Skip to main content
. 2021 Dec 11;2021:5895156. doi: 10.1155/2021/5895156

Table 3.

Layers and parameters of ResNet50.

Type of layers Outcome structure Number of parameters
Functional ResNet50 (Nil, 7 × 7 × 2048) 23587712
Conv_2 (2d) (Nil, 5 × 5 × 64) 1179712
Conv_3 (2d) (Nil, 3 × 3 × 64) 36928
Pooling (max) (Nil, 1 × 1 × 64) Null
Layer flatten (Nil, 64) Null
module_wrapper_8 (Nil, 512) 33280
module_wrapper_9 (Nil, 256) 131328
module_wrapper_10 (Nil, 128) 32896
module_wrapper_11 (Nil, 64) 8256
module_wrapper_12 (Nil, 32) 2080
module_wrapper_13 (Nil, 16) 528
module_wrapper_14 (Nil, 8) 136
module_wrapper_15 (Nil, 2) 18
Total number of parameters: 25,012,074; trainable parameters:
24,959,274; nontrainable parameters: 53,120