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Abstract 

Background:  Chromatin state provides a clear decipherable blueprint for maintenance of transcriptional patterns, 
exemplifying a mitotically stable form of cellular programming in dividing cells. In this regard, genomic studies of 
chromatin states within cancerous tissues have the potential to uncover novel aspects of tumor biology and unique 
mechanisms associated with disease phenotypes and outcomes. The degree to which chromatin state differences 
occur in accordance with breast cancer features has not been established.

Methods:  We applied a series of unsupervised computational methods to identify chromatin and molecular differ-
ences associated with discrete physiologies across human breast cancer tumors.

Results:  Chromatin patterns alone are capable of stratifying tumors in association with cancer subtype and disease 
progression. Major differences occur at DNA motifs for the transcription factor FOXA1, in hormone receptor-positive 
tumors, and motifs for SOX9 in Basal-like tumors. We find that one potential driver of this effect, the histone chap-
erone ANP32E, is inversely correlated with tumor progression and relaxation of chromatin at FOXA1 binding sites. 
Tumors with high levels of ANP32E exhibit an immune response and proliferative gene expression signature, whereas 
tumors with low ANP32E levels appear programmed for differentiation.

Conclusions:  Our results indicate that ANP32E may function through chromatin state regulation to control breast 
cancer differentiation and tumor plasticity. This study sets a precedent for future computational studies of chromatin 
changes in carcinogenesis.
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Background
Cellular programming is controlled by epigenetic modi-
fications, transcription factor binding, and DNA pack-
aging within the nucleus. These mechanisms regulate 
how gene transcription machinery gains access to DNA 
at transcription start sites and cis-regulatory enhanc-
ers, ultimately controlling cellular programming through 

regulation of gene expression. Regions with more acces-
sible chromatin tend to be more highly transcribed, and 
inaccessible regions are typically silent [1]. Overall, chro-
matin accessibility is generally stable in terminally differ-
entiated cells, along with steady gene expression profiles, 
and the majority of chromatin state dynamics occur 
either during embryonic development or as a conse-
quence of disease progression, including during carcino-
genesis [1–3]. Breast cancer is among the most frequent 
and well-studied forms of cancer worldwide, but chroma-
tin state specific differences among breast cancers have 
not been established.
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Breast cancer represents the most diagnosed cancer 
in women [4] with an estimated 2.1 million newly diag-
nosed cases globally in 2018 [5]. Measurements of chro-
matin states have the potential to provide new insights 
into breast cancer mechanism and may ultimately lead to 
innovative therapy strategies. For example, a recent study 
of 410 tumors from The Cancer Genome Atlas (TCGA) 
used chromatin accessibility measurements to identify 
more than 500,000 putative gene regulatory elements, 
including thousands of genomic locations where acces-
sibility differences occurred in a disease-specific and 
tissue-specific manner [2]. Separate studies of myeloma 
have also found that accessibility levels at gene-distal 
enhancer regions enable accurate prediction of nearby 
oncogene expression levels, as well as cancer subtype 
classification [6]. Similar breast cancer focused stud-
ies are lacking and have the potential to identify parallel 
associations.

Changes in transcription factor activity occur during 
breast carcinogenesis in a manner associated with dis-
crete cancer outcomes. Increased transcription factor 
binding generally leads to increased expression of neigh-
boring genes [1–3], and many factors that are normally 
active during development become reactivated in breast 
cancer to influence tumorigenic behavior. For exam-
ple, SOX9 and FOXC1 are important for developmental 
regulation of transcription in multipotent neural crest 
stem cells [7, 8], and they become reactivated in breast 
cancer to co-regulate Basal-like cancer initiation and 
proliferation [9]. FOXA1, which is normally active in 
hematopoietic progenitor cells, acts coordinately with 
ER to suppress Basal-like programming and reinforce the 
luminal phenotype [10, 11]. Furthermore, hyperactiv-
ity of FOXA1 promotes pro-metastatic transcriptional 
programs in endocrine-resistant tumors [12, 13]. These 
transcription factors are able to bind DNA most effec-
tively at accessible chromatin locations, and most factors 
are non-functional at inaccessible binding sites [1]. Thus, 
assessing chromatin accessibility in breast cancer tumors 
at specific transcription factor binding sites could be 
highly informative for studying the molecular function of 
numerous factors during carcinogenesis.

We recently defined the histone chaperone protein 
ANP32E as a genome-wide regulator of chromatin 
accessibility in mouse fibroblasts [14]. ANP32E func-
tions to modulate the installation/removal of H2A.Z 
from chromatin, regulating chromatin remodeler activ-
ity and limiting chromatin accessibility. We found that 
loss of ANP32E caused thousands of gene promoters 
and enhancers to become more “open”, leading to activa-
tion of neighboring genes. These changes were accom-
panied by cellular reprogramming events where loss of 
ANP32E caused cells to take on a more differentiated 

transcriptome phenotype. Interestingly, a recent study 
suggests that ANP32E may be an independent prognostic 
marker for human breast cancers, where higher ANP32E 
protein levels are associated with the TNBC subtype and 
correlated with a shorter overall and disease-free sur-
vival. Moreover, forced downregulation of ANP32E sup-
pressed TNBC tumor growth in xenograft models [15]. 
However, the precise mechanisms by which ANP32E 
functions to support breast cancer growth and its role 
in defining breast cancer phenotypes has not been fully 
established.

To gain insight into chromatin state function and het-
erogeneity in human breast cancer, we used an unsuper-
vised computational approach to segregate tumors into 
defined groups based solely on genome-wide chromatin 
accessibility patterns. Basal-like tumors segregated as a 
homogeneous class within group 1, whereas a mixture of 
tumor types was found within group 2, including nearly 
all Luminal-B and HER2-enriched tumors, and group 3 
consisted primarily of lobular Luminal-A tumors. By 
defining the chromatin accessibility ‘signature’ associated 
with each group, we identified DNA sequence motifs for 
specific transcription factors. SOX9 motifs were most 
accessible in group 1 tumors, and FOXA1 motifs were 
most accessible in hormone receptor positive tumors 
within groups 2 and 3. Finally, we found that expression 
for the chromatin factor ANP32E was anti-correlated 
with tumor progression and with accessibility at FOXA1 
binding sites among group 2 and 3 tumors, suggestive of 
a novel mechanism by which FOXA1 activity may be reg-
ulated in breast cancer tumors. Our results highlight the 
potential for future disease focused studies of chromatin 
accessibility, as well as epigenetic therapies directed at 
disrupting chromatin regulatory factors.

Methods
Measurements of Chromatin Accessibility, Gene Expression 
and Classification of Tumors
Datasets from the assay for transposase-accessible 
chromatin followed by sequencing (ATAC-Seq) were 
downloaded from TCGA-BRCA project in the National 
Cancer Institute’s (NCI) Genomic Data Commons 
(GDC) [16]. Datasets were downloaded as bam files, 
sorted, and read count normalized with DeepTools 
(v3.1.3) (bamCoverage -bs 10 -rpkm) [17]. MACS2 
(v2.1.4) was used for peak calls (bdgpeakcall -c 35 -g 
100 -l 100) [18]. A union peak set was generated con-
taining all peaks across datasets (n=245133), and 
accessibility in these regions was scored for all tumors. 
Gene expression datasets were also downloaded from 
the TCGA-BRCA project. Files were downloaded as 
tables and matched to ATAC-Seq with Case ID. All 
1222 expression files available in the TCGA-BRCA 



Page 3 of 15Ruff et al. BMC Cancer         (2021) 21:1342 	

project were also combined into a union expression 
table. Tumor stage and IHC subtype were extracted 
from the TCGA-BRCA project in the NCI’s GDC. 
PAM50 subtype [19], histological subtype [20], and 
general patient demographics [20] data were obtained 
in cBioPortal [21, 22].

CUT&Tag Sequencing
MCF-7 cells were cultured according to meth-
ods described previously [23]. To measure genomic 
ANP32E enrichment, CUT&Tag experiments were 
performed as previously described [14, 24], using an 
antibody recognizing ANP32E (Thermo PA5-42860). 
Libraries were sequenced on Illumina NextSeq550 in 
75bp paired-end mode and raw sequencing data was 
aligned to Hg38 using Bowtie2 [25]. Peak calling was 
performed with MACS2 bdgpeakcall (-g 100 -l 100 -c 
90) and read count normalization was performed using 
DeepTools (v3.1.3) (bamCoverage -bs 10 -RPKM). 
ENCODE ChIP-Seq datasets for FOXA1 were handled 
similarly with the exception of peak thresholds (bdg-
peakcall -c 10).

Unsupervised Dimensional Reduction and Clustering
The union peak table (described above) was uploaded in 
R and scores were normalized by ranking regions from 
minimum to maximum accessibility for each tumor. 
This table was then input into UMAP package (n_neigh-
bors=10) [26]. UMAP output three tumor groups by 
agnostically grouping tumors based on similarities in 
chromatin accessibility patterns. To identify regions 
where accessibility differences occurred, log2 fold change 
(log2FC) values were calculated from a region’s aver-
age accessibility within a tumor group compared with 
its accessibility in all other tumors. Signatures 1, 2 and 
3 consisted of regions with a log2FC greater than 2.5 for 
groups 1, 2 and 3, respectively. Tumors were considered 
individually rather than as replicates, and therefore sig-
nificance measurements were not assessed in defining 
divergent accessibility or gene expression groups.

Data Visualization
The pheatmap package in R was used to create heatmaps 
of chromatin accessibility and gene expression, annotated 
by tumor characteristics. The ggplot2 package was used 
to create scatterplots and superimpose characteristics, 
such as cancer type, on UMAP plots. Integrative Genom-
ics Viewer  (IGV) [27] was used to visualize chroma-
tin accessibility in tumor groups and stages. DeepTools 
(computematrix and plotheatmap) was used to create 

heatmaps of accessibility and ChIP-Seq binding across 
regions. The Hg38 genome assembly was used.

Annotation of Chromatin Signatures and Gene Ontology 
Analyses
HOMER (v4.10) was used to annotate and find motifs 
enriched in each chromatin signature (see above) [28], 
and group accessibility trends at those motifs were sub-
sequently determined. Gene ontologies for chromatin 
regions were determined with GREAT, which associ-
ates regions to any gene whose transcription start site 
is within 1000 kb [29]. Gene ontologies for genes from 
divergent gene expression analyses were determined with 
Enrichr [30, 31].

Dataset Availability
ENCODE was used to download ChIP-Seq data from the 
MCF-7 cell line for FOXA1 (ENCSR126YEB), H3K27ac 
(ENCSR752UOD), H2A.Z (ENCSR057MWG) and ER 
(ENCSR463GOT) [32, 33]. BigWig files of log2FC over 
control were downloaded from the ENCODE portal 
with the following identifiers: ENCFF795BHZ (FOXA1), 
ENCFF063VLJ (H3K27ac), ENCFF589PLM (H2A.Z), 
and ENCFF237WTX (ER). ATAC-Seq data from TNBC 
cell-lines were acquired using GEO accession GSE129646 
[34]. MCF-7 CUT&Tag data for ANP32E are available 
using GEO accession GSE188942.

GSEA
Using the union expression dataset, tables of tumors in 
the top and bottom decile of ANP32E expression were 
generated. In order to associate gene ontologies with 
ANP32E expression, the average gene expressions of the 
top and bottom deciles were input into GSEA, which 
then converted normalized counts data to ranked lists for 
enrichment scoring [35, 36]. To isolate this effect from 
ANP32E’s association with Basal-like tumors, we sought 
to eliminate the Basal-like subtype. Using expression of 
FOXA1 and GATA3, two PAM50 markers, we removed 
the tumors that were in the bottom quartile of expres-
sion for both genes. Testing this method on the 74 known 
tumors, this results in 14 tumors being eliminated. 10 
of the 12 known Basal-like tumors were removed, and 
12 of the 14 tumors removed were in group 1. Since this 
method was shown to be effective in removing the major-
ity of Basal-like tumors from the sample, we applied it 
to all tumors in the TCGA-BRCA project. This resulted 
in removing 112 of the 1222 expression files available. 
We then repeated the GSEA analysis with this subset of 
tumors.

Statistical analyses were done with R statistical soft-
ware (v3.6.3), and p-values obtained are from parametric 
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t-tests. Log2 fold-change values were calculated with a 
pseudo-count of 1.

Results
Patterns of chromatin accessibility segregate breast 
tumors into distinct subtypes
Chromatin accessibility has been used for defining cell 
identities, for establishing tissues of origin, and for 
measuring developmental cell-state transitions [37–40]. 
We therefore sought to measure chromatin differences 
in breast tumors, but rather than simply comparing 
between established subtypes, we opted for an unsuper-
vised approach, enabling both independent corrobora-
tion of established mechanisms, and the potential for 
uncovering new inferences. DNA sequence data from 
ATAC-Seq of 74 primary invasive breast carcinomas 
were acquired from the TCGA-BRCA project [2, 41], and 
datasets were normalized based on total mapped reads. 
Enrichment scores at ‘peaks’, representing high accessibil-
ity regions [18] (245133 union peaks), were then assessed 
using Uniform Manifold Approximation and Projec-
tion (UMAP) [26], wherein tumors segregated into three 
distinct groups (Fig. 1A), with no obvious differences in 
demographics between groups (Fig.  S1A & S1B). Most 
chromatin differences occurred along UMAP dimension 
2, where tumors within group 1 bore the greatest distinc-
tion from groups 2 and 3 (Fig. 1A - left).

We next assessed how this chromatin-based grouping 
corresponded with established breast cancer subtypes, 
expecting that chromatin patterns would be some-
what associated with gene expression-based classifica-
tion – based on the established relationships between 
chromatin accessibility and transcriptional regulation 
[1]. Measurements of protein levels for estrogen recep-
tor (ER), progesterone receptor (PR), and HER2 (gene/
protein), were previously used to classify tumors as hor-
mone receptor positive (HR+) or negative (HR-), and 
HER2 positive (+) or negative (-). Triple-negative breast 
cancers (TNBC) were classified as those lacking expres-
sion of all these biomarkers [42]. PAM50 (Prediction 
Analysis of Microarray 50) classification was also applied, 
relying on gene expression profiling to identify “intrinsic 
subtypes”, as Luminal A (Lum-A), Luminal B (Lum-B), 
HER2-enriched, and Basal-like (Basal-L) [43]. Indeed, 

our chromatin-based UMAP grouping corresponded bet-
ter with PAM50 subtypes than with protein-based immu-
nohistochemistry (IHC) subtypes (Fig. 1A). While HR+/
HER2- tumors were distributed across all three groups, 
Basal-L tumors were found exclusively within group 1, 
and nearly all HER2-enriched and Lum-B tumors were 
within group 2 (Fig.  S1C & S1D). Interestingly, a sub-
set of Lum-A tumors were classified as a distinct set of 
tumors within group 3 (Fig. 1A - right) (analyzed subse-
quently). As expected, given the enrichment of TNBC/
Basal-L tumors in group 1, mutations in TP53 were over-
represented in group 1, whereas mutations in PIK3CA, 
GATA3 and CDH1 were underrepresented (Fig. S1E). 
Also as expected, given the relationship to PAM50 sub-
type, expression of FZD7, SOX9, and MYC was higher for 
tumors within group 1, whereas tumors in group 2 and 3 
had higher expression of FOXA1 and GATA3 (Fig. S1F).

Based on the success of these initial proof-of-principle 
measurements, we next investigated whether differences 
in chromatin patterns corresponded with unique tumor 
behaviors or novel underlying biological differences. In 
this regard, two tumor classes stood out. HR+/HER2- 
tumors, which were distributed across all three groups, 
and Lum-A tumors, which were split between groups 2 
and 3. To assess differences in cellular programing for 
these tumors, we measured differences in the mean tran-
scriptome patterns for each class (Fig. S1G & S1H) and 
used gene ontology (GO) analysis to identify molecular 
pathways or pathologies associated with transcriptome 
differences. Genes involved in hormone signaling tended 
to be under-expressed in the HR+/HER2- tumors in 
group 1 compared with similarly classified tumors from 
other groups (Fig. S2A), including ESR1, PR, ERBB2, and 
AR (Fig. S2B), suggesting that the Basal-L class of HR+/
HER2- tumors were more similar to TNBC tumors than 
non-Basal-L HR+/HER2- tumors. For the subset of 
Lum-A tumors (8 of 24) classified as group 3, there was 
no apparent difference in the expression of the classic 
biomarker genes (ESR1, PR, ERBB2) or AR (Fig.  S2C), 
but transcriptome differences largely reflected dysregu-
lation of genes involves in humoral immune response 
and inflammatory pathways (which were enriched and 
depleted) respectively in Lum-A tumors within group 
3 (Fig.  1B). Taken together, these data suggest that the 

Fig. 1  Chromatin Accessibility Distinguishes Breast Cancer Subtypes. A) UMAP dimension reduction plots depicting three distinct groups of 
tumors, colored by group (n=74), IHC subtype (n=69) and PAM50 subtype (n=65). B) Bar charts depicting significance of gene ontology results 
from Enrichr, investigating genes found to have higher and lower expression in Luminal-A tumors in group 3 compared to group 2. Adjusted 
p-values obtained within Enrichr. C) Heatmap showing 3 groups of chromatin regions, each showing greater accessibility in their respective 
tumor group compared to the rest (Lg2FC > 2.5). D) Screenshots from IGV depicting average accessibility of tumor groups in regions within each 
chromatin signature. E-F) Boxplots comparing chromatin signatures by regions’ distance to transcription start sites (E) and CpG density (F), with 
random accessible regions from the genome as a control. P-values obtained from two-tailed parametric t-tests. * is p<0.01, ** is p<0.001, *** is 
p<0.0001

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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chromatin state differences in breast cancer largely 
occur in Basal-L tumors (as compared with non-Basal-L 
tumors) and within a distinct subset of Lum-A tumors, 
potentially resulting from immune evasion [44].

To gain further insight into the factors driving group 
classification, we identified the genomic regions where 
high levels of accessibility were present for tumors within 
each respective group, as compared with all other tumors 
(Log2FC>2.5). This enabled us to define a set of accessible 
loci (signature regions) which independently partitioned 
tumors in a manner nearly identical to UMAP grouping 
(Fig.  1C & D). Interestingly, the signature sites for all 3 
groups tended to be further away from the nearest anno-
tated TSS (Fig. 1E) and less CpG rich (Fig. 1F), as com-
pared with randomly-selected accessible peak regions, 
suggesting that they might represent distal regulatory 
elements or enhancers. GREAT analysis [29] (identifying 
all genes within 1000 kb) revealed that genes near signa-
ture 1 sites were involved in exocrine gland development, 
consistent with these tumors arising from the basal layer 
of mammary exocrine glands, and signature 2 sites were 
located nearest to hormone responsive genes, consist-
ent with the abundance of HR+ and Lum-A/B tumors in 
this group (Fig. S2D). By contrast, genes associated with 
signature 3 sites were enriched in functions involved in 
cell metabolism, suggesting that a unique metabolic pro-
gram may distinguish tumors in this group from those 
that otherwise bear a Lum-A gene expression signature. 
Applying a similar approach to Lum-A tumors within 
group 2 versus group 3, as noted previously, we found 
that regions of higher accessibility in group 2 Lum-A 
tumors were annotated to genes involved in develop-
ment and morphogenesis, whereas regions with greater 
accessibility in group 3 were annotated to genes involved 
in carbohydrate metabolism (Fig.  S2E & S2F). Both the 
subset of Lum-A tumors in group 3, and group 3 tumors 
in general, were distinguished by features associated with 
immune (Fig.  1B) and metabolic regulation (Fig.  S2F), 
similar to gene expression characteristics for tumors 
previously identified as Lum-A invasive lobular carcino-
mas (ILC) [45–47]. Indeed, overlaying the tumor histol-
ogy information (from the TCGA metadata) with UMAP 
classification indicated that ILC was over-represented 
in group 3 (Fig.  S2G), and CDH1 mutations, which are 
common in ILC tumors, were also found to be some-
what overrepresented (Fig.  S1E). Notably however, this 
over-representation of ILC was not absolute, and several 
tumor samples within group 3 did not contain mutations 
in CDH1, suggesting that chromatin state differences may 
contribute independently to the transcriptome differ-
ences within this class.

Taken together, these results provide strong evidence 
that chromatin differences occur in association with 

particular cancer phenotypes, including IHC status and 
intrinsic subtype, and demonstrate that unsupervised 
chromatin state-based computational approaches are 
capable of independently distinguishing tumors in a 
manner well aligned with known features of breast can-
cer. These results also suggest that chromatin differences 
may be a more accurate reflection of tumor phenotype as 
compared with IHC status, and that differences in clas-
sification may reflect heterogeneity of HR protein expres-
sion within HR+ tumors, or variation in how (low vs. no) 
HR protein expression is stratified by different sites and 
pathologists. These conclusions prompted us to further 
characterize the chromatin signature regions which dis-
tinguish tumor groups, with the intent to uncover novel 
molecular aspects of tumor biology.

Accessibility at FOX motifs is associated with cancer 
progression.
To investigate how chromatin changes might contrib-
ute to biologically distinct tumor properties, we next 
investigated the genomic context of the established sig-
nature regions. The gene-distal nature of these signature 
regions (Fig.  1E) suggests that they might function as 
intergenic regulatory sites. In support of this possibil-
ity, sets of enriched DNA sequence motifs were identi-
fied (using HOMER) [28] within each signature region 
(Supplemental Table  1), as compared with background 
regions (consisting of 5000 randomly selected, similarly 
sized genome-wide accessible sites). SOX factor bind-
ing motifs were most enriched in signature 1 regions, 
FOX factor motifs were the most enriched in signature 
2 regions, and CEBP motifs were the most enriched in 
signature 3 regions (Fig.  2A). Mapping of motifs within 
signatures 1, 2, and 3, revealed that accessibility differ-
ences occurred directly over motif locations (Fig.  2B). 
SOX motifs and CEBP motifs were most accessible in 
group 1 tumors, FOX motifs were most accessible in 
group 2 tumors, and interestingly, all three motifs were 
least accessible in group 3 tumors, suggesting that addi-
tional factors may underlie accessibility differences 
within this group. We next assessed levels of gene expres-
sion to determine which among the FOX and SOX fam-
ily transcription factors might be involved. Here we 
found that group 1 tumors tended to express high lev-
els of SOX9, FOXC1, and FOXM1, relative to tumors in 
groups 2 and 3, whereas group 2 tumors expressed high 
levels of FOXA1 (Fig.  2C & S3A). Prior studies indicate 
that FOXA1 functions in conjunction with ER to influ-
ence enhancer activity and promote pro-metastatic 
transcriptional programming in breast cancer cell lines 
[12, 13]. We therefore investigated the binding patterns 
for these transcription factors at the defined signature 
regions. Indeed, chromatin immunoprecipitation data 
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from MCF-7 cells [32, 33] revealed that FOXA1, ER, and 
H3K27ac (a marker of active enhancers) were enriched 
at signature 2 regions (Fig. 2D). Additionally, accessibil-
ity at FOX motifs tended to be lower for Lum-A tumors 
in group 3 (which were enriched for ILCs) as compared 
with Basal-L tumors or similarly classified tumors in 
group 2 (Fig.  S3B), further supporting the premise that 
increased FOXA1 binding may functionally distinguish 
group 2 tumors from all other samples.

Activity of FOXA1 and ER transcription factors is 
known to promote pro-metastatic outcomes in HR+ 
cancer cells [12, 13], but it remains unknown whether 

this function is maintained in human tumors in vivo. We 
therefore investigated chromatin accessibility differences 
in accordance with disease progression in our dataset. 
Remarkably, average chromatin accessibility levels within 
each signature differed across tumor stages (Fig.  3A-C). 
Most notably, signature 2 regions, which are enriched 
for FOX motifs (Fig.  2A), displayed the strongest posi-
tive relationship, with progressively greater accessibility 
associating with increasing severity of disease (Fig.  3C 
& S3C). Additionally, accessibility levels across all FOX 
motifs, irrespective of genomic location, were positively 
correlated with tumor stage (Fig. 3D, E, S3D), despite no 

Fig. 2  Accessibility at FOX and SOX Binding Sites Define Tumor Groups. A) Table displaying top motif result from HOMER for each chromatin 
signature. Due to similarity across SOX and FOX binding motifs, we refer to SOX6 simply as SOX, and FOXM1 simply as FOX. P-values obtained within 
HOMER. B) Profile plots depicting average accessibility of tumor groups in motif regions across all accessible peak regions in tumors, indicating that 
group 1 and 2 tumors show increased accessibility at SOX and FOX motifs, respectively. We again use the SOX6 motif to represent SOX motifs, and 
the FOXM1 motif to represent FOX motifs. Regions with no signal were ignored in the calculation of average accessibility. C) Heatmap showing 
expression of SOX and FOX factors across tumor groups. Factors are ordered from 1 to 10 by standard deviation across tumors. D) Heatmaps 
showing binding of FOXA1, ER, and H3K27ac in MCF-7 cells within regions from signatures 1, 2 and 3. Data from ChIP-Seq of MCF-7 cells; regions 
sorted from greatest to least FOXA1 enrichment.
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Fig. 3  Chromatin Accessibility in FOX motifs and Signature 2 Regions Associate with Tumor Progression Stages. A-B) Heatmaps (A) and profile plots 
(B) showing accessibility in signatures 1, 2 and 3 across tumor stages. Heatmaps have regions ordered from greatest to least average accessibility 
across tumor stages, regions with no signal are ignored in calculation of average accessibility. C) Boxplots of accessibility in signatures 1, 2 and 3 
across tumor stages, indicating that only signature 2 shows an accessibility trend across stages. D) Boxplot comparing accessibility of FOX motifs 
in accessible peak regions (n=96280) by tumor stage. E) Screenshots from IGV depicting average accessibility of tumor stages and FOXA1 binding 
in MCF-7 cells from ChIP-Seq in regions within each chromatin signature. ChIP-Seq data is Log2FC over control. F) Boxplot comparing FOXA1 
expression levels across tumor stages. P-values in C, D and F obtained from one-tailed parametric t-tests. * is p<0.01, ** is p<0.001, *** is p<0.0001.
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apparent differences in FOXA1 gene expression levels 
between tumors of different stages (Fig. 3F).

These results indicate that chromatin accessibility at 
FOX factor binding motifs increases with tumor progres-
sion, and increased FOXA1 binding may underlie the 
chromatin patterns distinguishing group 2 from other 
tumor samples. To further investigate the relationship 
between FOX motif accessibility and cancer progression, 
we re-analyzed recently published ATAC-Seq data from 
Basal-L TNBC cell lines [34] and found that accessibility 
at signature 2 and FOX motifs sites was indeed higher in 
metastatic cells (late-stage) compared with non-meta-
static (early-stage) cells (Fig. S3E). These results are both 
consistent with prior reports (mouse and in vitro), and 
are indicative of a molecular axis whereby FOXA1 bind-
ing increases in more advanced tumors independent of 
changes in FOXA1 expression levels, suggesting that 
additional factors are involved.

ANP32E levels are associated with accessibility at FOX 
motifs and with tumor programming
The above data indicate that accessibility of FOX motifs 
is generally associated with tumor stage, but we find little 
evidence for differences in FOXA1 (or ESR1) expression 
levels between tumors of different stages. We next inves-
tigated whether additional factors may contribute to the 
observed accessibility differences at FOX binding motifs. 
Prior studies of HR+ breast cancer cells have demon-
strated that the function of FOXA1 is impacted by the 
local enrichment of the histone variant H2A.Z [48, 49]. 
H2A.Z accumulates at estrogen response elements that 
are bound by FOXA1 and loss of H2A.Z impairs both 
FOXA1 binding and polymerase recruitment. ANP32E is 
a chromatin chaperone that regulates the genomic locali-
zation of H2A.Z to control locus-specific chromatin state 
dynamics [14]. In recent work, we showed that ANP32E 
antagonizes H2A.Z installation, such that ANP32E loss 
causes a global increased H2A.Z enrichment, heightened 
chromatin accessibility and amplified transcription fac-
tor binding at open sites, in cultured mouse fibroblasts 
[14]. ANP32E may function similarly in breast tumors, 
influencing the binding of key oncogenic transcription 
factors, such as FOXA1. Therefore, we investigated the 
relationship between ANP32E expression, chromatin 
accessibility, and tumor characteristics across the chro-
matin-defined tumor groups (Fig.  S3F). Consistent with 
a prior report looking at protein levels [15], we found 
ANP32E mRNA to be significantly higher in Basal-L 
tumors (within group 1) than the other PAM50 subtypes 
(Fig. S3F & S3G). Moreover, the levels of ANP32E expres-
sion tended to stratify tumors by stage, wherein early-
stage (I, II) tumors had the highest levels of ANP32E 
expression and late-stage (III, IV) tumors had the lowest 

levels (Fig. 4A & S3H). This association was maintained 
even when group 1 tumors were excluded (Fig.  4B & 
S3I), indicating that ANP32E levels may be functionally 
involved in cancer progression independent of tumor 
subtype.

We next evaluated the relationship between ANP32E 
expression and accessibility, and found that accessibility 
at signature 2 regions (Fig.  4C) and all accessible FOX 
motifs (Fig. 4D) were significantly anticorrelated with lev-
els of ANP32E expression across all tumors (signature 2: 
R= -0.409, p=0.0003; FOX motifs: R= -0.276, p=0.017), 
suggesting that ANP32E may function as a negative reg-
ulator of chromatin accessibility at these sites. Indeed, 
CUT&Tag experiments revealed that ANP32E was local-
ized at sites of high H2A.Z enrichment which lacked 
FOXA1, and FOXA1 resided primarily at sites with 
moderate to low H2A.Z levels and lesser enrichment for 
ANP32E (Fig. S4A). Additionally, signature 2 regions had 
the highest levels of H2A.Z in MCF-7 cells (Fig. S4B).

Based on our findings that reduced ANP32E expression 
levels associated with tumor stage progression, perhaps 
through regulation of FOXA1 binding, we next sought to 
determine the relationship between ANP32E expression 
and tumor phenotype, using the tumor transcriptome 
as a read-out. GSEA analysis revealed that high ANP32E 
expression was associated with increased expression 
of genes involved in the immune response (Fig. 4E) and 
to a lesser extent DNA replication (Fig.  S5A). Consist-
ent with this idea, KI67 expression, a marker of cellular 
proliferation [50], was highest in group 1 tumors (repre-
senting all Basal-L and most TNBC tumors) (Fig.  S5B), 
and ANP32E and KI67 levels were positively correlated 
across all samples analyzed, but not after removing group 
1 (Basal-L) tumors (Fig.  S5C). Conversely, low ANP32E 
expression was associated with increased expression of 
genes involved in separate developmental processes (eg. 
‘Keratinocyte Differentiation’ and ‘Cilium Movement’). 
To test whether the observed gene expression associa-
tions were driven by differences between Basal-L and 
non-Basal-L tumors, we repeated these analyses exclu-
sively assaying tumors classified as non-Basal-L (see 
methods). Here again, GSEA results indicated that high 
ANP32E expression was associated with genes involved 
in DNA replication and immune response (Fig.  4F & 
S5D), indicating that ANP32E expression differences are 
indeed able to stratify patients in accordance with dif-
ferences in cellular programming, independent of tumor 
subtype.

Taken together, these results suggest that ANP32E 
may generally function to restrict chromatin changes at 
the beginning stages of tumor development, and loss of 
ANP32E promotes tumor progression by enabling more 
aggressive cancers. In this regard ANP32E may act to 
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Fig. 4  ANP32E Expression Levels Associate with FOX Motif Accessibility and Tumor Stage. A-B) Boxplots comparing ANP32E expression by tumor 
stage, both in all tumors with available stage data (n=73) (A) and in only tumors from groups 2 and 3 (n=59) (B), indicating that late-stage tumors 
have significantly lower expression of ANP32E. P-values obtained from one-tailed parametric t-tests. * is p<0.01, ** is p<0.001, *** is p<0.0001. C-D) 
Scatterplots showing correlation of ANP32E expression with tumor’s accessibility in signature 2 regions (C) and with tumor’s average accessibility 
in FOX motifs across all accessible peak regions (n=96280) (D), with tumors colored by stage. R denotes Pearson correlation coefficient; p-values 
from Pearson’s product moment correlation coefficient. E-F) GSEA plots depicting gene ontology associations with high and low ANP32E expression 
levels for all tumors with RNA-seq data in the TCGA-BRCA project (n=1222) (E) and for all tumors excluding Basal-L (n=1110) (F). FDR values and 
normalized enrichment scores (NES) obtained within GSEA
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‘lock in’ a defined chromatin state, and when tumor cells 
transition to later stages of cancer progression, ANP32E 
becomes downregulated, leading to increased chromatin 
accessibility at a defined set of gene regulatory regions, 
including sites where H3K27ac and H2A.Z are enriched, 
enhancer elements, and FOXA1 binding sites.

Discussion
We set out to investigate how differences in chromatin 
state across separate breast tumors coincided with unique 
characteristics of cancer biology, and to investigate 
whether differences in chromatin patterns could provide 
insight into new cancer mechanisms. To test whether 
chromatin accessibility patterns differed in a biologically 
meaningful manner, we took an unsupervised approach, 
using a dimensional reduction method (UMAP) to group 
tumors based only on chromatin differences. With this 
approach, 74 breast cancer tumors were grouped into 
three distinct UMAP categories. Supporting the valid-
ity of our UMAP approach, we found that differences in 
chromatin patterns associated with several known breast 
cancer features, including IHC marker status (Fig. S1C), 
PAM50 subtype classification (Fig. S1D), and histologi-
cal classification (Fig.  S2G). We also uncovered several 
novel chromatin associations. For example, our UMAP 
analysis indicated that 6 HR+/HER2- tumors were more 
similar to TNBC tumors (Fig.  1A), and these tumors 
were distinct from other HR+/HER2- tumors. Further 
characterization revealed that these 6 samples, along 
with TNBC samples, were classified as Basal-L, suggest-
ing that the chromatin state of Basal-L tumors drove the 
UMAP segregation patterns. Differences in tumor heter-
ogeneity may contribute to these differences in grouping 
and IHC status. For example, HR+/HER2- tumors with 
non-uniform IHC staining may be more similar to TNBC 
tumors when considered in aggregate than homogene-
ously stained HR+/HER2- tumors. Another interesting 
possibility is that a subset of HR+/HER2- tumors may 
be mechanistically more similar to TNBC-like tumors, 
perhaps explaining why some HR+/HER2- tumors are 
resistant to hormone therapies [51]. These results high-
light the potential use of chromatin accessibility meas-
urements as a diagnostic tool, possibly enabling further 
subtyping of breast cancer tumors. For example, meas-
urements of chromatin accessibility may allow for better 
ILC subtyping within Lum-A tumors, as well as Basal-L 
tumors within HER2-enriched subtypes. Further chro-
matin accessibility studies of larger datasets are necessary 
for defining these potential subtypes, and for comparing 
classifications with current subtyping methods. More 
comprehensive and longitudinal studies of breast cancer, 
measuring chromatin state changes along with IHC sta-
tus and gene expression profiling, will help in establishing 

how chromatin differences account for the observed 
UMAP grouping. In the future, additional diagnostic 
tests of HR+/HER2- tumors may be necessary to assess 
intrinsic cell-type of origin, potentially strengthening 
predictions of therapy response.

We also found chromatin differences occurred in a sub-
set of Lum-A tumors, which appeared to have chroma-
tin patterns more similar to non-Lum-A tumors within 
UMAP group 2 (including Lum-B and HER2-enriched 
tumors). This subset had reduced expression for genes 
involved in immune response (Fig.  1B) and reduced 
accessibility at regions proximal to metabolism genes 
(Fig.  S2F), despite no measurable difference in expres-
sion for typical breast cancer markers, such as PR, ESR1, 
and ERBB2 (Fig. S2C). We observed similar patterns for 
lobular tumors, which also segregated into two classes 
(Fig.  S2G). Previous studies examining differences in 
Lum-A carcinomas found that pathways similar to those 
active in group 3 tumors were also active in ILC (as com-
pared with ductal carcinoma), including immune-related 
and metabolic pathways [47]. In this context, our results 
suggest that group 3 may represent invasive carcinomas, 
similar to those described previously [45–47]. In prior 
studies, phenotypic differences for invasive carcinomas 
associated with mutational status (e.g. CDH1 – Fig. S1E), 
but we found this class of tumors segregated in a man-
ner dependent on chromatin accessibility differences 
– as many tumors within group 3 lacked key mutations 
associated with ILC. Accordingly, prior studies found 
that ILC tumors had decreased FOXA1 activity (based 
on measurements of gene expression and mutation fre-
quency) [45], and in our study, we found lower chroma-
tin accessibility levels at FOXA1 binding sites in group 3 
tumors, which we presume to be similar to the ILC sub-
type (Fig. 2B). In sum, our results support a model where 
loss of FOXA1 activity (and/or subsequent loss of DNA 
binding) in luminal tumors distinguishes ILC-like from 
other HR+ tumors (presumably occurring within UMAP 
group 2).

We found the tumors within UMAP group 2 to be par-
ticularly interesting, as several distinct cancer subtypes 
grouped together, indicating that they had quite similar 
chromatin accessibility patterns despite differences in 
clinical classifications. Interestingly, FOX motifs were 
enriched within the genomic loci where accessibility 
differences occurred (Fig.  2A & B) and these loci were 
located distal from gene promoters (Fig. 1E). In MCF-7 
breast cancer cells, these regions are bound by FOXA1 
and ER, and enriched for H2A.Z and H3K27ac (Fig. 2D 
and S4B), suggesting that they may function as enhancer 
elements in HR+ breast cancer tumors. Prior studies 
have demonstrated that H2A.Z levels at ER binding sites 
facilitates enhancer activation and FOXA1 binding in this 
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type of (HR+) breast cancer cell [48, 49]. We and others 
previously demonstrated that H2A.Z is a negative regula-
tor of DNA methylation [52–54], and accordingly, lower 
DNA methylation levels are known to occur at enhanc-
ers bound by FOXA1 and ER in luminal tumors (com-
pared with basal tumors) [55]. Additionally, increased 
FOXA1 activity has been shown to function in the activa-
tion of pro-metastatic cellular programming [12]. Taken 
together, these results suggest that increased H2A.Z 
levels at enhancers in luminal tumors may promote 
increased accessibility, improved FOXA1 binding, and 
amplified enhancer activity, potentially driving tumors 
toward a more metastatic cellular program without obvi-
ous changes in FOXA1 expression levels (Fig. 5).

The histone chaperone ANP32E has previously been 
shown to control H2A.Z levels at thousands of vertebrate 
gene regulatory regions, including enhancers [14, 52, 
56, 57]. We previously found that ANP32E functions in 
mouse cells to control genome-wide chromatin accessi-
bility through regulation of H2A.Z patterns [14]. Based 
on this mechanism, differences in ANP32E levels among 
breast tumors may lead to differences in H2A.Z enrich-
ment, causing chromatin accessibility differences, and 
ultimately impacting transcription factor binding events. 
Similar mechanisms have recently been described during 
tumorigenesis of uterine leiomyomas, wherein epigenetic 
instability due to H2A.Z depletion leads to chromatin 
accessibility and gene expression dysregulation, particu-
larly at genes involved in hormone signaling [58]. In the 
context of this study, we do indeed find that ANP32E 
expression levels differ among tumors, and these 

differences are anticorrelated with chromatin accessibil-
ity at FOX factor binding sites. Interestingly, accessibility 
at these same sites tends to increase in later-stage tumors 
(stage III, IV), compared with earlier stages (stage I, II), 
suggesting that selective opening of signature 2 regions 
(and FOX binding in particular) may function to promote 
tumor progression. In this regard, ANP32E levels in HR+ 
tumors may specifically restrict chromatin accessibility at 
FOX factor motifs (Fig. 5). Additional mechanistic stud-
ies of ANP32E, H2A.Z, and their role in FOX factor bind-
ing in the context of HR+ breast cancer are necessary to 
fully investigate this possibility.

It is important to note that our study investigated 
accessibility data from primary tumor samples only. In 
this context, our ability to identify significant correla-
tions between stage at resection and chromatin acces-
sibility suggests that changes in the chromatin state of 
the primary tumor may precede, and/or be predictive of, 
the propensity for tumor progression and/or metastatic 
spread. We therefore propose a model in which ANP32E 
has two separate functions in breast cancer, depending 
on tumor subtype or the differentiation state of the cell of 
origin. In Basal-L/TNBC tumors, largely believed to arise 
from a more stem-like multipotent progenitor, high lev-
els of ANP32E ‘lock-in’ a pattern of accessible chromatin 
that favors proliferation and self-renewal, while in HR+ 
breast tumors, arising in a more differentiated luminal 
progenitor, ANP32E supports the maintenance of lumi-
nal identity and hormone responsiveness by restricting 
FOXA1 binding at estrogen response elements (Fig.  5). 
In this latter setting, the loss of ANP32E expression may 

Fig. 5  Model displaying the association of ANP32E expression levels with multiple characteristics of breast cancer. In Basal-L tumors, arising from a 
multipotent progenitor, we find that ANP32E may ’lock-in’ a pattern of accessible chromatin favoring SOX9 binding, proliferation and self-renewal. 
Alternatively, in HR+ breast tumors arising from a more differentiated luminal progenitor, ANP32E restricts FOXA1 binding such that luminal identify 
and hormone responsiveness is maintained. The loss of ANP32E may therefore increase FOXA1 binding, relax cellular programming and increase the 
metastatic potential of the tumor
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lead to increased FOXA1 binding, relaxation of cellular 
programming, and progression to a hormone-resistant 
state. Indeed, factors affecting the balance of ER and 
FOXA1 binding to estrogen response elements, such as 
forced overexpression of FOXA1, may promote expres-
sion of genes involved in metastasis and endocrine-
resistant breast cancers [12]. The mechanistic function of 
ANP32E remains only partially understood, and pheno-
types have not been observed in mice lacking ANP32E. 
Our studies suggest that additional phenotypes may arise 
under disease conditions, upon exposure to external 
stressors, or with concomitant loss of additional ANP32 
factors. Evidently, future studies addressing the role of 
ANP32E, H2A.Z, and their role in FOX factor binding, 
are necessary to fully establish the function of ANP32E in 
carcinogenesis.

Conclusions
We applied an unsupervised machine learning-based 
platform (UMAP) to investigate chromatin states within 
74 human breast cancer tumors. This methodology 
enabled us to identify chromatin differences with no 
prior knowledge of tumor subtype or disease outcome. 
While fairly common for single-cell genomics studies, 
approaches such as ours have only recently been applied 
to studies of carcinogenesis. In principle, such methods 
could be used extensively to deconvolute the high dimen-
sional datasets that are publicly available within the 
TGCA repository. In this regard, our study sets a prec-
edent for future computational studies of tumor biology.

We found that 3 major chromatin states occurred 
within breast cancer tumor samples. One class repre-
sented Basal-L tumors, while the other two occurred 
nearly independent of tumor subtype classification. 
Chromatin accessibility levels at FOXA1 binding sites 
both segregated tumors within these latter two classes, 
and correlated with disease progression, suggesting 
that FOXA1 may function broadly across breast cancer 
tumors to promote metastasis. Rather than finding dif-
ferences in FOXA1 expression, we found that expres-
sion levels for the chromatin regulatory factor ANP32E 
were anticorrelated with accessibility at FOXA1 binding 
sites. ANP32E expression was lowest in late-stage hor-
mone positive tumors, and highest in early-stage TNBC 
tumors, suggesting that ANP32E levels may affect cellu-
lar programming through regulation of FOXA1 binding. 
Finally, our ability to identify such correlations despite 
exclusively examining primary tumors (with no meas-
urements of distal metastases) suggests that ANP32E 
reduction and chromatin state changes likely occur in the 
primary tumor prior to metastatic spread.

Abbreviations
TCGA​: The Cancer Genome Atlas; NCI: National Cancer Institute; GDC: 
Genomic Data Commons; log2FC: log2 fold change; ATAC-Seq: assay for 
transposase-accessible chromatin followed by sequencing; UMAP: Uniform 
Manifold Approximation and Projection; ER: Estrogen Receptor; PR: Proges-
terone Receptor; HR: hormone receptor; Lum-A: Luminal A; Lum-B: Luminal 
B; Basal-L: Basal-like; IHC: immunohistochemistry; GO: gene ontology; ILC: 
invasive lobular carcinoma; MB-231 Par: normal MB-231 cell-line; MB-231 BrM: 
MB-231 cell-line with high metastatic potential to brain; MB-231 LM: MB-231 
cell-line with high metastatic potential to lung.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​021-​09077-9.

Additional file 1: Figure 1 supplement. A-B) For patients whom tumors 
were obtained from, boxplot showing age at diagnosis (A) and stacked 
barplot displaying racial identity (B). Significance values obtained within 
cBioPortal with Kruskal-Wallis test. C-D) Individual pie charts depicting 
groups of tumors based on IHC subtypes (C) and PAM50 subtypes (D), 
indicating tumor groups distinguish breast cancer subtypes. E) UMAP 
plots colored by tumor’s mutation status for commonly mutated genes 
in the TCGA-BRCA project. F) Boxplots comparing gene expressions for 
PAM50 genes by tumor group. G-H) Scatterplots depicting genes found to 
have higher or lower expression in HR+/HER2- tumors in group 1 (n=6) 
compared to rest (n=40) (G) and in Luminal-A tumors in group 3 (n=8) 
compared to group 2 (n=17) (H). P-values in F obtained from one-tailed 
parametric t-tests. * is p<0.01, ** is p<0.001, *** is p<0.0001. Figure 2 
Supplement. A) Bar chart depicting significance of gene ontology results 
from Enrichr, investigating genes found to have higher and lower expres-
sion in HR+/HER2- tumors in group 1 (n=6) compared to rest (n=40). 
Adjusted p-values obtained within Enrichr. B-C) Boxplots comparing 
gene expression of hormone receptors in TNBC tumors (n=7) and HR+/
HER2- tumors separated into group 1 (n=6) and rest (n=40) (B) and in 
Luminal-A tumors separated into all (n=25), group 2 (n=17) and group 
3 (n=8) (C). D) Bar charts depicting significance of gene ontology results 
from GREAT, investigating genes nearby (<1000 kb) regions found to have 
higher and lower accessibility in group 3 Luminal-A tumors compared to 
group 2. E) Scatterplot depicting regions found to have higher or lower 
accessibility in Luminal-A tumors in group 3 (n=8) compared to group 
2 (n=17). F) Bar charts depicting significance of gene ontology results 
from GREAT, investigating genes nearby (<1000 kb) regions found to have 
higher and lower accessibility in group 3 Luminal-A tumors compared 
to group 2. G) Stacked barplot showing the distribution of histological 
subtypes between each tumor group. P-value obtained from Chi-squared 
test within cBioPortal. FDR q-values in D and F obtained within GREAT. 
P-values in B-C obtained from one-tailed parametric t-tests. * is p<0.01, ** 
is p<0.001, *** is p<0.0001. Figure 3 supplement. A) Boxplots compar-
ing expression across tumor groups of interesting SOX and FOX factors 
from figure 2C. B) Boxplot comparing tumor’s average accessibility at 
FOX motifs within accessible peak regions (n=96280) for Basal-L tumors 
(n=12) and Lum-A tumors within groups 2 (n=17) and 3 (n=8). C-D) 
Beeswarm plots comparing tumor’s average accessibility in signature 
2 regions (n=1314) (C) and tumor’s average accessibility at FOX motifs 
within accessible peak regions (D) by tumor stage. E) Profile plots show-
ing accessibility at FOX motifs and signature regions in TNBC cell-lines, 
ignoring regions with no signal in the calculation of average accessibility. 
MB-231 Par is a normal MB-231 cell-line, while MB-231 BrM and MB-231 
LM are MB-231 cell-lines with high metastatic potential to brain and lung, 
respectively. F) Heatmap with tumors ordered by ANP32E expression 
and annotated by tumor group, PAM50 subtype and tumor stage. G) 
Boxplot comparing ANP32E expression of tumors by PAM50 subtype. 
H-I) Beeswarm plots comparing ANP32E expression by tumor stage for 
all tumors with available stage data (n=73) (H) and for only group 2 and 
3 tumors (n=59) (I). P-values in A-D and G-I obtained with one-tailed 
parametric t-tests. * is p<0.01, ** is p<0.001, *** is p<0.0001. Figure 4 Sup-
plement. A) Heatmaps showing binding of FOXA1, ANP32E and H2AZ 
at regions classified as either ANP32E or FOXA1 binding peaks in MCF-7 
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cells (n=35916). Regions sorted by average enrichment of FOXA1. B) 
Profile plot showing binding of H2A.Z in MCF-7 cells within regions from 
signatures 1, 2 and 3. Data from ChIP-Seq of MCF-7 cells. Figure 5 Sup-
plement. A) GSEA plots depicting gene ontology associations with high 
and low ANP32E expression levels for all tumors with RNA-seq data from 
the TCGA-BRCA project (n=1222). B) Boxplot of KI67 expression across 
tumor groups. P-value from one-tailed parametric t-test. C) Scatterplot 
showing the association between ANP32E and KI67 expression levels, with 
tumors colored by tumor group. R denotes Pearson correlation coefficient; 
p-values from Pearson’s product moment correlation coefficient (done 
for all tumors, and all tumors excluding group 1). D) GSEA plots depicting 
gene ontology associations with high and low ANP32E expression levels 
for non-Basal-L tumors (n=1110). FDR and NES values in A and D obtained 
within GSEA
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