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Abstract

Although prostate adenocarcinoma lacks distinguishable histopathological subtypes, prostate 

cancer displays significant inter- and intratumor heterogeneity at the molecular level and with 

respect to disease prognosis and treatment response. In principle, understanding the basis for 

prostate cancer heterogeneity can help distinguish aggressive from indolent disease, and help 

overcome castration-resistance in advanced prostate cancer. In this review, we will discuss recent 

advances in understanding the cell types of origin, putative cancer stem cells, and tumor plasticity 

in prostate cancer, focusing on insights from studies of genetically engineered mouse models 

(GEMMs). We will also outline future directions for investigating tumor heterogeneity using 

mouse models of prostate cancer.
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1. Introduction

Unlike most other epithelial tumors, prostate cancer lacks distinguishable histopathological 

subtypes. Almost all prostate cancers are acinar adenocarcinomas, whereas histological 

variants such as ductal adenocarcinoma, basal cell carcinoma, and neuroendocrine prostate 

cancer are rare [1, 2]. Nonetheless, prostate adenocarcinoma displays significant inter- and 

intratumor heterogeneity at the genomic level [3–10], and can have significant differences in 

disease severity. Notably, patients with low- to intermediate-grade localized primary prostate 

cancer can have widely different outcomes, ranging from indolent to highly aggressive 

disease [11, 12].
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Since prostate cancer initially relies on ligand-mediated signaling through androgen receptor 

(AR) for tumor growth, androgen deprivation has been a mainstay of prostate cancer 

treatment [13, 14]. Although androgen deprivation therapy results in cancer regression, 

tumors frequently recur through restoration of AR signaling by a variety of molecular 

mechanisms, including de-regulation of the AR signaling pathway or activation of 

alternative signaling pathways, resulting in castration-resistant prostate cancer (CRPC) [14]. 

In recent years, CRPC has been effectively treated by second-generation anti-androgens such 

as abiraterone and enzalutamide [14, 15]. However, the extent and duration of response 

are variable, with many tumors developing lineage plasticity and AR-negative phenotypes, 

including aggressive neuroendocrine prostate cancers (NEPC) that progress to lethal disease 

[15]. Notably, genomic analyses have revealed that CRPC displays a high degree of inter- 

and intratumor heterogeneity [9, 10, 16–18]. Thus, a better understanding of the mechanisms 

that generate inter- and intratumor heterogeneity could help distinguish aggressive from 

indolent disease and inhibit emergence of castration-resistance.

The origins of inter- and intratumor cancer heterogeneity can potentially be explained by 

the “cell of origin” and “cancer stem cell” models, respectively. The cell of origin model 

proposes that differences in the normal cell type that undergoes oncogenic transformation 

give rise to distinct tumor subtypes that differ in histopathological or molecular properties 

as well as treatment response or disease outcome (Fig. 1A) [19–22]. However, the relevance 

of this model to prostate cancer has been unclear since it has been difficult to class prostate 

adenocarcinoma into distinct tumor subtypes at either the histopathological or molecular 

level [23]. Furthermore, until recently it has been unclear whether there is considerable cell 

type heterogeneity in the normal prostate epithelium.

The cancer stem cell model (Fig. 1B) posits that tumor cells are organized in a hierarchy 

of cancer stem cells and nontumorigenic cells to generate tumor heterogeneity, thereby 

accounting for progression and treatment response [22, 24–26]. While considerable evidence 

supporting the cancer stem cell model exists in hematological malignancies, this model is 

much more controversial in solid tumors such as prostate. Moreover, recent studies using 

lineage-tracing in GEMMs of various epithelial tumors have also shown that nontumorigenic 

cells can display lineage plasticity and acquire properties of stemness or transdifferentiate 

to other types of nontumorigenic cells in response to treatment or signals from the tumor 

microenvironment (Fig. 1C), further complicating analyses of putative cancer stem cells [24, 

26, 27].

In the review, we will discuss recent advances in understanding prostate cancer 

heterogeneity and the emergence of castration resistance through the lens of the cell of 

origin and cancer stem cell models. In particular, we will focus on progress and insights 

from studies of GEMMs for prostate cancer, and outline directions for future research.

2. Epithelial heterogeneity and plasticity in the normal prostate

The prostate is a male sex accessory gland that produces and secretes fluids that contribute 

to the ejaculate, and thereby enhances male fertility. In men, the prostate is a walnut-

sized tissue surrounding the urethra at the base of the bladder, containing a network of 
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branching ducts with a zonal architecture, corresponding to central, periurethral transition 

and peripheral zones [28, 29]. In contrast, the mouse prostate consists of multiple lobes 

that have distinct patterns of ductal branching and histological appearance [30, 31]. Despite 

these anatomical differences, recent single-cell RNA-sequencing analyses have indicated 

the conservation of cell populations between the mouse and human prostate [32, 33]. In 

particular, the mouse lateral lobe is most similar to the human peripheral zone, which 

harbors the majority of human prostate cancers [33, 34].

In both mouse and human, the prostate contains a pseudostratified epithelium that is 

composed of three primary cell types, corresponding to luminal cells, basal cells, and rare 

neuroendocrine cells [23, 35]. Lineage-tracing studies in vivo have shown that differentiated 

luminal and basal cells are largely maintained by unipotent progenitors during prostate 

homeostasis [36–38]. Similar conclusions have been provided by lineage reconstruction 

analyses using patterns of mitochondrial mutations and genome-wide spontaneous somatic 

mutations in human prostate [39–42]. Interestingly, a recent study has reported an expansion 

of luminal progenitor cells in the aging mouse and human prostate, raising the possibility 

that microenvironmental cues may modulate luminal differentiation during aging [43]. 

During organogenesis, however, both basal and luminal cells can display progenitor features. 

Bipotent basal progenitors can be detected from birth until approximately four weeks of age 

[44–46], whereas bipotent luminal progenitors are more transient and are only detectable 

in the first week postnatally [47]. Similarly, there is evidence for both bipotent basal and 

luminal progenitors contributing to androgen-mediated regeneration of the regressed prostate 

following castration [48–54].

Recent single-cell RNA-sequencing studies have demonstrated that luminal cells are 

heterogenous in both the mouse and human prostate [32, 33, 55–58]; there is also some 

reported evidence for heterogeneity in the basal population [53]. In the mouse, there is 

heterogeneity along the proximal-distal axis, with more distal luminal cells displaying the 

tall columnar secretory morphology typically associated with the luminal phenotype, and the 

proximal luminal cells displaying a more cuboidal non-secretory phenotype [32, 33, 57, 58] 

(Fig. 2). These distinct phenotypes are also associated with different progenitor potential in 

ex vivo assays, as the proximal luminal cells have increased organoid formation and grafting 

efficiency [32, 33, 57, 58]. Furthermore, these different luminal populations also appear to 

be conserved in the benign human prostate [32, 33].

In the adult mouse prostate, both basal and luminal cells can exhibit considerable plasticity 

in specific physiological contexts. Notably, basal-to-luminal differentiation can occur in 

contexts of tissue repair following epithelial damage or inflammation, as well as in ex vivo 
experimental assays involving their isolation from dissociated tissue (Fig. 3). Following cell 

death of luminal cells induced by deletion of E-cadherin, basal cells can differentiate into 

luminal cells to repair the prostate epithelium [59]. Similarly, in a mouse model of bacterial 

prostatitis, tissue damage also triggered basal-to-luminal differentiation [60]. Plasticity can 

also be observed in luminal cells, as distal luminal cells can acquire a more proximal 

progenitor-like state after castration, and can regenerate the distal luminal compartment after 

androgen re-administration [32]. Therefore, the potential plasticity of basal and luminal 

cells as well as their progenitor capabilities should be considered when investigating the 
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heterogeneity of prostate cancer, particularly with respect to the cell of origin and cancer 

stem cell models, as described below.

3. Cell types of origin for prostate cancer

The cell types of origin for prostate cancer have been investigated extensively using 

genetically-engineered mouse models [19, 23, 61–63]. Multiple studies have performed 

oncogenic transformation ex vivo followed by organoid culture and/or renal grafting, which 

have suggested that both basal and luminal cells can be cell types of origin for prostate 

cancer [64–70]. However, given the plasticity of basal cells in ex vivo assays, these results 

are potentially difficult to interpret with respect to in vivo contexts.

Thus, to identify cell types of origin in vivo, several groups have used Cre-mediated 

recombination together with Cre reporter alleles such as R26R-YFP or mTmG to 

mark and follow the fates of induced tumor cells in GEMMs (Table 1). For example, 

inducible GEMMs such as CK5-CreERT2;Ptenflox/flox, CK14-CreERT2;Ptenflox/flox, 
CK8-CreERT2;Ptenflox/flox, PSA-CreERT2;Ptenflox/flox, Tmprss2-CreERT2;Ptenflox/flox, and 

Nkx3.1-CreERT2; Ptenflox/flox have been used to study the consequences of deletion of 

the Pten tumor suppressor in adult prostate basal cells or luminal cells [36–38, 71, 

72]. Although inducible deletion of Pten in either basal or luminal cells resulted in 

high-grade PIN and adenocarcinoma, Pten-deleted basal cells undergo a basal-to-luminal 

differentiation to result in a luminal tumor phenotype [36, 38, 60, 65]. Bioinformatic 

analyses of expression profiles from these tumors showed that luminal-derived tumors were 

more aggressive than basal-derived tumors, and identified a molecular signature that could 

stratify human prostate tumors according to clinical outcome [36]. Related studies have 

shown that luminal progenitor cells in the regressed prostate, including castration-resistant 

Nkx3.1-expressing cells (CARNs) and castration-resistant Bmi1-expressing cells (CARBs), 

can also serve as cells of origin [49–51]. Finally, lineage-tracing analyses in a diverse range 

of GEMMs, including Nkx3.1+/−;Pten+/−, Hi-Myc, and TRAMP mice, as well as a hormonal 

carcinogenesis model, have indicated that luminal cells are favored as the cell of origin 

in each of these tumor models [73]. Consistent with these findings, recent bioinformatic 

analyses of human prostate tumors have been able to define distinct basal and luminal 

molecular subtypes that are associated with different clinical outcomes [74].

Notably, prostate inflammation promotes basal cell plasticity following deletion of Pten 
or Nkx3.1, resulting in increased basal to luminal differentiation (Fig. 3) [60, 75]. The 

plasticity of basal cells ex vivo is likely to account for the finding that basal cells can give 

rise to human prostate cancer after oncogenic transformation in culture followed by renal 

grafting methods [64–67]. Thus, although luminal cells are favored as the cell type of origin 

for prostate cancer, the plasticity of basal cells in response to tissue damage can potentially 

render them competent as cells of origin via basal-to-luminal differentiation. Events such as 

inflammation and tissue damage could therefore contribute to prostate cancer heterogeneity 

and correlate with distinct disease outcomes.
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4. Identification of putative prostate cancer stem cells

The functional identification of cancer stem cells (CSCs) depends on their ability to 

self-renew and produce both tumorigenic and nontumorigenic tumor cell progeny through 

asymmetric cell divisions, thereby generating tumor heterogeneity [24–26]. Consequently, 

therapeutic targeting of CSCs could block prostate cancer progression and potentially 

overcome castration-resistance. Many studies have sought to identify prostate CSCs using 

established human cancer cell lines as well as xenografts, which have been summarized in 

several reviews [19, 22, 63, 76]. However, there have been more limited studies of CSCs in 

prostate GEMMs in vivo to date.

Interestingly, putative CSCs have been identified in prostate cancer GEMMs with either 

basal-like and luminal-like phenotypes [19] (Table 1). Notably, basal-like CSCs have been 

isolated as Sca-1+CD49fhigh cells from Pb-Cre4; Ptenflox/flox mouse tumors, and were 

shown to have tumor-initiating properties in tissue reconstitution assays [77]. Subsequent 

work showed that a subset of Sca-1+CD49fhigh CSCs that have CD166 expression harbor 

increased tumor-initiating and other CSC properties [78], consistent with enrichment of 

basal-like CSCs.

In other studies, luminal-like CSCs have been isolated as Sca-1+CD49fmed cells from Pb-
Cre4; Ptenflox/flox, Probasin-PRL (Pb-PRL), and Hi-Myc mouse models, and were shown to 

have highly proliferative and tumor-initiating properties [79]. Interesting, another population 

of luminal-like CSCs has been described as Epcam+CD49med/loProm1+ cells in the Pb-Cre4; 
Trp53flox/flox; Ptenflox/flox model [80]. These cells can generate tumor organoids in culture 

that display multi-lineage (luminal and basal) as well as luminal-only lineage differentiation, 

and form tumors with adenosquamous histology and adenocarcinoma, respectively, after 

transplantation into immunodeficient mice. These findings suggest the existence of two 

types of luminal CSCs that can be arranged in a hierarchical relationship, with multipotent 

CSCs giving rise to unipotent luminal-committed progenitors [80, 81].

5. Cellular plasticity in advanced prostate cancer

Many differentiated cell types can display some degree of plasticity by altering their fates 

in response to physiological stresses such as inflammation and tissue damage [82–85]. 

Plasticity is more prevalent in cancer, where the genetic and epigenetic constraints upon 

the differentiated state are weakened and stresses such as inflammation are accentuated. 

Notably, plasticity of cancer cells also contributes to tumor heterogeneity and provides 

mechanisms for tumor cells to evade immune surveillance and acquire metastatic potential 

[82, 85].

Following treatment with second-generation anti-androgens, recurrent CRPC can display a 

range of phenotypes with differing levels of expression for AR as well as neuroendocrine 

markers such as synaptophysin and chromogranin A [14, 15, 86, 87]. This heterogeneity 

of AR expression in CRPC is likely related to different responses to castration and 

enzalutamide treatment, as AR+ CRPC xenografts are enzalutamide-sensitive whereas 

AR−/lo CRPC xenografts are resistant [88]. Notably, CRPC can be classified into distinct 
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entities known as ARPC (AR-expressing prostate cancer) that lacks neuroendocrine marker 

expression, amphicrine (AMPC) that expresses both AR and neuroendocrine markers, 

DNPC (double-negative prostate cancer) that does not express either AR or neuroendocrine 

markers, and NEPC (neuroendocrine prostate cancer) that is AR-negative and expresses 

neuroendocrine markers [89–93]. While the relationships of AMPC, DNPC, and NEPC to 

each other are poorly understood at present, their frequent co-occurrence in proximity to 

ARPC suggests a close lineage relationship [15]. Furthermore, although de novo NEPC is 

rare in primary prostate cancer [1], neuroendocrine differentiation is much more common 

in CRPC [10, 15, 94–96], suggesting that AR down-regulation promotes neuroendocrine 

differentiation.

Several studies have explored the origin of neuroendocrine cells in prostate development 

and cancer. In studies of normal prostate organogenesis, lineage-tracing has been used 

to conclude that neuroendocrine cells arise from basal progenitors [44] as well as from 

caudal neural crest [97], but the basis for these apparently conflicting results has not yet 

been resolved. In addition, cell culture studies have shown that human prostate basal cells 

can be reprogrammed to neuroendocrine-like cancer cells by a common set of defined 

oncogenic drivers [98, 99]. In the case of NEPC, several GEMMs with neuroendocrine 

phenotypes have been described, including those with combined loss of the Trp53, Rb1, 

and/or Pten tumor suppressors, or together with activation of N-myc. For example, Pten 
deletion together with N-Myc overexpression or with deletion of Rb1 and Trp53 in the 

Pb-Cre4;Ptenflox/flox;Rosa26LSL-MYCN and Pb-Cre4;Ptenflox/flox;Rb1flox/flox;Trp53flox/flox 

GEMMs induced prostate adenocarcinoma followed by emergence of NEPC [100–102] 

(Table 1). Notably, the NEPC phenotype in these and other GEMMs arises from prostate 

adenocarcinoma with a luminal phenotype, suggesting that tumor cell plasticity gives rise 

to neuroendocrine-like cells [51, 100–106]. Importantly, lineage-tracing studies in a GEMM 

of prostate cancer have directly demonstrated that neuroendocrine tumor cells arise by 

transdifferentiation from luminal adenocarcinoma cells [103] (Fig. 3).

6. Concluding remarks and future directions

The cell of origin and cancer stem cell models provide plausible explanations for the 

generation and maintenance of prostate cancer heterogeneity, but require much more 

investigation to establish their general validity. GEMMs for prostate cancer will remain 

central in future studies centered on these models.

With respect to the cell of origin model, the recent identification of different luminal 

populations by single-cell RNA-sequencing has raised the question of whether they 

represent distinct cell types of origin for prostate cancer. Notably, however, both distal 

as well as proximal luminal cells can give rise to prostate tumors following Pten deletion 

[36, 57], suggesting that further phenotypic and molecular analyses will be necessary to 

distinguish whether these tumors differ in aggressiveness as a consequence of their cell type 

of origin. Furthermore, new GEMMs for lineage-tracing of these luminal populations as 

well as cross-species analyses to validate their relevance for human prostate cancer will be 

essential to dissect the relevance of the cell of origin. Genetic barcoding approaches in vivo 
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[107, 108] may be particularly useful to identify stem/progenitor cells in prostate tumors, for 

example to investigate the cellular plasticity that gives rise to neuroendocrine differentiation.

Although putative cancer stem cells have been identified in GEMMs of prostate cancer, 

widely used candidate CSC markers have generated inconsistent results in differing 

experimental systems [19]. Importantly, definitive studies using direct lineage-tracing have 

not yet been performed to demonstrate that CSCs can generate both tumorigenic and non-

tumorigenic cells, and that ablation of CSCs inhibit prostate cancer progression and improve 

treatment response. Such lineage-tracing approaches have been successfully used in other 

tumor types to define CSC populations [109–111]. At the technical level, such studies might 

benefit from improved GEMMs that utilize alternative recombination systems together with 

the Cre-loxP system, such as the Dre-rox system [112, 113]. In addition, the use of organoid 

approaches may permit lineage-tracing of CSCs in human prostate cancer [114]. Such future 

studies will undoubtedly provide rigorous tests of the CSC model for generating prostate 

cancer heterogeneity and guiding prostate cancer treatment.

Finally, cellular plasticity plays a central role in regulating prostate cancer progression and 

treatment response. For example, more differentiated tumor cells might display plasticity 

in de-differentiating into CSCs to compensate for the loss of pre-existing CSCs or to 

escape drug treatment [24, 115, 116]. In the case of CRPC, neuroendocrine differentiation 

represents a major mechanism of resistance to anti-androgen treatment. Understanding 

this form of lineage plasticity will likely require the generation of more sophisticated 

GEMMs that recapitulate specific molecular subtypes of CRPC, as well as the investigation 

of regulators of prostate cancer cell plasticity. Such advances will be essential for the 

development of new therapeutic approaches to overcome lineage plasticity and castration-

resistance in prostate cancer.
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Fig. 1. 
Models of cancer heterogeneity. (A) Cell of origin model. A schematic representation of the 

lineage hierarchy within an epithelial tissue, at the top of which resides a normal stem cell 

with properties of multipotency and self-renewal. Different tumor subtypes may arise from 

oncogenic transformation of the stem cell or non–stem cells within the lineage hierarchy 

(adapted from [117]. (B) Cancer stem cell model. Upon asymmetric division, a cancer stem 

cell can give rise to itself and a transit-amplifying cell, which in turn divides and undergoes 

differentiation to generate non-tumorigenic cancer cells. (C) Cellular plasticity in the cancer 

stem model. Differentiated non-tumorigenic cancer cells can convert to other tumor cell 

types via transdifferentiation or can be reprogrammed to cancer stem cells, potentially by 

modulation from intrinsic and/or extrinsic factors such as oncogenic insults and signals from 

the tumor microenvironment.
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Fig. 2. 
Epithelial heterogeneity in the adult mouse prostate. (A) Schematic depiction of prostate 

lobes indicating the distribution of luminal epithelial populations (adapted from [33]). (B) 

Proximal-distal heterogeneity of luminal epithelial cells. Note that cells with properties of 

proximal luminal cells occur sporadically in distal regions. Lum A: distal luminal cells in 

anterior lobe; Lum D: distal luminal cells in dorsal lobe; Lum L: distal luminal cells in 

lateral lobe; Lum V: distal luminal cells in ventral lobe; PrU: periurethral; LumP: proximal 

luminal cells.
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Fig. 3. 
Cellular plasticity in prostate tumorigenesis. Following tissue damage, oncogenic insults, 

or inflammation and other factors, basal cells can undergo luminal differentiation. 

Transformed luminal cells can directly form prostate adenocarcinoma whereas basal cells 

need to undergo basal-to-luminal differentiation to generate luminal adenocarcinomas. 

During tumor progression and anti-androgen treatment, luminal adenocarcinoma cells can 

transdifferentiate to neuroendocrine-like cells. NEPC: neuroendocrine prostate cancer.
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Table 1.

Representative GEMMs used in studies of prostate cancer heterogeneity and plasticity

Type Name Description References

Basal cell 
origin and 
prostate 
cancer

CK5-CreERT2;Ptenflox/flox Conditional deletion of Pten in keratin 5 expressing basal cells. 
Basal cell-derived prostate lesions exhibited PIN and luminal 
adenocarcinoma phenotype.

[36, 38]

CK5-CreERT2; Nkx3.1+/−;Pten+/− Compound germline deletion of Pten and Nkx3.1. Keratin 5 
expressing basal cells are lineage-marked and are not favored as 
cells of origin for prostate cancer.

[73]

CK5-CreERT2; Hi-Myc c-Myc driven by ARR2PB promoter. Keratin 5 expressing basal 
cells are lineage-marked and are not favored as cells of origin for 
prostate cancer.

[73]

CK5-CreERT2; TRAMP SV40 large tumor antigen (Tag) driven by a minimal rat probasin 
promoter (rPB). Keratin 5 expressing basal cells are lineage-
marked and are not favored as cells of origin for prostate cancer.

[73]

CK14-CreERT2;Ptenflox/flox Conditional deletion of Pten in keratin 14 expressing basal cells. 
Basal cell-derived prostate lesions exhibited PIN and luminal 
adenocarcinoma phenotype.

[37]

Luminal 
cell origin 
and 
prostate 
cancer

CK8-CreERT2;Ptenflox/flox Conditional deletion of Pten in keratin 8 expressing luminal cells. 
Induction of PIN and prostatic luminal adenocarcinoma.

[36–38]

CK8-CreERT2;Nkx3.1+/−;Pten+/− Compound germline deletion of Pten and Nkx3.1. Keratin 8 
expressing luminal cells are lineage-marked and are favored as 
cells of origin for prostate cancer.

[73]

CK8-CreERT2;Hi-Myc c-Myc driven by ARR2PB promoter. Keratin 8 expressing luminal 
cells are lineage-marked and are favored as cells of origin for 
prostate cancer.

[73]

CK8 -CreERT2;TRAMP SV40 large tumor antigen (Tag) driven by a minimal rat probasin 
promoter (rPB). Keratin 8 expressing luminal cells are lineage-
marked and are favored as cells of origin for prostate cancer.

[73]

PSA-CreERT2;Nkx3.1+/−;Pten+/− Compound germline deletion of Pten and Nkx3.1. PSA expressing 
luminal cells are lineage-marked and are favored as cells of origin 
for prostate cancer.

[73]

PSA-CreERT2;Hi-Myc c-Myc driven by ARR2PB promoter. PSA expressing luminal cells 
are lineage-marked and are favored as cells of origin for prostate 
cancer.

[73]

PSA -CreERT2;TRAMP SV40 large tumor antigen (Tag) driven by a minimal rat probasin 
promoter (rPB). PSA expressing luminal cells are lineage-marked 
and are favored as cells of origin for prostate cancer.

[73]

PSA-CreERT2;Ptenflox/flox Conditional deletion of Pten in PSA expressing luminal cells. 
Induction of PIN and prostatic luminal adenocarcinoma.

[71]

Tmprss2-CreERT2;Ptenflox/flox Conditional deletion of Pten in Tmprss2 expressing luminal cells. 
Induction of PIN and prostatic luminal adenocarcinoma.

[72]

Nkx3.1-CreERT2;Ptenflox/flox Conditional deletion of Pten in distal luminal cells under 
homeostasis or Nkx3.1-marked luminal progenitor cells after 
castration. Induction of prostatic luminal adenocarcinoma in both 
conditions.

[36, 49, 51]

Bmi1-CreERT2;Ptenflox/flox Conditional deletion of Pten in Bmi1-marked luminal 
progenitor cells after castration. Induction of prostatic luminal 
adenocarcinoma.

[50]

Cancer 
stem cell 
and 
prostate 
cancer

Pb-Cre4; Pten flox/flox Conditional deletion of Pten in the prostate driven by a minimal 
probasin promoter driving Cre recombinase. Basal- and luminal-
like CSCs were isolated as Sca-1+CD49fhigh and Sca-1+CD49fmed 

cells, respectively.

[77–79]
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Type Name Description References

Probasin-PRL (Pb-PRL) Prolactin transgene driven by the short probasin promoter. 
Luminal-like CSCs were isolated as Sca-1+CD49fhigh cells.

[79]

Hi-Myc c-Myc driven by ARR2PB promoter. Luminal-like CSCs were 
isolated as Sca-1+CD49fmed cells.

[79]

Pb-Cre4; Trp53flox/flox; Ptenflox/flox Conditional deletion of Pten and p53 in the prostate driven by a 
minimal probasin promoter driving Cre recombinase. Luminal-like 
CSCs were isolated as Epcam+CD49med/loProm1+ cells.

[80]

Cellular 
plasticity 
and 
prostate 
cancer

Pb-Cre4;Ptenflox/flox;Rosa26LSL-MYCN Conditional deletion of Pten and ectopic induction of N-Myc 
expression in the prostate driven by a minimal probasin promoter 
driving Cre recombinase. Development of poorly differentiated, 
invasive prostate cancer that is molecularly similar to human 
NEPC.

[101]

Pb-Cre4;Ptenflox/flox;Rb1flox/flox;Trp53flox/flox Conditional deletion of Pten, Rb, and p53 in the prostate 
driven by a minimal probasin promoter driving Cre recombinase. 
Development of poorly differentiated, invasive prostate cancer that 
is molecularly similar to human NEPC.

[100, 102]

Nkx3.1-CreERT2;Ptenflox/flox; Trp53flox/flox Conditional deletion of Pten and p53 in distal luminal cells by 
Nkx3.1 promoter driving Cre recombinase. NEPC emerges from 
luminal adenocarcinoma in castrated mice with anti-androgen 
treatment.

[103]
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