 

aggregation methods. Spatial clustering is a useful spatial analysis that can conceptually, 

technically, and practically advance obesity research. First, spatial clustering analyses offers 

a tool to measure the nature and strength of geographical interdependence between data, 

which can conceptually show researchers where patterns of health outcomes may or may 

not be closely related (Auchincloss et al., 2012; Penney et al., 2014; Rushton, 2003). 

Indeed, other researchers have applied spatial clustering tools and analyses to understanding 

distributions of important public health problems, such as human anthrax (Barro et al., 

2015) and cancer (Lin et al., 2015), yet obesity remains less explored with these powerful 

tools. The second reason to conduct these analyses is if significant spatial autocorrelation is 

present, the statistical assumption of independent observations for many additional statistical 

analyses may be violated (Rezaeian, Dunn, Leger, & Appleby, 2007). Consequently, 

assessing spatial autocorrelation is recommended as a first step in place-focused obesity 

research to minimize overstating significance between exposures and outcomes; this study 

demonstrates how this methodology can be applied in research (Rezaeian et al., 2007). 

Third, mapping patterns that are identified with clustering analyses can result in powerful 

visualizations, which may be used to pinpoint communities uniquely impacted by chronic 

disease outcomes, like obesity (Huang et al., 2015; Penney et al., 2014). These types 

of maps, combined with maps showing obesity prevalence statistics could be particularly 

impactful for practitioners in highlighting priority areas for intervention. Last, exploring 

social and economic determinants of particular spatial clustering patterns, not only the 

obesity outcome itself, is a critical step towards understanding how geographic patterns 

emerge.

To date, some studies have employed spatial clustering analyses to examine unique 

geographic patterns of obesity; however, there are some advancements that warrant further 

attention in this area of literature (Fritz, Schuurman, Robertson, & Lear, 2013). First, 

among studies that have examined obesity clustering, the vast majority have focused on 

adults (Curtis & Lee, 2010; Gartner, Taber, Hirsch, & Robinson, 2016; Huang et al., 

2015; Laraia et al., 2014; Mobley, Finkelstein, Khavjou, & Will, 2004; Pouliou & Elliott, 

2009; Schuurman, Peters, & Oliver, 2009); to our knowledge, only a few studies have 

investigated spatial clustering of child or adolescent obesity (Hernández-Vásquez et al., 

2016; Jin & Lu, 2017; Penney et al., 2014). Second, many studies that have explored 

spatial clustering of obesity conducted analyses with large-scale administrative units, such 

as census tracts, zip codes, or states (Curtis & Lee, 2010; Gartner et al., 2016; Hernández-

Vásquez et al., 2016; Mobley et al., 2004; Pouliou & Elliott, 2009; Schuurman et al., 2009). 

Conducting spatial clustering analyses at an individual level (i.e., point data) may provide 

added information on smaller scale, or localized, patterns in the study area that would 

not be identified (Huang et al., 2015; Laraia et al., 2014). Finally, some studies have also 
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examined whether demographic (e.g., socioeconomic status) and community-level factors 

(e.g., physical activity and nutrition environments) are related to the geographic patterning 

of obesity. Among those studies, economic indicators have emerged as some of the main 

explanatory variables of observed spatial patterns (Chalkias et al., 2013; Huang et al., 2015; 

Jin & Lu, 2017; Laraia et al., 2014). For example, Chalkias and colleagues found that 

education level was the most significant predictor of childhood obesity in Greece (Chalkias 

et al., 2013), whereas Chen and Troung found that socioeconomic disadvantage was only 

significantly related to obesity in specific geographic townships in Taiwan (Chen & Truong, 

2012). Examining how identified spatial clusters change as economic and other demographic 

variables are included in spatial analytical models is essential to better understand location-

specific patterns of childhood obesity.

In addition to these aforementioned gaps, few studies have explored patterns of obesity 

by varying levels of urbanization. Indeed, in large metropolitan areas may only contain 

urban areas and not warrant more nuanced analyses. However, many cities across the 

globe contain substantial diversity in levels of urbanization within the boundaries, including 

suburban and rural areas proximal to urban city centers. The contextual differences between 

urban, suburban, and rural may substantially influence youth health behaviors and weight 

status, and subsequently, result in varying types and degrees of spatial clustering of youth 

obesity (Hennessy et al., 2010; Liu et al., 2008, 2012). Furthermore, rural areas have been 

acknowledged as another focus of youth obesity disparities in the U.S. because children in 

these areas demonstrate higher rates of overweight and obesity (Lutfiyya, Lipsky, Wisdom-

Behounek, & Inpanbutr-Martinkus, 2007). More spatially specific analyses are needed to 

compare patterns by urban, suburban, and rural areas.

To address these gaps in the literature and apply infrequently used spatial analyses to 

advance childhood obesity research, the objectives of this study were to 1) analyze spatial 

clustering patterns of childhood obesity in a southeastern US County, 2) examine whether 

sociodemographic characteristics were associated with spatial clustering patterns of youth 

obesity, and 3) explore differential spatial clustering patterns of obesity by levels of 

urbanization.

2. Methods

2.1. Study setting

This study occurred in 2013 in a large county in the southeastern United States, which 

had a total population of 474,266, of which 77.1% was Non-Hispanic White, 18.5% was 

African American, and 8.5% was Hispanic or Latino (United States Census Bureau, 2013a). 

In 2013, the median household income of the county was $48,886 and approximately 15.0% 

of residents lived below the federal poverty line (United States Census Bureau, 2013a). The 

county encompassed approximately 750 square miles of land area.

2.2. Measures and data collection

2.2.1. Youth obesity and demographic characteristics—As part of regular 

protocol, trained physical education teachers measured and recorded the height and weight 
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for all children in 3rd through 5th grade (n = 14,232) enrolled in all 51 public elementary 

schools in the county school district. Height, weight, date of birth, and date of testing were 

used to calculate body mass index (BMI) percentiles and BMI z-scores using standardized 

protocols for youth from the Centers for Disease Control and Prevention (Center for 

Disease Control, 2014). Demographic information and address were also obtained for each 

individual. Three demographic variables were categorized for all youth. First, sex was 

classified as male or female. Second, individual, or child, level socioeconomic status (SES) 

was indicated by whether students were eligible for free or reduced lunch (low SES) or not 

(high SES). Finally, race/ethnicity was classified as African American, Hispanic, White, or 

Other. Data were acquired through a data sharing agreement between the research team, a 

local health-focused coalition, and the school district in the study setting. This study was 

approved by the Institutional Review Board from the University of South Carolina.

2.2.2. Block group characteristics—Several variables were collected for all census 

block groups (BGs, n = 255) in the study county. The following key BG variables were 

included in this study. First, racial/ethnic composition was measured by calculating the 

total percentage of racial and ethnic minorities (i.e., all persons other than those identifying 

as non-Hispanic White) (Hughey et al., 2016). Second, a SES index at the BG level was 

calculated by summing the standardized scores for the following area-level SES indicators: 

percent unemployed, percent of the population under 125% of the federal poverty threshold, 

percent less than high school education, and percent of renter occupied housing (Hughey et 

al., 2016; Kirby & Kaneda, 2005). The third BG variable was population density per square 

mile, which was calculated by dividing the total population of each BG by the land area 

(sq. miles) of the BG (Hall, Kaufman, & Ricketts, 2006). The final BG variable included 

in this study indicated the level of urbanization. The Census Bureau identifies two types 

of urban areas – urbanized areas (50,000 people or more) and urban clusters (at least 2500 

and less than 50,000 people); rural areas are classified as those not defined as urban (Hall 

et al., 2006; United States Census Bureau, 2013b). Urbanized areas and urban clusters are 

represented with TIGER/Line Topological Faces (polygons with geocodes); this file was 

spatially overlaid with the BGs (the unit of analysis used to calculate all other area-level 

variables). If the BG contained only urban areas, it was classified as ‘urban’, whereas BGs 

with both urban and rural areas were classified as ‘mixed’; rural areas were defined as BGs 

that had no urban topological faces present (Hall et al., 2006; United States Census Bureau, 

2013b). BG shapefiles with the aforementioned variables were joined to all individual data 

points using ArcMap 10.2.2 to assign these area-level characteristics to each participant.

2.3. Geospatial approach

2.3.1. Geocoding—Youth addresses (n = 14,232) were geocoded at the point address 

level in ArcGIS 10.2.2 using ESRI’s 2013 StreetMap data file, concurrent with youth 

obesity data collection. A total of 98.5% of the addresses were geocoded at either the street 

address (n = 269) or point address levels (n = 13,835), the two most accurate means of 

geocoding; 128 observations were removed from the dataset because they were geocoded 

at less precise levels (e.g., postal codes, municipality), which would negatively impact 

localized spatial analyses. Additional observations were removed due to the address residing 
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outside of the study county boundary (n = 632) and extreme BMI values (n = 3), resulting in 

a final sample of 13,469 youth.

2.3.2. Spatial clustering—Two of the overarching spatial analytic techniques used 

to assess spatial clustering patterns are global and local; global clustering measures 

overall patterns in a specified area without pinpointing the exact locations, whereas local 

clustering measures test for small-scale patterns across the study area (Auchincloss et al., 

2012; Mitchell, 2005). Both levels of clustering have different substantive meaning and 

interpretations that were used in this study in distinct, yet complimentary ways.

One of the most robust and commonly-used approaches to detect global spatial clustering 

across multiple fields is Global Moran’s Index (I), where the pattern of a set of features 

(i.e., study participants) and an associated attribute (i.e., youth weight status) are evaluated 

for clustering, dispersion (i.e., checkerboard), or random distribution (Laraia et al., 2014; 

Moran, 1948, 1950; Rushton, 2003). Global Moran’s I was also chosen for this dataset 

because it is intended for data where high and low value clusters are assumed to exist, which 

has been supported in previous studies (Laraia et al., 2014).

Despite the ability to detect broad clustering in the study area, the Global Moran’s I test 

does not indicate the physical location of clustering (Auchincloss et al., 2012; Mitchell, 

2005). Therefore, a local cluster detection measure, Anselin’s Local Moran’s I (LISA), 

was used to assess more fine-grained patterns within the study County (Anselin, 1995; 

Ord & Getis, 2001). Often referred to as a hot-spot analysis, this clustering test provided 

an indication of the degree that localized areas represent unexpectedly high or low BMI 

z-score values compared to the overall, or global BMI z-score average across the sample 

(Anselin, 1995). Furthermore, this test can identify five categories of various spatial patterns 

that may be present in the data: Not Significant, High-High, High-Low, Low-High, and 

Low-Low (Pouliou & Elliott, 2009). This study was particularly interested in the High-High 

and Low-Low patterns of clustering that represent areas where youth with high and low 

BMI values, respectively, are surrounded by youth with similar values, indicating areas of 

geographic concentrations of high or low youth obesity. Results from the LISA analysis 

were mapped to show the location of identified clusters.

2.3.3. Geospatial analyses—For the Moran’s I global spatial measure, the null 

hypothesis tested was that there is no spatial clustering across the study area and the analysis 

produces an overall estimate of clustering for the entire county (Laraia et al., 2014; Mitchell, 

2005; Moran, 1950). The Global Moran’s I statistic was calculated as follows, where I = 

Global Moran’s I statistic for spatial autocorrelation in the study county, n = sample size (n 

= 13,469), i = individual observation and j = observations at other locations, wi,j is spatial 

weight matrix (distance threshold of one-half mile, or 805 m), xi = individual BMI z-score 

value, x mean BMI z-score value, and S0 = aggregate of all spatial weights (Moran, 1950):

I = n
S0

∑l = 1
n ∑J = 1

n w1, j x1 − x xj − x

∑j = 1
n x1 − x 2
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Similarly, the null hypothesis for the LISA measure was that all spatial patterns across the 

study were random. However, this analysis produces analytical output for each individual in 

the dataset. The LISA statistic for each individual was calculated as follows (Anselin, 1995), 

where Ii = Local Moran’s I statistic for localized spatial autocorrelation, n = sample size (n 

= 13,469), i = individual observation and j = observations in another location, xi = individual 

BMI z-score value, x mean BMI z-score value, σ2 = variance of BMI z-score, wi,j is spatial 

weighting (distance threshold of one-half mile, or 805 m) (Anselin, 1995):

I1 =
x1 − X

σ2 ∑
j = 1

n
Wl,j xj − X

When conducting Global Moran’s I and LISA (GeoDA 1.8.14), several specifications were 

selected, including distance options, number of permutations, and significance values. First, 

the distance selected to conduct the spatial clustering analyses has varied across studies and 

context, yet it is critical to the test and results (James et al., 2014). Both conceptual and 

empirical rationale determined the distance for analyses in this study. The Optimized Hot 

Spot Analysis tool in ArcGIS 10.2.2 was first employed to compare spatial autocorrelation 

values at a series of distances to determine the highest, or peak, spatial clustering value in 

the study area (ArcS for Desktop. Optim, 2016). The peak spatial clustering distance for 

the entire sample was 826.5 m, or 0.51 miles. A half-mile distance has been recognized 

as a critical threshold for measuring access to and use of health-promoting community 

features for youth (e.g., schools, parks, food outlets) (Carroll-Scott et al., 2013; Kligerman, 

Sallis, Ryan, Frank, & Nader, 2007; National Recreation and P, 2016; The Trust for Public 

Land, 2016). Given the close approximation of the peak spatial clustering distance and the 

empirical foundation, a half-mile, non-weighted distance band was used for Global Moran’s 

I and LISA analyses.

In addition, the GeoDA software provides researchers several options for conducting 

permutations and examining clusters at various levels of significance. Permutations are 

a numerical approach that uses data-driven processes to determine statistical significance 

(Anselin, 2005). For these analyses, permutations determined how likely it would be to 

observe the Moran’s I value of an actual distribution under conditions of spatial randomness. 

For each analysis, we used 99 permutations to examine the test statistic and a more 

conservative p-value of 0.01 (compared to 0.05) to adjust for multiple comparisons of testing 

all potential clusters.

The first research objective was the analyze spatial clustering patterns of childhood obesity. 

Using BMI z-score as the dependent variable (Must &Anderson, 2006; Himes, 2009) 

and the described specifications above, both Global and Local Moran’s I analyses were 

conducted.

The second research objective aim was to examine how spatial clustering of weight status 

changed after including the described socio-demographic variables. In order to be able 

to conduct the Global and Local Moran’s I analyses and compare patterns with different 

variables added, we first conducted a series of multivariate linear regression models. In total, 
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four linear regression models with BMI z-score as the dependent variable were estimated 

consecutively. The first model was an unconditional model with no covariates. Then, model 

2 included all youth characteristics (i.e., age, gender, race/ethnicity, SES), while model 3 

included all BG characteristics (i.e., percent racial/ethnic minority, SES index, population 

density, level of urbanization). All youth and BG characteristics were both included in 

model 4. In the final model, variance inflation factor (VIF) values indicated no evidence of 

multicollinearity bias.

For each of these regression models, we outputted and used the residuals as the dependent 

variables for the Global and Local Moran’s I spatial analyses (second research objective). 

Researchers have used residuals as dependent variables when adjusting for covariates in 

spatial clustering analyses because the value (i.e., distance from predicted value) and 

direction (i.e., positive or negative) of the residual can be used to indicate high and low 

clusters (Cook, Li, Arterburn, & Tiwari, 2010; Huang et al., 2015; Jerrett et al., 2010; 

Laraia et al., 2014). In this study, high positive residuals indicated higher than expected 

BMI z-scores whereas large negative residuals indicated lower than expected BMI z-scores 

(Huang et al., 2015). With the same analytical parameters (e.g., distance, permutations, 

p-value), we conducted four Global and Local Moran’s I analyses that correspond with 

the described regression models, with the residuals from those regression models used as 

the dependent variable. Statistical output for Global Moran’s I as well as the number and 

location of localized clusters for the Local Moran’s I were compared and mapped for each 

set of analyses, as the covariates were added to each model (maps described further in 

results section).

Lastly, to achieve the third research objective and explore the differential patterns of spatial 

clustering of youth obesity by level of urbanization, we first separated the geocoded file of 

youth addresses by three types of areas identified: urban (n = 6788), mixed urban-rural (n 

= 6040), and rural (n = 641) (United States Census Bureau, 2013b). Then, we conducted 

the same series of spatial analyses on these three sets of data points, with the exception of 

the urban/rural classification variable included in the analyses. However, different distances 

were used based on the results from the Optimized Hot Spot Analysis for each area type 

given the differences in average distances between participants: 500 m for participants in 

urban areas, 730 m for participants in mixed urban-rural areas, and 3186 m for participants 

in rural areas.

3. Results

3.1. Sample characteristics

All youth and block group sample characteristics are presented in Table 1. The majority 

of the sample was white (62%) while 45% were low SES (eligible for free or reduced 

lunch). The average BMI z-score was 0.5 (SD = 1.1), with 15.7% and 18.8% classified 

as overweight and obese, respectively. On average, youth were about 10 years old. 

Approximately half of youth lived in urban BGs, while 44.8% lived in urban-rural mixed 

BGs and 4.8% lived in rural BGs.
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3.2. Global spatial clustering

As shown in Table 2, Global Moran’s I results showed that there was a small, but significant, 

positive global spatial autocorrelation for BMI z-score across the study area (Index = 0.04, 

Z-value = 14.3, p < 0.001), indicating a general tendency for BMI z-score values to be 

located near other similar BMI z-score values (Model 1). The subsequent models that 

included different sets of covariates resulted in changes in the Index values, z-values, and 

significance values. In Model 2, which adjusted for youth characteristics, the Index value 

was substantially reduced but still statistically significant (Index = 0.007, Z-value = 2.6, p = 

0.005). Model 3 included all BG characteristics and no youth variables; the results showed 

a slight decrease in the Index value from the unconditional model (Model 1) but adjusting 

for these variables still resulted in significant, positive global spatial autocorrelation (Index 

= 0.014, Z-value = 5.1, p < 0.001). In the final model that included both youth and BG 

variables, global spatial clustering was no longer significant (Index = 0.003, Z-value = 0.9, p 

< 0.169).

3.3. Local spatial clustering

Results from the Local Anselin Moran’s I tests showed significant local clustering patterns; 

the number of high-high and low-low cluster observations for Models 1 through 4 are 

presented in Table 2. High-high cluster observations represent youth that have elevated BMI 

z-scores compared to the overall population and are also surrounded by other youth that 

have similarly high BMI z-scores and vice-versa for low-low clusters. In Model 1 with no 

covariates, there were a total of 635 high-high and 1058 low-low statistically significant 

spatial cluster observations, representing 4.7% and 7.9% of the sample, respectively.

Similar patterns were observed in the LISA results as Global Moran’s I throughout the 

model building process. Specifically, after adjusting for youth characteristics (Model 2), the 

number of high-high and low-low cluster observations were reduced by over half, with only 

1.9% and 2.5% of participants now located in high-high and low-low statistically significant 

local clusters, respectively. In Model 3 that adjusted for BG characteristics, fewer significant 

clustered observations were noted compared to Model 1 but more than were identified in 

Model 2 (Table 2). Finally, Model 4 showed the lowest proportion of local spatial cluster 

observations.

A series of maps were developed to visually represent the changes in the local clustering 

patterns throughout the model building process. Maps representing the concentrations of 

each type of spatial cluster were developed using the point density function (Laraia et 

al., 2014). Each statistically significant point was smoothed a half-mile, concurrent with 

the distance used to conduct the clustering analyses. One map was created for each of 

the four models with shades of red areas showing the concentration of high-high clusters 

while shades of blue representing the concentration of low-low obesity clusters (Laraia 

et al., 2014). As shown in Fig. 1, Model 1, the western areas of the study county had 

substantial areas of high-high obesity clusters, whereas the eastern of the county showed 

high concentrations of low-low obesity clusters. Interestingly, several high-high and low-low 

clusters are observed adjacent to one another, particularly near the middle of the map, 
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corresponding with areas surrounding the city center. The images for Models 2, 3, and 4 

show the changes in the concentration of local clusters as correlate variables were examined.

3.4. Spatial clustering by level of urbanization

Using the same model building process described for the overall sample, global and local 

spatial clustering was also explored by level of urbanization by analyzing the same set of 

statistical models separately for youth living in urban, urban-rural mixed, and rural areas 

(Table 3). For Global Moran’s I, significant global clustering was observed in the urban 

(Index = 0.030, Z-score = 6.6, p < 0.01), urban-rural mixed (Index = 0.027, Z-score = 5.4, 

p < 0.01), and rural areas (Model 1; Index = 0.029, Z-score = 2.7, p = 0.001). Differential 

patterns were observed based on level of urbanization as correlate variables were included. 

For youth that lived in urban areas, global spatial clustering was attenuated in Models 

2 and 4 after including individual socio-demographic characteristics and both individual 

and neighborhood socio-demographic characteristics, respectively (Table 3). However, in 

urban-rural mixed areas, global clustering was only attenuated by including the combination 

of individual and BG characteristics (Model 4), whereas significant global clustering was 

present in all models for youth that lived in rural areas. The local clustering results showed 

similar patterns across all four models as the global patterns described (lower half of 

Table 3). However, in Model 1, urban areas had a higher proportion of high-high cluster 

observations (5.6%) compared to urban-rural mixed (2.9%) and rural (2.3%) areas.

4. Discussion

This study applied spatial clustering analyses for youth weight status at the individual 

data point level (Hernández-Vásquez et al., 2016; Huang et al., 2015; Laraia et al., 

2014), and explored spatial clustering by levels of urbanization. Further, these spatial 

analyses contributed to literature on obesity by examining geographic-specific patterns and 

determinants of observed spatial distribution, differing from previous research investigating 

determinants of the obesity outcome itself (Auchincloss et al., 2012; Huang et al., 2015; 

Laraia et al., 2014). Results showed statistically significant global clustering across the study 

area and local spatial clustering in specific regions of the county. Global clustering was 

attenuated and the number of individual local clusters was greatly reduced after adjusting 

for both youth and neighborhood socio-demographic characteristics, though variations were 

discovered by level of urbanization.

Significant, positive spatial global autocorrelation was found, indicating that BMI z-score 

values were not randomly distributed within the study boundaries and that high and low 

values were more proximal to other high and low values, respectively (Anselin, 1995). The 

global spatial clustering results showed a low to moderate level of global autocorrelation 

(Laraia et al., 2014). As discussed in the methods, Moran’s I values can range from −1 

(completely dispersed) to +1 (completely clustered), and the Global Moran’s I value found 

in this study was 0.04, which was both lower and higher than previously reported values. 

For example, Laraia and colleagues found a Global Moran’s I value of 0.05 (Laraia et al., 

2014), while Penney and colleagues found a Global Moran’s I value of −0.017 (Penney 

et al., 2014). However, caution should be used when interpreting and comparing Global 
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Moran’s I statistics within and across studies. As described in the methods, this spatial 

analysis is sensitive to the specifications chosen by the researcher, particularly the spatial 

weights (Anselin, 2005; Anselin, Syabri, & Kho, 2010). Unlike a standardized Pearson 

correlation, spatial weights often differ within and across studies. Importantly, the Moran’s 

I value in this study was statistically significant with a conservative p-value, indicating 

researchers can reject the null hypothesis of random spatial patterning. The geographical 

interdependence of these data suggest that one or more underlying characteristics could 

be contributing to similar patterns in the same areas. Other researchers have also found 

positive, global spatial clustering patterns (Laraia et al., 2014), while some studies have 

reported no global autocorrelation of obesity (Penney et al., 2014; Schuurman et al., 

2009). These observed inconsistencies may be attributable to varied unit of analyses (e.g., 

individual points, census tracts) used in spatial clustering analyses for obesity and contextual 

differences between study cities, resulting in varying spatial dependency in health outcomes, 

like obesity (Michimi & Wimberly, 2010).

In addition to global autocorrelation, localized spatial patterns of obesity were detected 

using Local Anselin Moran’s I (LISA) (Ord & Getis, 2001). Overall, about 13% of the 

sample was located in either high or low local spatial clusters. A large concentration of 

low weight status clusters was found in eastern areas of the county, whereas high weight 

status clusters were more prominent in the western region. Researchers using the same Local 

Moran’s I analysis for BMI among adults in Seattle, WA reported similar low and high 

patterns in distinct regions (i.e., northern and southern) of their study area (Huang et al., 

2015). Such gradients highlight divergent spatial patterns of health indicators within the 

same cities, showing distinct geographic differences across neighborhoods.

Knowing the overall prevalence of youth obesity for a particular neighborhood or city can 

certainly highlight areas where a high proportion of children are affected and subsequently, 

be used by public health researchers, practitioners, and community advocates to intervene 

to address the health problem. Spatial clustering analyses and results can complement these 

statistics by exploring a more nuanced role of place or geography; that is, do children 

in the same neighborhood tend to have more similar weight status and what might be 

driving such patterns? Significant clustering of obesity could also be indicative of underlying 

social factors that create an environment where the determinants and behaviors contributing 

to youth weight status are more concentrated. Combining overall prevalence and spatial 

clustering results may highlight places where obesity prevention strategies and intervention 

are needed most (Huang et al., 2015; Kirby, Delmelle, & Eberth, 2016). Furthermore, 

future research can take these analyses a step further by critically examining similarities 

and differences between individuals or communities that are identified in opposite spatial 

clusters (i.e., high or low). For example, important multilevel factors, such as local policies, 

community resources, and built environment features, could be compared for individuals 

that are in high-high spatial clusters compared to those that are in low-low spatial 

clusters. A plethora of research has examined how various policies and environments are 

related to obesity, yet less work has examined whether these factors contribute to specific 

concentrations of spatial patterns among individuals and communities. Better understanding 

the processes and determinants that have led to specific spatial patterns of obesity will be 

critical for determining the most effective strategies to combat childhood obesity.
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The second main analysis of this study examined the correlates of spatial clustering of 

youth obesity by including numerous demographic and economic indicators in subsequent 

analytical models. Overall, individual-level and neighborhood-level variables accounted 

for a portion of global clustering, separately, but the combination of individual and 

neighborhood variables attenuated global autocorrelation and substantially reduced the 

concentration of significant local cluster points. Similarly, one study in northern California 

showed that combined individual and neighborhood-level characteristics accounted for the 

majority of global and local spatial clustering of adult obesity (Laraia et al., 2014), while 

the previously described study in Seattle reported that property values, an area-level SES 

indicator, was the primary variable accounting for the local spatial clustering of adult obesity 

(Huang et al., 2015).

The combination of individual and block group characteristics explaining the observed 

global and local spatial clustering closely resonates with the multifaceted social ecological 

model of health (Bronfenbrenner, 1997; McLeroy et al., 1988). This theoretical framework 

posits that health outcomes are impacted by multiple levels of influence (e.g., intrapersonal, 

interpersonal, institutional, community, broad policy). This study highlights how both 

individual and neighborhood-level socio-demographic factors contribute to manifestations 

of varying spatial patterns of youth weight status at a local level. While this study shows 

important correlates of spatial clustering, the socio-demographic variables included in the 

analytical models (e.g., BG SES index, percentage of racial/ethnic minority residents) are 

likely reflective of complex processes that contribute to these spatial patterns (Schulz & 

Northridge, 2004). For example, the BG SES index was comprised of multiple elements 

of SES, including education, employment, housing, and poverty (Kirby & Kaneda, 2005). 

These economic indicators are reciprocally related to important social and public policies 

and conditions (e.g., access to quality educational opportunities) and health-promoting 

environments (e.g., access to quality, nutritious foods) (Schulz & Northridge, 2004). Future 

research should seek innovative ways to incorporate more contextual variables in studies that 

intersect health and geography.

Importantly, this study found nuanced clustering patterns and correlates of spatial clustering 

based on the level of urbanization where youth lived. Previous research has detected high 

and low significant local spatial clusters of obesity in areas characterized by varying levels 

of urbanization (Huang et al., 2015; Laraia et al., 2014). For example, two studies found 

that low obesity clustering was found in more urban areas for adults, whereas high obesity 

clustering was more prominent in less densely populated areas (Huang et al., 2015; Laraia 

et al., 2014). In this study, the overall proportion of overweight and obese youth was highest 

among youth living in rural areas (42.5%) compared to urban (33.4%) and urban-rural mixed 

(35.2%) areas. However, the spatial clustering analyses revealed specific spatial patterns that 

somewhat differed from the overall prevalence, further highlighting the differences between 

a non-spatial statistical model and spatial model. Local spatial clustering results showed 

that a higher proportion of the significant high-high clusters were identified in urban areas 

whereas a higher proportion of low-low clusters were in the urban-rural mixed areas. This 

indicates that while the overall proportion of overweight and obesity was highest among 

children living in rural areas, a higher concentration of spatially-linked clusters, where 

children tended to have similar weight status, were located in urban and urban-rural mixed 
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areas. Additional research should investigate whether these patterns are similar across cities 

and how specific conditions of urban and suburban areas may generate these clustering 

patterns.

For example, while this phenomenon was not observed in all urban and suburban areas 

of the County, this pattern may partially be explained by urban sprawl (Frumkin, 2002). 

Urban sprawl reflects patterns of expansion outside of centralized urban areas, often marked 

by more affluent residents shifting residence, leaving high concentrations of low-income 

residents in urban areas (Frumkin, 2002). Future work could explore whether local spatial 

patterns of high and low obesity are found in historically disadvantaged or advantaged areas, 

respectively, and whether these patterns persist over time. Several studies have documented 

differences in the prevalence of youth overweight and obesity by urban and rural areas, but 

to our knowledge, this is one of the first studies to conduct localized spatial analyses by level 

of urbanization.

4.1. Limitations

Several study limitations should be noted. First, this study is focused on one county in the 

United States, which limits the generalizability of the findings (Shadish, Cook, & Campbell, 

2002). However, to our knowledge, this is the first study to examine point-level spatial 

clustering of child weight status in the southeastern US area, a region with notably high rates 

of obesity (Singh et al., 2007). Furthermore, this study demonstrates the utility of spatial 

clustering analyses and results for one county, which could be scaled to larger regions. 

At the same time, many spatial analyses conducted within a defined space illustrates the 

boundary, or border effects, problem/issue (Griffith, 1983). Often, administratively-defined 

units, including city or county boundaries, are used to define the area and population of 

interest. Indeed, the data sharing agreement was focused in on one specific county; however, 

we acknowledge the limitation the spatial relationships could have continued beyond the 

boundaries. Decisions regarding this boundary issue are likely specific to the scope of the 

research and research objectives. For example, the data sharing agreement played a large 

role in defining the area and data were not removed to maintain the entire population and 

sample size. However, for other situations, removing data points could be viable solutions 

to address the boundary issue (Griffith, 1983). Similar to the discussion of geographic 

scope, though this study included a large sample of elementary-aged youth (all 3rd-5th 

grade students in public schools), this limited the scope of ages analyzed. Comparing 

spatial patterns for populations across the lifespan could help researchers and practitioners 

understand what geographic factors influence health outcomes such that interventions, 

including policy and environment changes, can best meet the needs of a diversity of 

populations.

Additionally, this study was cross-sectional and no causality can be attributed to the findings 

(Shadish et al., 2002). This has been a limitation for many spatial clustering studies focused 

on health, particularly as this field is rapidly growing (Auchincloss et al., 2012). However, 

there is a need for longitudinal studies analyzing obesity patterns in terms of space and 

time to better understand whether spatial patterns of obesity persist over time and from a 

community standpoint, whether clustering patterns of obesity remain in the same areas over 
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time (Kirby et al., 2016). Such information could indicate priority areas for community 

health needs assessments, in order to understand localized factors that contribute and detract 

from health. For example, with multiple years of data, we could observe whether the high-

high and low-low spatial clusters persists, are exacerbated, or dissipate as the same children 

age. The capabilities of spatial software programs are advancing in ways that can handle 

innovative and longitudinal spatiotemporal analyses that can provide important insight into 

obesity patterns over time (Anselin et al., 2010; Kirby et al., 2016). Finally, obesity is 

a complex health condition that is influenced by many factors, many of which were not 

measured in this specific population. For example, data on behavioral patterns like nutrition 

and physical activity were not available for this large sample, but likely play a substantial 

role in impacting obesity and the spatial patterns observed.

4.2. Conclusions

In summary, the results of this study showed global and local spatial patterning 

of youth obesity in a southeastern U.S. county, which reinforces the importance of 

spatial relationships among health conditions, including obesity. Individual-level socio-

demographic characteristics were identified as a primary correlate of the spatial patterns 

identified, though more work is needed to explicate the mechanisms driving these 

associations. Overall, identifying geographic areas that contain significant spatial clusters 

is a powerful tool for understanding the location of and exploring contributing factors to 

childhood obesity.
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Fig. 1. 
Density of Significant High-high and Low-low Local Spatial Clusters of Youth Weight 

Status in a Southeastern US County. Notes: Model 1 includes no covariates, Model 2 adjusts 

for youth socio-demographics, Model 3 adjusts for block group socio-demographics, and 

Model 4 adjusts for both youth and block group characteristics.
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Table 1

Sample characteristics.

Youth Characteristics (n = 13,469) Mean or % SD Range

Body Mass Index (BMI) z-score 0.5 1.1 (−8.1, 3.0)

BMI percentile 64.0 1.0 (0, 99.9)

BMI categories

 Underweight 3.1%

 Normal weight 62.3%

 Overweight 15.7%

Obese 18.8%

Age (years) 9.7 1.0 (7, 13)

Gender

 Male 50.8%

 Female 49.2%

Socioeconomic Status (SES)

 High (Full priced lunch) 54.7%

 Low (Eligible for free or reduced price lunch) 45.3%

Race/ethnicity

 White 62.2%

 African American 18.9%

 Hispanic 11.5%

 Other 7.4%

Block Group Characteristics

BG Percent racial/ethnic minority (%) 28.0 20.4 (0, 98.6)

BG Socioeconomic status (SES) index −0.8 2.7 (−5.5, 9.9)

BG Population density (persons per sq. mile) 1554.64 1073.94 (15.3, 11555.5)

BG Level of urbanization

 Urban 50.4%

 Urban-Rural Mixed 44.8%

 Rural 4.8%
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Table 2

Global Moran’s I and local Moran’s I results.

Model # Global Moran’s I Local Moran’s I

Index value Z-score p-value High-High Cluster Observations (#, %)* Low-Low Cluster Observations (#, %)*

Model 1
a 0.039 14.3 0.001 635 (4.7%) 1058 (7.9%)

Model 2
b 0.007 2.6 0.005 260 (1.9%) 339 (2.5%)

Model 3
c 0.014 5.1 0.001 335 (2.5%) 411 (3.1%)

Model 4
b & c 0.003 0.9 0.169 205 (1.5%) 185 (1.4%)

p < 0.001, Distance tested: 0.5 mile.

a
No covariates included, unconditional model.

b
Adjusted for youth characteristics (age, gender, SES, race/ethnicity).

c
Adjusted for block group characteristics (percent racial/ethnic minority, SES index, population density.
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