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Abstract
Background: Systemic therapy prolongs overall survival (OS) in advanced non-
small cell lung cancer (NSCLC), but diagnostic tests, staging and molecular pro-
filing take time, and this can delay therapy initiation. OS approximates first-order 
kinetics.
Methods: We used OS of chemo-naive NSCLC patients on a placebo/best sup-
portive care trial arm to estimate % of patients dying while awaiting therapy. We 
digitized survival curves from eight studies, calculated OS half-life, then estimated 
the proportion surviving after different times of interest (tn) using the formula: 
X = exp

(

− tn ∗ 0.693∕t1∕2
)

, where EXP signifies exponential, * indicates mul-
tiplication, 0.693 is the natural log of 2, and t1/2 is the survival half-life in weeks.
Results: Across trials, the OS half-life for placebo/best supportive care in previ-
ously untreated NSCLC was 19.5 weeks. Hence, based on calculations using the 
formula above, if therapy were delayed by 1, 2, 3, or 4 weeks then 4%, 7%, 10%, 
and 13% of all patients, respectively, would die while awaiting treatment. Others 
would become too sick to consider therapy even if still alive.
Conclusions: This quantifies why rapid baseline testing and prompt therapy 
initiation are important in advanced NSCLC. It also illustrates why screening 
procedures for clinical trial inclusion must be faster. Otherwise, it is potentially 
hazardous for a patient to be considered for a trial due to risk of death or dete-
rioration while awaiting eligibility assessment. It is also important to not delay 
initiation of systemic therapy for procedures that add relatively little value, such 
as radiotherapy for small, asymptomatic brain metastases.
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1   |   INTRODUCTION

1.1  |  Systemic therapies in non-small cell 
lung cancer

Many patients with metastatic non-small cell lung can-
cer (NSCLC) derive benefit from systemic therapies 
such as chemotherapy, targeted agents, and immuno-
therapy. When compared to placebo or best supportive 
care, chemotherapy significantly prolongs overall survival 
(OS).1 While there is a common perception that it is of lim-
ited benefit in poor performance status patients, the rela-
tive improvement in OS is approximately the same in poor 
performance status patients as it is in good performance 
status patients.1 Chemotherapy is associated with im-
provement in cancer symptoms in more than 75% of good 
risk patients with longer OS but can also benefit high risk 
patients anticipated to have very short OS, with 55% of the 
high risk group experiencing symptomatic improvement.2

While chemotherapy is superior to no treatment in this 
population, patients whose tumors are found to have spe-
cific mutations or immune system biomarkers do better 
with targeted therapies or with immunotherapy than with 
chemotherapy.3–5 Good therapies are generally most effec-
tive when given as first line treatment. To choose the best 
first line therapy requires baseline diagnostic tests, stag-
ing, and molecular profiling, but patients are at risk of de-
teriorating rapidly and dying while awaiting completion 
of testing prior to therapy initiation. There can be long 
delays in referral of lung cancer patients for subspecialist 
care and in initiation of appropriate therapy, with several 
factors contributing to these delays.6

Initiation of systemic therapy can also be delayed if a 
patient is being assessed for possible inclusion in a clinical 
trial. In some cases, screening for a clinical trial can take 
weeks, particularly if a pre-treatment research biopsy is 
required or if a biopsy must be assessed in a central lab 
prior to patient inclusion in the trial. Systemic therapy can 
also be delayed to permit prior completion of radiotherapy 
for brain metastases, and many clinical trials that permit 
patients with brain metastases require that the patient un-
dergo cranial radiation and then demonstrate stability of 
their brain metastases for 4 weeks or more before the pa-
tient can be entered on the trial.

1.2  |  Implications of OS following 
first order kinetics

For most cancers, OS and progression-free survival (PFS) 
approximate first order kinetics and can be fit by exponen-
tial decay nonlinear regression models.7,8 This means that 
one can use a population kinetics approach to calculate 

OS and PFS half-lives (t1/2: the time to death or progres-
sion of half of all remaining patients). OS and PFS half-
lives correlate very strongly with OS and PFS medians,8 
but conceptualizing them as half-lives has advantages.8–10 
One advantage is that one may use the OS half-life to eas-
ily calculate the proportion of remaining patients who 
will die per unit of future time, and this proportion will 
be roughly the same no matter where you start the clock if 
OS follows first-order kinetics. For example, if the half-life 
were 4 months, then half the patients would be dead by 
4 months, half of the remaining patients (or three quarters 
of the original population) would be dead after another 
4  months, and half the patients remaining at 8  months 
would die during the next 4-month period so that about 
12.5% of the original population would still be alive at 
12 months.

We used population kinetics assessments to estimate % 
of NSCLC patients dying per week that therapy initiation 
is delayed. To do this, we assessed published NSCLC clin-
ical trials with a placebo or best supportive arm and cal-
culated the OS half-life for patients who have not received 
any systemic therapy.

2   |   METHODS

2.1  |  Population kinetic assessment of 
advanced, untreated NSCLC

We conducted a PubMed search to identify all published 
clinical trials for advanced NSCLC that had a placebo/best 
supportive care arm. For our assessments, we then used 
the subgroup of these trials that involved previously un-
treated patients, that had ≥50 patients per arm and that 
had published OS Kaplan–Meier curves. As previously 
described,8,9 we used the online application (https://apps.
autom​eris.io/wpd/) to digitize these published OS curves. 
To estimate OS half-life, we used GraphPad Prism-7 
(GraphPad Software) for 1-phase and 2-phase exponen-
tial decay nonlinear regression analysis (EDNLRA) of 
digitized curve data. In these calculations, we applied the 
constraints Y0  =  100 (since survival starts at 100%) and 
Plateau  =  0 (since all patients would eventually die, if 
followed for a long enough time).8,9 The use of Kaplan–
Meier curves corrected for censored data. We excluded 
data from the terminal portion of the curve estimated to 
have <10 remaining patients, where each event would po-
tentially cause relatively large curve changes.

Based on our prior experience,8,9 we defined curves 
as fitting 2 phase EDNLRA models if both subpopula-
tions accounted for at least 1% of the total population 
and if the half-lives for the two potential subpopulations 
differed by ≥2 fold. In previous publications, we have 

https://apps.automeris.io/wpd/
https://apps.automeris.io/wpd/
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illustrated examples of curves that fit 2 phase EDNLRA 
models.7,9,11 We have also previously published examples 
of how some individual EDNLRA curves compare to the 
corresponding Kaplan–Meier curves (Supplementary on-
line figure 1 from Ref. [8]).

2.2  |  Estimation of proportion of patients 
surviving at specified times

As previously described for PFS curves,9 we then calculated 
the proportion of patients remaining alive after a time of 
interest, tn (e.g. 1 week, 2 weeks, etc.), using the formula:

where EXP signifies exponential, * indicates multiplication 
and t1/2 is the OS half-life in weeks. The term 0.693 is the 
natural logarithm of 2. Another way of expressing this cal-
culation would be:

The percent dying by time tn was calculated as 
100 − (x * 100).

3   |   RESULTS

3.1  |  Proportion of untreated patients 
dying per week

Seven trials12–18 and a meta-analysis1 fit the selection 
criteria described above. Across these trials, OS half-
lives by 1 phase decay models were 3.1–5.6 months (me-
dian, 4.5 months or 19.5 weeks). With an OS half-life of 
19.5  weeks, the proportions of remaining patients esti-
mated to have died by 1, 2, 3, and 4 weeks from the start 
point were 4%, 7%, 10%, and 13%, respectively. This is in 
keeping with the rapid drop off in OS on most published 
Kaplan–Meier curves.

3.2  |  Proportion of good performance 
status patients dying if untreated

If we only considered trials in which the majority of 
patients were Eastern Cooperative Oncology Group 
Prformance Status 0–1, then OS half-lives ranged from 
3.7 to 5.6 months (median, 5.3 months or 23.0 weeks), 
and the proportion of patients estimated to have died 
by 1, 2, 3, and 4  weeks were 3%, 6%, 9%, and 11%, 
respectively.

3.3  |  Implications of OS 2 phase 
decay on exponential decay nonlinear 
regression analysis

In this analysis, five of eight OS curves fit 2 phase decay 
EDNLRA models (Table 1), suggesting two distinct sub-
populations with differing survival rates. This is much 
higher (p = 0.001) than the proportion of OS curves fit-
ting 2-phase decay models in our earlier analyses involv-
ing patients receiving active treatment on both arms of 
a trial, where only 21 (11%) of 190 OS curves fit 2 phase 
decay models.8 This high probability of 2 phase decay is 
probably best explained by some of the patients being 
started on active therapy when tumor progression was 
detected, with shorter survival in the subpopulation never 
receiving any systemic therapy and longer survival in the 
subpopulation that eventually received systemic therapy. 
Assessment of individual patient data (to which we did 
not have access) would be required to test this assumption.

The subpopulation with shorter survival in trials with 
2 phase decay in the current analysis accounted for 7%–
96% of the entire study population (median across trials 
of 89%), and the subpopulation with shorter OS had an 
OS half-life of 2.0–3.9  months (median across trials of 
2.6 months, or 11.3 weeks) (Table 1). The proportion of 
this potentially large subpopulation of patients that were 
estimated to have died by 1, 2, 3, and 4 weeks was 6%, 12%, 
17%, and 22%, respectively.

4   |   DISCUSSION

4.1  |  Implications of treatment delays in 
advanced NSCLC

This population kinetics analysis provides an estimate of 
the proportion of patients with advanced NSCLC who die 
per week of delay in initiation of systemic therapy and il-
lustrates that even very short delays in initiation of therapy 
can translate into worsened survival. This calculation in 
NSCLC patients with advanced disease mirrors the situa-
tion in early stage NSCLC: in early stage, NSCLC short de-
lays in initiation of therapy also worsen outcome.19 Patients 
with metastatic NSCLC may die rapidly if not treated, even 
if performance status is initially good. Many others will de-
teriorate so rapidly that they can no longer be considered 
for systemic therapy. For patients with advanced NSCLC, 
poor performance status is the leading reason for failure to 
receive systemic therapy at our center,20 and rapid deterio-
ration and death may be the major reason that fewer than 
25% of patients with advanced NSCLC in the province of 
Ontario, Canada ever receive systemic therapy,21 despite it 
being fully funded by the government.

X = exp
(

− tn ∗ 0.693∕t1∕2
)

,

x = 2(−tn∕t1∕2).
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In addition to performance status, other clinical fac-
tors could potentially impact the probability that an 
individual patient could die while awaiting initiation 
of therapy. For example, patients with high tumor bulk 
generally would be more likely to die rapidly than would 
patients with lower tumor bulk. Patients with stage IV 
disease generally would be more likely to die rapidly 
than patients with incurable stage IIIB disease. The pa-
pers included in our analysis had insufficient published 
information to permit us to quantify the effects of these 
factors. However, while sicker patients are the most likely 
to die rapidly if not treated, patients can go from being 
relatively “healthy” to being sick in a very short period 
of time. Consequently, speed is important for all patients.

4.2  |  Use of a population 
kinetic approach versus other 
methodology options

Direct inspection of NSCLC OS Kaplan–Meier curves sup-
ports the conclusion that patients die rapidly if not treated. 

While one might calculate the proportion of remaining 
patients dying per unit time directly from the Kaplan–
Meier curve or through other statistical approaches, de-
termination of an OS half-life facilitates this calculation. 
In addition if one uses log-linear plots of OS versus time 
and subjects the data to population kinetic exponential 
decay nonlinear regression analysis, one may readily see 
if the rate of death slows over time (e.g., due to presence of 
two distinct subpopulations with different OS half-lives) 
or if it accelerates over time (e.g., due to discontinuation of 
a therapy that was slowing tumor growth).8,11 Using log-
linear relationships is already used in standard statistical 
calculations (e.g., in determination of hazard ratios), and 
population kinetic approaches to OS and PFS data analy-
sis can also be useful in a variety of other ways.7–11

While concern might be raised about using digitized 
data from published Kaplan–Meier curves, our experience 
suggests that this approach is highly reliable. For example, 
PFS and OS half-lives derived from digitized curve data cor-
relate very highly with their respective median values, with 
R2 ≥ 0.96, and gain in PFS half-life is a better predictor of OS 
gain than is gain in median PFS or PFS hazard ratio.8

T A B L E  1   Overall survival (OS) population kinetics analysis

Author
No. 
patients PSa

1 phase decay 
model 2 phase decay modelc

OS t1/2
b 

(CI) R2
% shortd 
(CI)

OS t1/2 shorte 
(CI)

OS t1/2 longf 
(CI) R2

Ranson et al.12 78 0–1: 82%
2: 18%

5.6 
(5.4–5.9)

0.97

Rapp et al.13 53 0–1: 60%
2: 40%

3.7 
(3.6–3.7)

0.99

Roszkowski et al.14 70 0–1: 77%
2: 23%

5.3 
(5.0–5.7)

0.94

Goss et al.15 100 2: 62%
3: 38%

3.1 
(3.0–3.3)

0.98 92 (88–96) 2.6 (2.4–2.9) >100 (6.2–?) 0.98

Gridelli et al.16 78 0–1: 76%
2: 24%

5.5 
(5.4–5.5)

0.99 7 (0.1–?) 2.0 (0.2–?) 5.8 (5.4–?) 0.99

Lee et al.17 320 0–1: 16%
2: 56%
3: 28%

3.9 
(3.8–4.0)

0.99 89 (80–94) 3.2 (2.9–3.4) 20.3 (11.0–?) 0.99

Woods et al.18 91 0–1: 73%
2–3: 27%

4.5 
(4.4–4.7)

0.99 33 (8–94) 2.4 (1.0–4.0) 6.1 (5.0–?) 0.99

NSCLC Collaborative 
Group1

362 ? 4.4 
(4.3–4.5)

0.99 96 (90–97) 3.9 (3.7–?) >100 (17.8–?) 0.99

Abbreviations: CI, 95% confidence intervals; NSCLC, non-small cell lung cancer.
aPS: Eastern Cooperative Oncology Group Performance Status.
bOS t1/2: overall survival half-life (months) by an exponential decay nonlinear regression analysis 1-phase decay model.
cIf no values are listed, data did not fit an exponential decay nonlinear regression analysis 2-phase decay model per our definition.
d% of entire population belonging to subpopulation with shorter OS.
eOS half-life (months) for subpopulation with shorter OS.
fOS half-life (months) for subpopulation with longer OS. Confidence intervals are very wide or undefinable since length of follow up was too short.
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4.3  |  Are the placebo/best supportive care 
(BSC) data representative?

One potential limitation of our assessment is the fact that the 
data used were from relatively old trials, published between 
1988 and 2012. Hence, current untreated patients might possi-
bly do better than the patients on the placebo/BSC arms of the 
trials assessed. However, we are unaware of any data to sup-
port this. Furthermore, even if the OS half-life in untreated 
patients was 6 months (instead of the 4.5 months calculated), 
this would still mean that almost 3% of remaining patients 
would die each week that therapy initiation is delayed, and 
2% would die each week if OS half-life was 8 months.

4.4  |  Importance of rapid 
diagnostic assessment

While systemic therapy cannot cure advanced NSCLC, 
multiple trials have demonstrated that even older thera-
pies do make a difference, with both prolongation of life 
expectancy1,12–14,16 and improvement in quality of life 
and/or cancer-related symptoms compared to placebo/
best supportive care.12,14,16  There are several new thera-
pies that are substantially better in selected populations 
than these effective old therapies.3–5 However, it is essen-
tial to choose the right therapy. Overall, baseline testing to 
establish the diagnosis, stage and molecular profile of ad-
vanced NSCLC is highly important, but this testing takes 
time. Our estimates here drive home how essential it is to 
make this testing happen as rapidly as possible.

4.5  |  Importance of rapid screening for 
clinical trial inclusion

There are also other things that can delay therapy ini-
tiation. For example, if a patient is being considered for 
inclusion in a clinical trial, it may take weeks longer to ini-
tiate treatment than if the patient goes straight to standard 
therapy, particularly if a research biopsy is required.22 The 
data we present here illustrate why it is vitally important 
that we address these delays so that we can continue to 
make progress through clinical research without jeopard-
izing patients being considered for inclusion in a trial.

4.6  |  Potential impact of brain metastases 
on rapidity of initiation of systemic therapies

Of particular concern in clinical research is the requirement 
in some studies that patients undergo cranial radiation 
for brain metastases and then demonstrate stability for a 

number of weeks before being considered for study-related 
systemic therapies. Even good performance status patients 
are at risk of deteriorating or dying from uncontrolled ex-
tracranial tumor during this mandatory wait period.

A strong case can be made for including patients with 
untreated asymptomatic brain metastases on clinical trials 
without requiring prior cranial radiation or demonstration 
of stability of the brain metastases.23–25 Contrary to a perva-
sive bias, brain metastases are not associated with worse OS 
than are metastases in a variety of other extrathoracic sites 
such as liver, bone or adrenal gland,26–28 blood–brain bar-
rier disruption within brain metastases means that systemic 
agents gain ready access to these tumor deposits even if con-
centrations in the normal central nervous system are low,25 
and efficacy of systemic therapies in untreated NSCLC brain 
metastases is not substantially different from efficacy in other 
disease sites.24 In keeping with this, brain metastases are not 
considered differently than other extrathoracic metastases in 
NSCLC Tumor Node Metastasis staging algorithms.29

Even in standard practice, careful consideration should 
be given to whether any local therapy (such as cranial ra-
diation for asymptomatic brain metastases) should be 
given prior to initiation of systemic therapy. There is an 
increasing body of evidence that systemic therapy may 
prove effective against NSCLC brain metastases,23,24 and 
rapid initiation of this systemic therapy is highly import-
ant in optimizing patient outcome.

4.7  |  Other reasons for 
delaying therapy initiation

There are also other reasons why therapy initiation might 
be delayed. For example, therapy might be delayed in 
an asymptomatic patient, where therapy toxicity might 
worsen quality of life. In such patients, there is no right 
answer as to when therapy should be initiated. For sympto-
matic patients, there is no question that systemic therapies 
may improve cancer symptoms and some aspects of qual-
ity of life.2,12,14,16 However, some individual patients may 
enjoy several months prior to onset of cancer symptoms. In 
keeping with the well-established impact of performance 
status on life expectancy, one would expect a relatively 
low proportion of good performance status patients to die 
rapidly from their cancer. On the other hand, some can go 
from being asymptomatic to being highly symptomatic and 
seriously ill over the course of just a very few weeks.

4.8  |  Conclusions

Several factors can delay initiation of systemic therapy,6 
but a high price may potentially be paid for these delays. 
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However, long delays are not inevitable. At our center, we 
undertook a Lung Cancer Transformation exercise that 
reduced the time from initial referral for diagnostic test-
ing to initiation of therapy by 48% by optimizing a Lung 
Diagnostic Assessment Program that rapidly screens sub-
mitted consults, orders all required tests (based on initial 
information submitted), and triages patients to discussion 
at multidisciplinary rounds and/or prompt appointments 
with the most relevant providers.30 There are other oppor-
tunities for still further progress and it is essential that we 
seize these opportunities.
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