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Abstract

Avian orthoavulavirus 1 (AOaV-1) causes Newcastle disease, one of the most important and 

contagious infections in poultry, where migratory birds can play a key role as a reservoir. Seven 

hundred and seven serum samples were collected from five penguin species (King, Magellanic, 

Gentoo, Chinstrap and Adelie penguins) in the Antarctic and Sub-Antarctic zones. Using a 

competitive ELISA to detect antibodies against AOaV-1, we identified positive individuals in 

all penguin species. The Magellanic penguin showed the highest seropositivity rate (30.3%), 
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suggesting it could be a natural reservoir of this virus. At the Antarctic zones, Chinstrap 

penguin showed the highest occurrence (7.5%). Interesting, positive sera was only obtained in 

Sub-Antarctic and Northern zones at the Antarctic peninsula, no seroreactivity was observed in 

Southern locations. Further studies are needed to establish the role of these penguin species in the 

epidemiology of the AOaV-1 and determine the effects of this virus in these populations.
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1 | INTRODUCTION

Avian orthoavulavirus 1 (AOaV-1), formerly known as Avian avulavirus 1 (AAvV-1), avian 
paramyxovirus 1 (APMV-1) and Newcastle disease virus (NDV), belongs to the family 

Paramyxoviridae, subfamily Avulavirinae, genus Orthoavulavirus (International Committee 

on Taxonomy of Viruses (ICTV), 2019). AOaV-1 causes Newcastle disease, one of the most 

important and contagious infections in poultry, which negatively affects production and trade 

(Paramyxoviridae & Pneumoviridae, 2017). Wild birds, including aquatic/migratory birds, 

may act as natural reservoir hosts of AOaV-1 and may play a remarkable role in the spread 

of the virus in the environment (Rahman et al., 2018).

Although there are studies that have evaluated the presence of avian paramyxoviruses 

in penguins, only a few reports have confirmed the presence of AOaV-1 in this species 

(Table S1). To date, there is evidence of AOaV-1 infecting Adélie (Pygoscelis adeliae) 

and Magellanic (Spheniscus magellanicus) penguins (Thomazelli et al., 2010; Uhart et 

al., 2020), but little or no information is available in other penguin species, such as 

King (Aptenodytes patagonicus), Gentoo (Pygoscelis papua) and Chinstrap (Pygoscelis 
antarcticus) penguins. Viral-pathogens surveillance in wildlife enables the determination of 

virus reference values, detection of potential reservoir hosts, and prevention of epidemics 

in wildlife and domestic animals. Accordingly, we sought to determine the occurrence and 

circulation of AOaV-1 in penguins from the Antarctic and sub-Antarctic regions.

2 | MATERIALS AND METHODS

A total of 707 blood samples were obtained from five penguin species, which were collected 

from 14 locations in the Antarctic Peninsula (Antarctic region) and two locations in the 

continental area of the Magallanes region, Chile (sub-Antarctic region) (Table S1). A total 

of 636 samples were obtained from Chinstrap (n = 292), Gentoo (n = 263) and Adelie (n 
= 81) penguins in Antarctica during Chilean Antarctic Scientific Expeditions in 2017 (n 
= 92), 2018 (n = 248) and 2019 (n = 296), organized by the Chilean Antarctic Institute 

(INACH). The sampling locations were distributed in three Antarctic regions: Northwest, 

Midwest and Southwest of the Antarctic Peninsula. The Northwest region (Northwest 

Peninsula and South Shetland Islands) included eight sampling locations: Ardley Island, 

Harmony Point on Nelson Island, Barrientos Island, Cape Shirreff on Livingston Island, 

Hannah Point on Livingston Island, Lions Rump on King George Island, Low Island, and 

Bernardo O’Higgins General Base on the Antarctic Peninsula. The Midwest region included 
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three sampling locations: Biscoe Point on Anvers Island, President Gabriel González Videla 

Base on Paradise Bay, and Yelcho Base on Doumer Island. The Southwest region included 

three sampling locations: Avian Island, Lagotellerie Island and Emperor Island (Table 1; 

Figure 1a). The remaining samples were obtained from King penguins (n = 38) at Bahía 

Inútil, Tierra del Fuego, between 2014 and 2018, and from Magellanic penguins (n = 33) on 

Magdalena Island, Strait of Magellan in 2011 (Table 2; Figure 1b).

Blood samples were obtained by venipuncture in the common plantar digital vein. To 

achieve this, the penguins were caught with a net, the eyes covered with a black 

cloth, and gently restrained in a prone position to expose the feet. The samples were 

centrifuged for 10 min at 800 g and the resulting sera were stored at −20°C until use. 

Antibodies against AOaV-1 nucleoprotein were detected using a multispecies competitive 

ELISA commercial kit (ID Screen® Newcastle Disease Competition, IDVet), following 

manufacturer’s recommendations. ELISA results were expressed as percent inhibition values 

(PI), according to manufacturer’s instructions, where a PI greater than 40 was considered 

positive, between 30 and 40 suspect and lower than 30 negative. Suspect samples were 

considered as negative in the seropositivity calculation. According to a Shapiro–Wilk test, 

the data do not follow a normal distribution. Overall results of PI (antibody levels) were 

compared by species and location using a Kruskal–Wallis test followed by Conover’s 

multiple comparisons test. To determine differences between year of collection for each 

location, Kruskal–Wallis or Mann–Whitney U test were performed. In addition, chi-square 

and Fisher’s exact test were performed to determine the association between region and 

species, with the purpose of collinearity, confounding factor checking and logistic regression 

model building approach. Subsequently, a simple logistic regression analysis was performed 

to assess for the effect of the specie as potential risk factors to NDV positivity (Dohoo et al., 

2010). Goodness-of-fit was assessed using the Hosmer and Lemeshow Test (Hosmer et al., 

2013). Statistically significant differences were set at p-value < .05. The statistical analyses 

were performed using R version 4.0.2 (R Core Team, 2020) and GraphPad Prism version 

8.0.0 for Mac, GraphPad Software. Finally, the specificity of this kit was evaluated using 

positive antisera against novel Avian orthoavulaviruses (AOaV-17, AOaV-18, and AOaV-19), 

which have been widely detected previously in Chinstrap, Gentoo, and Adelie penguins 

from the Antarctic Peninsula, demonstrating the no cross-reactivity with them (Neira et al., 

2017; Olivares et al., 2019; Wille et al., 2019).

3 | RESULTS AND DISCUSSION

Forty-five out of 707 samples (6.4%) were positive for antibodies against AOaV-1; 34 out of 

636 (5.3%) from Antarctic locations and 11 out of 71 (15.5%) from sub-Antarctic locations 

(Figure 2a). All penguin species reported at least one positive sample (Figure 2b). In the 

Antarctic region, 22 out of 292 (7.5%) Chinstrap penguins were seropositive to AOaV-1, 

whereas 11 out of 263 (4.2%) Gentoo penguin and 1 out of 81 (1.2%) Adelie penguin 

showed positive serology. Of the 8 locations sampled, we found positive Chinstrap penguins 

at 6 locations, Gentoo penguins at 5 locations and only one location with one positive Adelie 

penguin (Table 1). In the sub-Antarctic region, 10 out of 33 (30.3%) samples were positive 

in Magellanic penguins from Magdalena Island and 1 sample out of 38 (2.6%) was positive 

in a King penguin from Bahía Inútil (Table 2).
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Among Antarctic and sub-Antarctic regions, the Magellanic penguin and, therefore, 

Magdalena Island, had the highest antibody levels of all the species (H = 109.17, df = 4, p < 

.05, ε2 = 0.155) (Figure 2). In the Antarctic Peninsula, positive samples were only detected 

in the Northwest region, where the highest antibody levels were found in Low Island. 

However, there were no significant differences with other locations except for Barrientos 

Island and Hannah Point, which had the lowest antibody levels (p < .05) according to the 

multiple comparison test as shown in Figure 2a. The AOaV-17, AOaV-18 and AOaV-19 

antisera were negative for the AOaV-1-ELISA; thus, there was no cross-reactivity between 

these viruses. Despite the low or nor detection of AOaV-1 antibodies, statistically significant 

differences were observed between years of sampling in Bernardo O’Higgins General Base 

(2018–2019, p < .05), Yelcho Base (2017–2018–2019; p < .05) and Avian Island (2017–

2018; p < .05). The chi-square and Fisher’s exact tests confirmed the association between 

region and specie (p-value < .001), indicating that simple logistic regression should be 

performed, avoiding collinearity and the effect of potential confounding factors. The logistic 

regression evidence that S. magellanicus present a higher risk of positivity to NDV when 

compared to A. patagonicus (OR = 16.087; 95% CI = 1.930–134.087; p-value = .010); 

however, the other species sampled in this study did not show a significant difference (p 
> .05) (Table S3). Goodness-of-fit show a good adjustment between data and the model 

(p-value = .345).

These results show evidence of AOaV-1 infection in different penguin species from 

Antarctic and sub-Antarctic zones. We highlight this is the first report of AOaV-1 in the 

continental area of the Magallanes region of Chile and the first report that shows evidence 

of AOaV-1 infection in King penguins. A previous study, based on hemagglutination 

inhibition (HI) assay, screened AOaV-1 in King penguins but they did not detect antibodies 

against this virus (Gauthier-Clerc et al., 2002). In addition, this study suggests that this 

virus might circulate in Magellanic, Adelie, Chinstrap and Gentoo penguins in nature. A 

previous serologic study of Adelie, Chinstrap and Gentoo penguins from King George 

Island, Antarctica, by HI against AOaV-1, using an NDV B1 strain, a Class II NDV vaccine 

strain, reported an overall positivity of 33.3%. However, this study does not specify which 

species were positive, nor the seropositivity rate by species (Thomazelli et al., 2010) and 

also HI reports cross-reactivity as a limitation (Nayak et al., 2012).

Penguin species, including Antarctic penguins, have been described as potential reservoirs 

for several avian orthoavulaviruses, which could have the potential to infect other avian 

hosts (Wille et al., 2019). Given the high seropositivity (30.3%) to AOaV-1 seen in 

Magellanic penguins, we speculate that this species could be a natural reservoir for this 

virus. This is supported by a recent report from Argentina, where breeding colonies of 

this penguin species distributed along the entire coast were positive to AOaV-1, with a 

seroprevalence of 44% (Uhart et al., 2020). Furthermore, unlike the other sampled penguin 

species in this study, Magellanic penguin nest on the coasts and islands of southern 

Argentina and Chile, and migrate north in winter, reaching the coasts of Uruguay and 

southeastern Brazil (Yamamoto et al., 2019). Additionally, for at least three decades, over 

25 rehabilitation centres have received and kept in captivity Magellanic penguins, until 

recovery, releasing them back into the wild (García-Borboroglu et al., 2006). It has been 

previously suggested that AOaV-1 may spillover from poultry into the environment (Garcia 
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et al., 2013). Thus, the extended geographical movement of this species in South America 

and closer contact with people might result in their exposure to other animal pathogens. 

The high seroprevalence in this species may be of concern for potential outbreaks that could 

affect this or other avian species and highlights the need for further long-term surveillance in 

the region.

AOaV-1-positive penguins were detected in all sampled locations form the Northwest region 

of the Antarctic Peninsula, suggesting that at least at some point this virus circulated 

widely in this area. Thomazelli et al. (2010) also reported AOaV-1-positive penguins in 

this region (King George Island) (Thomazelli et al., 2010). Noteworthy, in our study no 

positive samples were detected in the Midwest and Southwest zones of the Peninsula. This 

might be a relevant finding due to the proximity of the Northwest zone of the Peninsula to 

South America and the possibility of migratory birds reaching this zone during the Southern 

Hemisphere summer. For example, South Polar Skuas (Stercorarius maccormicki), which 

have been found seropositive for AOaV-1 (Miller et al., 2008), migrate to the northern 

hemisphere and back in different times of the year. In fact, Yogui and Sericano (2009) 

suggest that skuas breeding at King George Island may winter in the northwestern Pacific 

Ocean (Yogui & Sericano, 2009). It would be important to confirm this hypothesis and 

determine the potential long-distance birds that might serve as carriers and introduce this 

virus to Antarctica or vice versa. Alternatively, penguins nesting in sub-Antarctic zones 

have been seen in Antarctica and vice versa, allowing the transmission of AOaV-1 from and 

to this region. For instance, King penguins have been seen in the north of the Antarctic 

Peninsula (Gryz et al., 2018; Juáres et al., 2017; Schiavini et al., 2005); as well as colonies 

of Gentoo penguins have been found on the south coast of Argentina (Schiavini et al., 2005). 

Finally, some species included in our study breed in mixed-species colonies or in proximity 

to other penguin species or other seabirds, which could facilitate the spread of the virus.

In general, serology has the advantage of showing the historical record of exposure to 

certain pathogens, so it is not necessary to detect animals during infection and shedding, 

which can be limited to a few days. This is especially important when asymptomatic 

or difficult to detect infections occurs, such as in penguins. Although the dynamics of 

AOaV-1 infection in penguins remain unknown, in poultry, the virus can be shed for up 

to 4 weeks, while antibodies can be detected within 6– 10 days of infection and persist 

for over a year (Paramyxoviridae & Pneumoviridae, 2017). The commercial ELISA kit 

used in this study is able to detect anti-AOaV-1 nucleoprotein antibodies in domestic and 

wild avian species. According to the manufacturer, this is a validated commercial with 

high sensitivity and specificity, earlier detection of seroconversion (7 dpi), detection of all 

AOaV-1 strains, and no cross-reactions with AOaV-3, which produces almost all the false 

positives in immunodiagnostic tests (Nayak et al., 2012; Rauw et al., 2020). Alternatively, 

we determine no cross-reactions with AOaV-17, AOaV-18, and AOaV-19, which have been 

widely detected in penguins from the Antarctic Peninsula (Neira et al., 2017; Olivares et al., 

2019; Wille et al., 2019). However, the ELISA has some limitations, such as that it is not 

able to distinguish lineages and differentiate between Class I and Class II AOaV-1 strains. 

Therefore, we are not able to infer the potential virulence of the AOaV-1 strains that are 

infecting these penguin populations, which could have been achieved by an HI assay, using a 

specific AOaV-1 strain.
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Another limitation is that the commercial ELISA kit has been not previously tested in 

penguins. However, the manufacturer recommended this kit for both, domestic and wildlife. 

The cut-off value for commercial ELISA kits may be optimized between species. Shriner 

et al. (2016), demonstrated different cut-off values in an ELISA Influenza kit for mallard 

ducks, using experimentally inoculated animals (Shriner et al., 2016). Additional studies 

aimed at viral isolation and sequencing are necessary to understand viral ecology and fully 

characterize the AOaV-1 strains circulating in Antarctic and sub-Antarctic penguins.

In conclusion, different penguin species and populations have been infected with AOaV-1. 

Further studies are necessary to determine the role of these penguin species in the ecology of 

the AOaV-1, as well as the pathogenic potential of this virus in these animal populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Map of sampling sites on the Antarctic Peninsula (a) and continental area of the Magallanes 

region (b). Sampling locations are shown in coloured dots, with green dots representing 

NDV positive sites and in red the negative. Seropositivity pie charts are shown for each 

location using the same colour code, and their size is proportional to the sample number
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FIGURE 2. 
Identification of NDV seropositive positive penguins from Sub-Antarctic and Antarctic 

zones. Scatter plot of mean percent inhibition values (PI) with 95% CI, indicating antibody 

levels of penguin samples by location (a) and by of 30% and 40% (PI value ≥40: positive; 

30–40: suspect; <30: negative). Green circles indicate samples taken in the continental area 

of the Magallanes region (sub-Antarctic locations); blue circles for samples collected from 

the Northwest Antartic region; red from Midwest; and brown for Southwest. Different letters 

above the columns indicate statistical difference (p < .05) [Colour figure can be viewed at 

wileyonlinelibrary.com]
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