Table 2.
Error rates for different OSCAR v2 datasets and all model architectures.
| OS-MNIST | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Variant | B | B-F | B-K | B-D | BT | BL | BLT | GLM | |
| Mono | Centered | ||||||||
| Random | |||||||||
| Stereo | Centered | ||||||||
| Random | |||||||||
| OS-fMNIST | |||||||||
| Variant | B | B-F | B-K | B-D | BT | BL | BLT | GLM | |
| Mono | Centered | ||||||||
| Random | |||||||||
| Stereo | Centered | ||||||||
| Random | |||||||||
| OS-YCB | |||||||||
| Variant | B | B-F | B-K | B-D | BT | BL | BLT | GLM | |
| Mono | All | ||||||||
| Stereo | All | ||||||||
Standard error based on five independent training runs. Training occurred for 100 epochs, batchsize 500. Best two performances per dataset are highlighted in bold.