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The dual roles of H,S as an endogenously synthesized
respiratory substrate and as a toxin raise questions as to how
it is cleared when the electron transport chain is inhibited.
Sulfide quinone oxidoreductase (SQOR) catalyzes the first
step in the mitochondrial H,S oxidation pathway, using CoQ
as an electron acceptor, and connects to the electron trans-
port chain at the level of complex III. We have discovered
that at high H,S concentrations, which are known to inhibit
complex IV, a new redox cycle is established between SQOR
and complex II, operating in reverse. Under these conditions,
the purine nucleotide cycle and the malate aspartate shuttle
furnish fumarate, which supports complex II reversal and
leads to succinate accumulation. Complex II knockdown in
colonocytes decreases the efficiency of H,S clearance while
targeted knockout of complex II in intestinal epithelial cells
significantly decreases the levels of thiosulfate, a biomarker of
H,S oxidation, to approximately one-third of the values seen
in serum and urine samples from control mice. These data
establish the physiological relevance of this newly discovered
redox circuitry between SQOR and complex II for prioritizing
H,S oxidation and reveal the quantitatively significant
contribution of intestinal epithelial cells to systemic H,S
metabolism.

The discovery of H,S as an endogenously synthesized
signaling molecule in mammals has fueled a growing litera-
ture on its physiological effects (1). Mechanistic insights into
how H,S modulates cellular responses are, however, scarce
(2, 3), and much attention has been focused on protein
persulfidation, a reactive posttranslational modification of
cysteine (4) that has been identified in hundreds of proteins
(5, 6). On the other hand, the best characterized cellular
effects of H,S are its oxidation via a dedicated mitochondrial
pathway (7) or by globins (8—10) and its inhibition of com-
plex IV (11) in the electron transport chain (ETC), leading to
respiratory poisoning (Fig. 14). The mitochondrial sulfide
oxidation pathway begins with the conversion of H,S to
glutathione persulfide catalyzed by sulfide quinone
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oxidoreductase (SQOR), an inner mitochondrial membrane
flavoprotein (12). Electrons released from H,S oxidation are
transferred to coenzyme Q (CoQ) and enter the ETC at the
level of complex III, making H,S an inorganic substrate for
oxidative phosphorylation in mammals (13). The remainder
of the pathway successively converts glutathione persulfide to
thiosulfate and, in some cells, to sulfate (14). The role in
signaling, if any, of the reactive sulfur species formed during
H,S oxidation remains to be fully elucidated (15). In this
study, we report that a noncanonical redox circuit is estab-
lished when complex IV is inhibited, via reversal of complex
IT activity to prioritize H,S oxidation.

SQOR functions as a respiratory shield, sensitizing the
ETC to H,S poisoning when its activity is attenuated (16). At
low H,S concentrations, however, SQOR activity increases
respiration as measured by the oxygen consumption rate
(OCR) (17). The dual potential to stimulate electron flux and
inhibit the ETC raises questions as to whether modulation of
mitochondrial bioenergetics by H,S is pertinent to its cellular
signaling mechanism and fans out to other compartments via
redox and metabolomic changes (2).

SQOR is one of several consumers of CoQ (Fig. 14), and
sulfide oxidation is impaired in CoQ deficiency (18). SQOR
activity has the potential to cause a reductive shift in the CoQ
pool, particularly at H,S concentrations that partially or fully
inhibit complex IV. H,S also indirectly perturbs the NAD"/
NADH and FAD/FADH, couples that are connected to CoQ/
CoQH, via the ETC. We have previously demonstrated that
H,S induces a reductive shift in the NAD*/NADH redox
couple, creating an electron acceptor insufficiency that leads
to uridine and aspartate deficiency and enhanced reductive
carboxylation (16). While uridine limitation results from the
CoQ dependence of dihydroorotate dehydrogenase in the
pyrimidine pathway (Fig. 1A), aspartate deficiency results in
part from reduced flux through the TCA cycle and the
NADH-linked malate-aspartate shuttle. Furthermore, H,S
stimulates the Warburg effect, enhancing glucose consump-
tion and lactate production (19), and stimulates lipid
biogenesis (20).

The effects of H,S on the ETC itself have received scant
attention (13, 19, 21). The observed increase in succinate and
decrease in malate at H,S concentrations that inhibit
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Figure 1. The mitochondrial NADH pool influences the efficiency of H,S oxidation in HT29 cells. A, scheme showing that multiple CoQ (Q) users
compete with SQOR including complexes | and I, dihydroorotate dehydrogenase (DHOD), glycerol 3-phosphate dehydrogenase (G3PDH), proline dehy-
drogenase (PRODH), and the electron transfer flavoprotein (ETF). B, H,S oxidation is enhanced in cells expressing mitochondrial but not cytoplasmic LONOX
versus the empty vector (EV) control. Rotenone (2 uM) enhanced H,S clearance in control and cytoplasmic but not mitochondrial expressing LbNOX cells.
G, disruption of complex | by NDUFS3 knockdown enhanced H,S oxidation. D, mitochondrial expression of TPNOX accelerates H,S oxidation, which is
inhibited by NBD-Cl. The data represent the mean =+ S.D. of three independent experiments. ns, not significant.

respiration were proposed to result from complex II reversal
(13). While the same authors later proposed that H,S induces
reverse electron transfer through complex I (17), neither
model was evaluated experimentally. A recent study on
oligomycin-treated murine microglia reported increased
OCR upon exposure to an H,S donor and interpreted this as
evidence of reverse electron transfer through complex I (22).
The known drivers of mitochondrial reverse electron trans-
fer, which leads to reactive oxygen species (ROS) generation,
are a high membrane potential and an overreduced CoQ pool
(23). Since respiratory poisons depolarize the mitochondrial
inner membrane by limiting electron-coupled proton trans-
fer (Fig. 1A), the premise for H,S-induced reverse electron
transfer is unclear. Furthermore, the study contradicted the
reported lack of H,S-induced ROS production (24).

Studies in our laboratory have focused primarily on colonic
epithelial cells (16, 19, 20) that are routinely exposed to high
concentrations of H,S from gut microbiota, estimated to range
from ~0.2 to 2.4 mM (25, 26). In this study, we report that
rewiring within the ETC circuitry via complex II reversal
prioritizes H,S oxidation under conditions of respiratory
poisoning with fumarate serving as an electron acceptor. These
results have important implications for understanding the
mechanism by which intestinal epithelial cells respond to
routine exposure to high H,S levels derived from the micro-
biota and potentially, the role of H,S in signaling a shift in
energy metabolism.

2 J Biol. Chem. (2022) 298(1) 101435

Results

SQOR catalyzes sulfide-dependent reduction of O,

We examined whether O, can serve an alternate electron
acceptor for SQOR since complex IV poisoning by H,S
should not restrict O, availability (Fig. SIA). We found that
when nanodisc-embedded SQOR (#ndSQOR) (27) was
reduced in the presence of sulfide and sulfite but in the
absence of CoQ, O, consumption was stimulated (Fig. S1B).
From the linear dependence of OCR on O, concentration, a
kon 0f 3370 + 290 M™' ™! was estimated (Fig. S1C). Oxygen (k
~ 14 min™' at 75 uM O,) is, however, a significantly less
efficient electron acceptor than CoQ (15 x 10° min™" at
75 uM CoQ) (27).

In the presence of a slight excess of sulfide (10 uM) and
sulfite (15 pM), SQOR (7.5 uM) catalyzed the consumption of
an equimolar concentration of O, (7.3 + 0.6 uM) (Fig. S1D).
This reaction stoichiometry predicted that the products of O,
reduction by SQOR could be either O,°” and FADHe or
H,0O, and FAD. The equivalence between the O, consumed
and the concentration of H,O, produced (7.6 + 0.6 pM) is
consistent with the two-electron reduction of O, by SQOR
(Fig. S1A). The concentration of H,O, was significantly
diminished (0.2 + 0.1 uM) when catalase was added to the
reaction mixture. The approximately 1:1:1 stoichiometry of
sulfide added:O, consumed:H,O, produced is consistent with
electron transfer from FADH, to O, via a C4a-hydroperoxy
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FAD intermediate (Fig. S1E), as proposed in other O,-acti-
vating flavoenzymes (28).

Complex | activity decreases the efficiency of H,S oxidation

Complex I-dependent oxidation of NADH with concomi-
tant reduction of CoQ is a major source of electron flux in the
ETC and is expected to influence the efficiency of H,S
oxidation. We have previously reported that H,S causes a
reductive shift in the NAD*/NADH ratio by inhibiting com-
plex IV (16). H,S oxidation was unaffected by the cytoplasmic,
but significantly enhanced by the mitochondrial expression of
the water forming NADH oxidase, LbNOX (29) (Fig. 1B).
Rotenone, a complex I inhibitor, increased H,S oxidation in
control and LAINOX but not mito-LbNOX cells (Fig. 1B).
Knockdown of NDUFS3 (Fig. S2), which is required for
complex [ assembly, increased H,S oxidation (Fig. 1C).
Collectively, these data demonstrate that the cellular H,S
oxidation capacity can be limited by the mitochondrial NADH
pool.

The mitochondrial NADH and NADPH pools are inter-
connected via the activity of the electrogenic nicotinamide
nucleotide transhydrogenase (NNT) located in the inner
mitochondrial membrane. Cytoplasmic expression of TPNOX,
a genetically encoded water forming NADPH oxidase (30), had
no effect on H,S oxidation, while mitochondrial expression
enhanced clearance (Fig. 1D). The NNT inhibitor NBD-Cl
(4-chloro-7-nitrobenzofurazan chloride) attenuated the mito-
TPNOX effect, further demonstrating that the capacity for
cellular H,S oxidation is linked to the status of the mito-
chondrial NAD(P)H redox pool (Fig. 1D).

Succinate accumulates in response to H,S

Metabolomics analysis after exposure to Na,S (100 uM,
1 h) revealed a number of changes in glycolytic, TCA cycle
(16), and purine metabolism intermediates in malignant
HT?29 cells (Fig. 2, A and B). Interestingly, H,S treatment led
to ~5.5-fold higher levels of succinate. To test whether suc-
cinate accumulation resulted from reversal of complex II
activity (Fig. 2C), we used dimethyl fumarate (DMF), a
membrane permeable derivative of fumarate that increases
intracellular fumarate concentration (31). DMF accelerated
H,S oxidation in four out of five colorectal carcinoma lines
but not in RKO cells (Figs. 2D and S3). The molecular basis of
the difference in response between RKO and the other cell
lines is presently unclear. Two other complex II inhibitors,
dimethyl malonate and dimethyl itaconate, also inhibited H»S
clearance, while diethyl succinate did not (Fig. S4). Knocking
down SDHA (Fig. S5), the complex II subunit that catalyzes
the reversible oxidation of succinate to fumarate, reduced
H,S clearance (Fig. 2E). DMF shortened the recovery time for
return to basal OCR following respiratory inhibition by H,S
in HT29 (Fig. 2, F-H), HCT116, LoVo, and DLD cells
(Fig. S6) but had no effect when SDHA was knocked down in
HT?29 cells (Fig. S7). Together, these data are consistent with
the model that H,S oxidation is facilitated by reversal of
complex II activity.
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The effect of complexes | and Il on H,S-dependent OCR

To further test the influence of complexes I and II on the
cellular response to H,S, OCR was monitored in control
versus NDUFS3 and SDHA knockdown cells. NDUFS3
knockdown decreased basal OCR twofold (Fig. 3), consistent
with complex I being a major entry point for electrons into
the ETC. At a low concentration of H,S (10 pM), OCR
activation in NDUFS3 knockdown cells was robust, and the
peak increase in OCR was higher than in control and SDHA
knockdown cells (Fig. S8). At a higher H,S (20 uM) con-
centration, differences between the cell lines were clearly
visible (Fig. 3, A—C). While the NDUFS3 knockdown showed
robust activation of OCR in response to H,S, the control and
SDHA knockdown cells showed signs of inhibition. The
SDHA knockdown cells also took a longer time to recover
basal OCR compared with controls. Following the first and
second 20 pM H,S injection, control and SDHA knockdown
cells showed signs of partial and severe respiratory inhibition,
respectively, in contrast to NDUFS3 knockdown cells. At a
higher H,S concentration (30 uM), control and SDHA
knockdown cells responded with net inhibition of oxygen
consumption in comparison to NDUFS3 knockdown cells,
which exhibited a mixed response (Fig. 3, D—F). These results
indicate that the CoQ pool limits sulfide clearance and, in the
absence of competition from complex I, cells clear sulfide
more efficiently. The data also reveal that complex II has the
opposite effect, i.e., it is advantageous for sulfide clearance,
consistent with our model that complex II reversal supports
H,S oxidation by catalyzing CoQH, oxidation.

Malate-aspartate shuttle and PNC furnish fumarate in H,S
treated cells

Since the malate-aspartate shuttle and the purine nucleotide
cycle (PNC) (Fig. 4, A and B) are metabolic sources of fumarate
in ischemic cells (23), we tested whether they also contribute
to fumarate when the ETC is inhibited by H,S. For this, GOT1
and GOT2 (glutamic-oxaloacetic aminotransferases 1 and 2)
expressed in the cytoplasm and mitochondrion, respectively,
were knocked down in HT29 cells (Fig. S9). GOT1 but not
GOT2 knockdown increased H,S oxidation by ~38%
compared with control cells (Fig. 4C). GOT1 knockdown also
promoted H,S clearance as reflected by the shorter recovery
time to the basal respiration rate (Fig. S10). Inhibition of
adenylosuccinate lyase with AICAR (5-aminoimidazole-4-
carboxamide ribonucleotide) decreased H,S clearance by
~50% (Fig. 4D), consistent with a role for the PNC in this
process.

SDHA knockout in murine intestinal epithelial cells decreases
H,S oxidation

To assess the physiological relevance of our observation
that H,S clearance is supported by complex II working in
reverse, we measured the impact of attenuating complex II
on organismal H,S metabolism. For this, mice harboring
loxP-flanked Sdha were crossed to mice expressing Cre
recombinase under control of the villin promoter to
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specifically target intestinal epithelial cells, to generate VilI-
Cre Sdha™ (Sdha®™€) mice as described previously (32).
The rationale for targeting intestinal epithelial cells is that
they are routinely exposed to high concentrations of H,S
(25, 26) and actively oxidize sulfide (16). Thiosulfate, a stable
product of H,S oxidation (Fig. 54), is a handy biomarker of
H,S metabolism (19). H,S, on the other hand, is difficult to
measure due to its volatility and low steady-state concen-
trations in biological samples (33). Sdha”C mice showed
significantly lower thiosulfate levels compared with control
Sdha™" (Fig. 5, B-D) revealing that the loss of complex II in
intestinal cells caused local (feces) and systemic (serum and
urine) perturbations in H,S oxidation.

4 Biol. Chem. (2022) 298(1) 101435

Discussion

In this study, we have uncovered a new mechanism for
clearing H,S when its concentrations rise to levels that inhibit
complex IV and preclude the use of O, as the terminal elec-
tron acceptor for SQOR-dependent H,S oxidation. Such
conditions might be relevant in the gut epithelium (where H,S
exposure is high) or in ischemia (where O, supply is cut off).
Reversal of complex II activity under such conditions supports
SQOR-dependent H,S oxidation, using fumarate as an alter-
nate electron acceptor and prioritizes H,S clearance.

Metabolomic changes in HT29 cells in response to H,S
provided clues to reprogramming driven changes that could
potentially impact its clearance. Hypoxanthine and succinate,
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classic ischemic biomarkers (23, 34), also accumulate in
response to H,S (Fig. 2B). Ischemic succinate accumulation is
derived from oxidative TCA cycle metabolism (35) as well as
from complex II-catalyzed reduction of fumarate (23). Fuma-
rate is derived via the malate-aspartate shuttle and the PNC
(23). Since H,S decreases the NAD"/NADH ratio and stimu-
lates reductive carboxylation of a-ketoglutarate (16), the effect
of the oxidative TCA cycle on H,S clearance was not exam-
ined. The PNC and the malate aspartate shuttle both impacted
H,S clearance (Fig. 4, C and D). The PNC is activated in
response to a drop in the adenylate energy charge (36) and is
consistent with lower ATP levels in H,S-treated cells (19) as
well as the observed increase in inosine, which is formed via
deamination of adenosine.

Knockdown of GOT1, but not GOT2, increased the effi-
ciency of H,S clearance, suggesting that the cytoplasmic arm
of the malate-aspartate shuttle is an important source of
fumarate. H,S leads to aspartate deficiency (16), potentially
stimulating GOT1-catalyzed transamination of oxaloacetate to
aspartate rather than the reverse, which is consistent with
lower malate levels in H,S-treated cells (Fig. 2B). In GOT1
knockdown cells, oxaloacetate should be more available for
malate dehydrogenase catalyzed reduction to malate, which

SASBMB

can be dehydrated to fumarate (Fig. 4A4) by fumarate hydratase
that is present in the cytoplasm and the mitochondrion (37).
Cytosolic fumarate can potentially enter the mitochondrion
via a dicarboxylate carrier (38).

Our studies support a model for efficient H,S clearance by
SQOR when the H,S concentration is low with complexes I
and II competing for the CoQ pool and complex III recycling
CoQH, (Fig. 6A4). However, when H,S concentrations rise and
inhibit complex IV, utilization of fumarate as an electron
acceptor by complex II sustains recycling of CoQH, (Fig. 6B).
Complex II catalyzes the reversible oxidation of succinate to
fumarate (39) and exhibits similar Ky; values for both sub-
strates (40, 41). Under in vitro assay conditions, the ratio of
succinate oxidation to fumarate reduction catalyzed by the
succinate dehydrogenase component of complex II varies
substantially with the electron acceptor and ranges from ~0.1
to 50 for succinate:fumarate consumed (41). Under physio-
logical conditions, flux through the forward versus reverse
reaction is governed by the concentration of the respective
substrates and by the potentials of the relevant redox couples.
In the mitochondrial matrix (pH ~ 7.7), the standard redox
potential for the fumarate/succinate couple (E' = +30 mV) is
similar to that for ubiquinone/ubiquinol (+40-60 mV at pH

J. Biol. Chem. (2022) 298(1) 101435 5
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7.0, decreasing 60 mV per increase in pH unit (42)), but higher
than of the FAD/FADH, couple (-79 mV (43, 44)). The
reversibility of complex II in cells is supported by its ability to
sustain proficient growth on fumarate as a terminal electron
acceptor when expressed under anaerobic conditions in an
Escherichia coli strain lacking fumarate reductase (45). These
data support the plausibility of complex II reversal under
conditions when the ETC is blocked, and the CoQ pool is
overreduced.

Modulation of H,S metabolism by complex I was demon-
strated by its inhibition by rotenone and by NDUFS3 knock-
down, both enhanced H,S clearance (Fig. 1, B and C), as
expected, and is consistent with their increased sulfide-
induced OCR compared with control cells (Fig. 3). On the
other hand, SDHA knockdown decreased the efficiency of H,S
clearance while DMF increased it (Figs. 2 and S3). Under
conditions of complete coupling, for every mole of sulfide
oxidized by SQOR, ETHE1 and complex IV are predicted to
consume 1 and 0.5 mol of O,, respectively. ETHE1L is a
mononuclear iron-dependent persulfide dioxygenase, which
catalyzes the conversion of glutathione persulfide to sulfite (46,
47). SDHA knockdown cells exhibited increased sensitivity to
H,S-induced inhibition of OCR and took longer to recover,
while DMF reduced the time to recovery of the basal OCR
(Figs. 2 and 3). Collectively, these results support our model of
complex II-dependent recycling of CoQH, (Fig. 6B). It is
important to note, however, that interfering with complex 1II
reduces but does not completely block H,S consumption.
Thus, other mechanisms including SQOR-dependent reduc-
tion of O, (Fig. S1) might contribute to H,S removal.

The significant decrease in thiosulfate upon silencing SDHA
in murine intestinal epithelial cells (Fig. 5) is notable for three
reasons. It supports the physiological relevance of reverse

6 . Biol. Chem. (2022) 298(1) 101435

complex II activity for H,S oxidation as loss of the canonical
succinate oxidation activity would be expected to stimulate
SQOR-dependent H,S oxidation by decreasing competition
for the CoQ pool. Second, the observed change in thiosulfate
levels in Sdha*™®“ mice reflects the quantitatively significant
impact of complex II activity in intestinal epithelial cells on
systemic sulfide metabolism. Third, changes in urine and
serum thiosulfate in Sdha”’"" mice reveal the systemic impact
of altered H,S metabolism at the host-microbe interface,
which warrants further study.

We speculate that H,S-fueled succinate accumulation could
have downstream metabolic effects. Succinate is a competitive
inhibitor of a-ketoglutarate-dependent dioxygenases and its
accumulation could broadly impact histone and DNA meth-
ylations (48). Furthermore, succinylation, a posttranslational
modification of proteins (49), could be enhanced by H,S-
driven succinate accumulation. Over 750 protein targets of
succinylation have been identified, which are concentrated in
mitochondria but also present in other compartments (50) and
reversed by the NAD"-dependent sirtuin, Sirt5 (51). Succiny-
lation reportedly increases complex II activity (50). We spec-
ulate that succinylation could be enhanced by the opposing
effects of H,S on the succinate and NAD" pools, in an auto-
corrective loop for activating complex II and prioritizing its
removal.

In summary, our study reveals that metabolic reprogram-
ming leads to the establishment of a new redox cycle between
SQOR and complex II, permitting sustained H,S clearance. In
addition to its relevance at the gut host—microbe interface, this
circuitry could be important in the context of ischemia
reperfusion injury. H,S is cytoprotective when administered at
the time of reperfusion, reducing infarct size, inhibiting
myocardial inflammation, and preserving mitochondrial
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Figure 5. Villin©*SDHA™ mice have reduced thiosulfate levels. A, scheme connecting H,S oxidation to thiosulfate production. B-D, quantitation of
thiosulfate levels in control (Sdha™™) and Villin“¢Sdha™® knockout mice in serum (B), urine (C), and feces (D). The data represent the mean + S.D. for samples

collected from four mice in each group.

integrity (52). The rapid reoxidation of succinate, which ac-
cumulates in the ischemic phase, drives ROS production
during reperfusion (23). We posit that the cytoprotective ef-
fects of H,S could derive from its twin effects on complex IV
inhibition and complex II reversal, thereby attenuating
succinate-dependent ROS generation during reperfusion.
Another cellular context in which H,S-mediated ETC rewiring
might be relevant is during the transition from a quiescent to
proliferative state. While quiescent cells primarily rely on the
high energy yield of oxidative phosphorylation, proliferating

A SQOR SQOR
H,S % o
FADH, #® GssH
NADH FAD
NAD*
B Suc Fum
| CoQH;z e f v
SQOR <
oHQS
H,S O
FAD ®  GSSH
NADH FADH,
NAD*
Fum Suc

Figure 6. Alternate redox cycles for disposing H,S. A and B, CoQH,
formed during H,S oxidation and by complexes | and Il enters the ETC at the
level of complex Ill (A). When complex IV is inhibited by H,S, blocking
recycling of CoQH, by complex Ill, CoQH, can be oxidized by complex II,
concomitant with fumarate reduction and succinate accumulation (B).
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cells increase aerobic glycolysis to meet their energy needs and
redirect mitochondrial metabolism for macromolecular pre-
cursor synthesis (53). The potential for H,S to function as an
endogenous modulator of energy metabolism could be sig-
nificant in this context and needs to be further understood.

Conclusions

Colonocytes are routinely exposed to H,S derived from
microbial metabolism and are adapted to remove high con-
centrations of this toxic gas via a mitochondrial sulfide
oxidation pathway that links to the electron transport chain.
We have discovered that cells prioritize the removal of H,S
when its levels are high enough to inhibit respiration, by uti-
lizing fumarate as an alternate electron acceptor. Specifically, a
new redox circuitry is established between SQOR, which re-
duces CoQ as it oxidizes H,S, and complex II, working in
reverse to regenerate CoQ as it reduces fumarate. Mice with
targeted deletion of complex II in intestinal epithelial cells
exhibit systemic reduction in H,S oxidation, establishing
physiological relevance of this redox circuitry and revealing a
quantitatively significant contribution of colonocytes to whole-
body sulfide homeostasis.

Experimental procedures
Materials

Sodium sulfide nonahydrate (431648), sodium sulfite
(50505), sodium selenite (55261), CoQ (C7956), dimethyl
malonate (63380), dimethyl itaconate (592498), diethyl succi-
nate (8.00680), rotenone (R8775), dimethyl fumarate (242926),
4-chloro-7-nitrobenzofuran (163260), doxycycline (D3447),
puromycin (P8833), protease inhibitor cocktail for mammalian
tissue extract (P8340), RIPA lysis buffer (R0278), and apo-
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transferrin (T1147) were from Sigma. RPMI 1640 (11875-093),
DMEM (11995-065), FBS (10437-028), trypsin-EDTA (25300-
054), penicillin-streptomycin (15140-122), geneticin (10131-
035), M199 (11150-059), epidermal growth factor (PHG0311),
PBS (10010-023), DPBS (14040-133), and insulin (12585014)
were from Gibco. Anti-Flag (20543-1-AP), anti-NDUFS3
(15066-1AP), anti-SDHA (14865-1AP), anti-GOT1 (14886-
1AP), and anti-GOT2 (14800-1AP) antibodies were from
Proteintech, and the secondary anti-rabbit horseradish
peroxidase-linked IgG antibody (NA944V) was from GE
Healthcare.

Assays for ndSQOR-catalyzed O, consumption and H,0,
production

Human SQOR was purified and embedded in nanodiscs as
described previously (27). O, consumption by FADH, in
ndSQOR was monitored using an O2k respirometer (Oro-
boros Instruments), equipped with two polarographic O,-
sensing electrodes housed in separate 2 ml chambers. Each
chamber was filled with 100 mM potassium phosphate, pH 7.4,
and sulfide (100 uM) and sulfite (200 uM) were added before
sealing the chambers and pre-incubating for ~5 min at 25 °C.
The reaction was initiated by injecting #dSQOR (100 nM) and
monitored over a period of ~10 min. Initial O, concentrations
were varied by aerating N,-purged buffer in the chambers
before sealing when the desired O, concentration was reached.
H,0, production was assayed using the Pierce Quantitative
Peroxide Assay Kit (Thermo Fisher) according to the manu-
facturer’s protocol.

Cell culture

HT29 cells were maintained in RPMI 1640 medium. HCT116,
LoVo, DLD, and RKO were maintained in DMEM medium.
Both RPMI and DMEM media were supplemented with 10%
FBS, 100 units/ml penicillin, and 100 pg/ml streptomycin.
HCEC cells were cultured as described previously (16). All cells
were maintained at 37 °C with ambient O, and 5% CO, except
HCEC, which were maintained at 2% O, and 5% CO,.

Ectopic expression of LBLNOX and TPNOX

LHNOX and mito-LOINOX and pINDUCER empty vector
were obtained from Addgene. The pLVX-TRE3G empty vec-
tor, TPNOX, mito-TPNOX, and pLVX TET ON were a
generous gift from Dr. Valentin Cracan (Scintillon Institute).
The construction of HT29 cell lines stably expressing LHNOX,
mito-LAINOX, TPNOX, and mito-TPNOX has been described
previously (19, 20). Before the start of an experiment, these
cells were incubated for 24 h with 300 ng/ml doxycycline to
induce LbNOX expression. The cells were routinely cultured
in RPMI 1640 medium supplemented with 10% FBS, 100
units/ml penicillin, 100 pg/ml streptomycin and 300 pg/ml
geneticin, and 1 pg/ml puromycin.

Generation of shRNA-mediated knockdown cells

NDUEFS3 and SDHA were targeted for knockdown using
shRNA purchased from MISSION shRNA Library, Sigma. The
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clone IDs for NDUFS3 were NM_004551.1-320s21cl and
NM_004551.1-628s21cl. The clone IDs for SDHA were
NM_004168.1-619s1cl1 and NM_004168.1-1643s1cl. The
doxycycline-inducible GOT1 and GOT?2 lentiviral constructs
were subcloned into the iDox-pLKO vector as described pre-
viously (54, 55). Plasmids containing shRNA against specific
genes or a scrambled sequence were submitted to the Vector
Core (University of Michigan) for lentiviral packaging. For
lentiviral infection, 7.5 x 10* HT29 cells were seeded in a six-
well plate containing 2 ml per well of RPMI 1640 medium
supplemented with 10% FBS, 100 units/ml penicillin, and
100 pg/ml streptomycin. The transduction and selection pro-
tocols were the same as described for LANOX (19), and cells
were selected with 1 pg/ml puromycin.

Western blotting

TPNOX expression in HT29 cells was monitored by
growing cells in a six-well plate for 24 h in RPMI 1640 medium
as described above followed by a 24 h incubation with 300 ng/
ml doxycycline. Then, the cells were washed with PBS twice
before addition of 250 pl of RIPA lysis buffer containing 10 pl/
ml protease inhibitor cocktail for mammalian tissue extracts
and collected by scraping. Cells were frozen and thawed three
times and centrifuged at 12,000¢ for 5 min. The protein con-
centration in the supernatant was measured using Bradford
reagent (Bio-Rad). Protein lysates were similarly prepared from
cells in which NDUES3, SDHA, and GOT1/2 were knocked
down. Following separation by 10% SDS PAGE, proteins were
transferred to a PVDF membrane and incubated overnight at 4
°C with primary anti-Flag antibody at a dilution of 1:1000 for
TPNOX. Antibodies against NDUFS3, anti-SDHA, GOT1, and
GOT2 (14800-1AP) were used at a dilution of 1:2000.
Horseradish-peroxidase-linked anti-rabbit IgG was used at a
dilution of 1:10,000. Membranes were developed and visual-
ized using the KwikQuant Digital-ECL substrate and imaging
system.

Cellular H>S consumption assay

Cells were grown to ~90% confluency in 10 cm plates and
on the day of experiment, washed with PBS and treated with
0.05% trypsin-EDTA (for ~10 min at 37 °C). Then, cells were
resuspended in 10 ml complete media and centrifuged for
5 min at 4 °C, 1700g. The cell pellet was resuspended in 1 ml
modified DPBS (supplemented with 20 mM HEPES, pH 7.4,
and 5 mM glucose) in a preweighed Eppendorf tube and
centrifuged for 5 min at 4 °C, 1700g. The supernatant was
discarded, and the pellet weight was determined. Cells were
suspended in modified DPBS to make a 5% cell suspension (w/
v) in a 1 ml Eppendorf tube. When the effects of dimethyl
malonate (DMM,10 mM) or dimethyl itaconate (DM],
0.25 mM) were tested, cells were preincubated for 3 h with
each reagent before making a 5% cell suspension in which the
same concentrations of DMM and DMI were included fol-
lowed by addition of 100 uM Na,S. Alternatively, when
dimethyl fumarate (DMF, 100 uM) and diethyl succinate (DES,
5 mM) were tested, these reagents were added to a 5% cell
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suspension in modified DPBS for 5 min prior to addition of
100 uM Na,S. The suspension cultures were incubated at 37
°C with shaking (75 rpm). Samples (45 pl) were collected at
time 0 and 10 min, mixed with 1 M Tris base (2.5 pl), and
stored in dry ice. Control samples containing 10 mM DMM,
0.25 mM DMI, 100 uM DMF, or 5 mM DES and 100 uM Na,S
in modified DPBS were incubated in parallel, and the con-
centration of H,S lost from these samples was subtracted from
the values obtained from the cell suspension samples con-
taining the same reagents.

Monobromobimane derivatization of sulfide and HPLC
analysis

The samples from the H,S consumption assay described
above were thawed and mixed with 2.5 pl of 60 mM mono-
bromobimane (in DMSO) and incubated in the dark at room
temperature for 10 min followed by addition of 100 pl of
metaphosphoric acid solution (16.8 mg/ml). The samples were
vortexed and centrifuged for 5 min at 4 °C and 10,000g. The
supernatant was collected in the dark and stored at -20 °C
until further use. The samples were analyzed using a Zorbax
Eclipse XDB-C18 column (5 pm, 4.6 x 150 mm, Agilent) as
described previously (8). Peaks were detected using excitation
at 390 nm and fluorescence emission at 490 nm. A calibration
curve with known concentrations of sodium sulfide was used
to determine the concentration of H,S in samples.

Metabolomics analysis

Metabolomics analysis on HT29 cells treated +100 uM Na,S
for 1 h was performed as described previously (16).

OCR measurements

Oxygen consumption was measured using the O2k respi-
rometer. Cells were grown to ~90% confluency in 10 cm plates
and on the day of experiment, washed with PBS, and then
trypsinized with 1.5 ml of 0.05% trypsin-EDTA for ~10 min at
37 °C. Then, the cells were resuspended in 10 ml of complete
medium and centrifuged for 5 min at 1700g, 4 °C. The cell
pellet was resuspended in 1 ml of modified DPBS in a pre-
weighed Eppendorf tube, the suspension was centrifuged for
5 min at 1700g, and the weight of the pellet was recorded. The
cells were suspended in modified DPBS to make a 5% cell
suspension (w/v), which was stored on ice. At the start of the
experiment, the cell suspension was diluted to 1% or 1.5% (for
NDUFS3 knockdowns which showed lower basal OCR). The
cell suspension was placed in the respirometer chamber and
the OCR was allowed to stabilize over ~15 to 20 min at 37 °C
with constant stirring at 750 rpm. Na,S (from a freshly pre-
pared 10 mM stock solution in water) was injected into the
sample to give the desired final concentration (10-30 uM) per
injection.

Mice
B6.Cg-Tg(Vil-cre)1000Gum/J] mice were purchased from the

Jackson Laboratory. C57BL/6N-Sdha""?*®OMPIWisi mice were
obtained from the Knock Out Mouse Project (KOMP)
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repository, University of California, Davis and bred to
ACTFLPe mice to excise the FRT-flanked region. The resulting
Sdha™" mice were bred to Vill-Cre mice to create Vill-Cre
Sdhd™" (Sdha®"€) mice (32). Then, 12 to 15 week-old mice
were used in our experiments. The mice were maintained
under specific pathogen-free conditions following procedures
approved by the University of Michigan Committee on the Use
and Care of Animals, which are based on the University of
Michigan Laboratory Animal Medicine guidelines.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.
Two-tailed tests were used for all t-tests. Errors on measure-
ments are represented as standard deviation.

Data availability

All data are contained within the manuscript and in the
supplemental section.
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