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Objectives. To investigate potential genetic biomarkers of peri-implantitis and target genes for the therapy of peri-implantitis by
bioinformatics analysis of publicly available data. Methods. The GSE33774 microarray dataset was downloaded from the Gene
Expression Omnibus (GEO). The differentially expressed genes (DEGs) between peri-implantitis and healthy gingival tissues
were identified using the GEO2R tool. GO enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were performed using the DAVID database and the Metascape tool, and the results were
expressed as a bubble diagram. The protein-protein interaction network of DEGs was constructed using the Search Tool for
the Retrieval of Interacting Genes (STRING) and visualized using Cytoscape. The hub genes were screened by the cytoHubba
plugin of Cytoscape. The potential target genes associated with peri-implantitis were obtained from the DisGeNET database
and the Open Targets Platform. The intersecting genes were identified using the Venn diagram web tool. Results. Between the
peri-implantitis group and the healthy group, 205 DEGs were investigated including 140 upregulated genes and 65
downregulated genes. These DEGs were mainly enriched in functions such as the immune response, inflammatory response,
cell adhesion, receptor activity, and protease binding. The results of KEGG pathway enrichment analysis revealed that DEGs
were mainly involved in the cytokine-cytokine receptor interaction, pathways in cancer, and the PI3K-Akt signaling pathway.
The intersecting genes, including IL6, TLR4, FN1, IL1β, CXCL8, MMP9, and SPP1, were revealed as potential genetic
biomarkers and target genes of peri-implantitis. Conclusions. This study provides supportive evidence that IL6, TLR4, FN1,
IL1β, CXCL8, MMP9, and SPP1 might be used as potential target biomarkers for peri-implantitis which may provide further
therapeutic potentials for peri-implantitis.

1. Introduction

In recent decades, dental implants have been widely used
for the restoration of missing teeth with high success rates
[1]. Peri-implantitis is a common complication of dental
implants that can result in implant failure. Peri-implantitis
can be defined as an inflammation of the peri-implant con-
nective tissue and progressive loss of the supporting bone
around the implants [2], and it is considered to be the lead-
ing cause of implant failure. According to previous litera-
ture, the approximate prevalence of peri-implantitis is 22%
(range: 1%–47%) and that of peri-implant mucositis is
43% (range:19%–65%) [3, 4]. Studies have shown that bac-

terial infection could be the cause of the peri-implantitis
and subsequent implant failure, and the various gene poly-
morphisms may be associated with the occurrence of peri-
implantitis [2].

Although the underlying pathogenic mechanisms of
peri-implantitis remain unclear, the excessive inflamma-
tory response due to the microbial biofilms on implants
and their toxins is believed to play an important role in
the occurrence of peri-implantitis [5, 6]. Therefore, the
immune-inflammatory response elicited by the bacterial
biofilm may be responsible for the gingival recession and
alveolar bone loss associated with peri-implantitis. Lipopoly-
saccharide can induce the cells of gingival and osseous tissues
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to overexpress proinflammatory cytokines including inter-
leukin- (IL-) 1β and IL-6 [7]. Different methods have been
used for treating peri-implantitis, such as mechanical
debridement, implant surface modifications, adjunctive anti-
biotic therapy, and surgery. Gene therapy might be consid-
ered as a therapeutic option in regenerative medicine for
peri-implant tissues [8].

In recent years, host modulation therapies are consid-
ered as a potential alternative for the treatment of peri-
implantitis [9]. This treatment method based on the effects
of inflammatory regulation not only promotes the efficacy
of traditional management approaches for peri-implantitis
but also reduces the risk of systemic disease and inflamma-
tion. Proinflammatory cytokines, such as IL-1β, IL-6, and
TNF-α, have been used as biomarkers to identify periodon-
titis and peri-implantitis [10, 11]. There are also many other
well-accepted biomarkers of tissue destruction and systemic
inflammation, including matrix metalloproteinase- (MMP-)
8, MMP-9, high-sensitivity C-reactive protein, TNF-α, and
IL-6, which are easily detected in both oral fluids and blood
samples [12–15]. Certain cytokine inhibitors such as TNF-α
antagonists and IL-1 receptor antagonists have exhibited
anti-inflammatory effects in periodontal diseases and may
be used for treating peri-implantitis [16, 17]. Further inves-
tigation of the underlying mechanism of peri-implantitis is
needed to develop rational treatment strategies.

In recent years, bioinformatics methods have been
widely used to analyze microarray data to identify differen-
tially expressed genes (DEGs). Numerous bioinformatics
tools and approaches have been developed, which could help
us to better understand the underlying mechanisms [18–20].
Scientific literature on peri-implantitis has increased rapidly
in recent years and particularly in the last 5 years [21]. How-
ever, few studies have focused on the application of bioinfor-
matics analysis to gain insights on peri-implantitis. The
study of Becker et al. showed that peri-implantitis and peri-
odontitis show different mRNA signatures, although they
share similar clinical characteristics [22]. In the present
study, to better understand the potential molecular bio-
markers and the potential therapeutic agents for peri-
implantitis, we used the GSE33774 microarray dataset and
bioinformatics tools. We downloaded mRNA expression
profiles from Gene Expression Omnibus (GEO, http://
www. http://ncbi.nlm.nih.gov/geo/). We identified the DEGs
between samples of peri-implantitis and healthy samples.
Gene Ontology (GO) is a major bioinformatics tool to anno-
tate genes and analyze the biological process of these genes
[23]. Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a widely used database that stores extensive data on
genomes, biological pathways, diseases, chemical substances,
and drugs. GO analysis is a common useful method for
large-scale functional enrichment research, wherein gene
functions can be classified into biological process (BP),
molecular function (MF), and cellular component (CC). In
the present study, KEGG pathway and GO functional
enrichment analyses were performed. The DisGeNET plat-
form and the Open Targets Platform (OTP) were used to
further investigate the coexpressed genes associated with
peri-implantitis. The findings of this study may help to pre-

dict the molecular mechanism and the potential therapeutic
targets of peri-implantitis.

2. Materials and Methods

2.1. Data Source and Identification of DEGs. The gene
expression dataset of GSE33774 analyzed in this study was
obtained from the GEO database (http://www.ncbi.nlm.nih
.gov/geo/) [24, 25]. GSE33774 was based on the Agilent
GPL platform GPL6244 (Affymetrix Human Gene 1.0 ST
Array (transcript (gene) version)). The GSE33774 dataset
contains seven gingival tissue samples of peri-implantitis,
seven gingival tissue samples of periodontitis, and eight
healthy gingival samples [22]. All of the data are freely avail-
able online, and this study did not involve any experiments
on humans or animals.

The DEGs between peri-implantitis samples and healthy
samples were analyzed using the GEO2R online analysis
tool (http://www.ncbi.nlm.nih.gov/geo/geo2r). The DEGs
with the threshold criterion of ∣log ðfold changeÞ ∣ ≥1:0 and
P value < 0.05 were considered to be significantly differen-
tially expressed.

2.2. GO and KEGG Pathway Enrichment Analyses of DEGs.
To analyze the function of DEGs, biological analyses were
performed using the online database DAVID [26, 27]. P <
0:05 was considered to be statistically significant. The
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Figure 1: Volcano maps of differentially expressed genes. Red
and green spots represent differentially expressed genes: red
spots represent upregulated genes and green spots represent
downregulated genes.
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Metascape tool (https://metascape.org) [28] was also used to
perform functional and pathway enrichment analysis of
DEGs, including BP, CC, MF, and KEGG pathway enrich-
ment analysis. A P value of <0.05 was considered to be the
cut-off criterion.

2.3. Protein-Protein Interaction (PPI) Network Construction
and Hub Gene Identification. The PPI network of DEGs
was constructed using the Search Tool for the Retrieval of
Interacting Genes (STRING, http://string-db.org) (version
11.0) online database [29], and an interaction with a com-
bined score of >0.40 (medium confidence interaction score)
was considered to be statistically significant. Subsequently,
the PPI network was visualized by Cytoscape software (ver-
sion 3.8.0) [30]. Hub genes were identified and visualized
using the CytoHubba plugin of Cytoscape [31]. The top
ten genes with high degree of connectivity in the PPI net-
work were identified as hub genes.

2.4. Prediction of the Gene-Disease Associations. To accu-
rately predict the gene-disease associations of peri-implan-
titis, the DisGeNET platform (http://www.disgenet.org/)
and the Open Targets Platform (OTP) (https://www
.targetvalidation.org/) were used. DisGeNET is an online
database that includes a collection of genes associated with
human diseases based on expert-curated databases and scien-
tific literature, and this database is publicly accessible [32].
The OTP provides evidence for human target-disease associ-
ations and tools that provide evidence-based systematic
prioritization of targets for disease treatment [33]. The genes
associated with peri-implantitis were exported from the

DisGeNET database and the OTP. The following search
terms were used in the DisGeNET database and the OTP
(UMLS:C2936258) and peri-implantitis (EFO: 1001390),
respectively. The intersecting genes of the top 10 hub genes
and the disease-associated genes obtained from the DisGe-
NET database and the OTP were identified using the Venn
diagram web tool (bioinformatics.psb.ugent.be/webtools/
Venn/). A gene-disease network around peri-implantitis
was generated by the DisGeNET Cytoscape plugin.

3. Results

3.1. Identification of DEGs. The microarray expression pro-
file of GSE33774 was selected in this study. We identified
205 DEGs including 140 upregulated genes and 65 downreg-
ulated genes based on the criteria of P < 0:05 and ∣logFC ∣
≥1:0. All DEGs were identified by comparing samples of
peri-implantitis with healthy gingival samples. Subsequently,
the volcano plots were generated for the identified DEGs
(Figure 1).

3.2. Functional Enrichment Analysis of DEGs. GO enrich-
ment analysis and the KEGG pathway enrichment analysis
of DEGs were performed using the online database DAVID
(Table 1). The enriched GO terms were divided into BP, CC,
and MF ontologies. The results indicated that for BP analy-
sis, the DEGs were mainly enriched in immune response,
inflammatory response, signal transduction, and cell adhe-
sion. For the CC terms, the DEGs were enriched in plasma
membrane, integral component of membrane, extracellular
exosome, extracellular space, and extracellular region. The

Table 1: The results of GO function analysis and KEGG pathway enrichment analysis (top 5 terms are listed).

Category Term Count P value

BP term GO:0006955~immune response 23 4:62E − 10
BP term GO:0006954~inflammatory response 20 1:51E − 08
BP term GO:0007165~signal transduction 20 0.032080

BP term GO:0007155~cell adhesion 19 1:38E − 06
BP term GO:0007186~G-protein-coupled receptor signaling pathway 17 0.024583

CC term GO:0016021~integral component of membrane 68 0.008933

CC term GO:0070062~extracellular exosome 43 0.004559

CC term GO:0005615~extracellular space 40 1:38E − 09
CC term GO:0005576~extracellular region 38 1:42E − 06
MF term GO:0004872~receptor activity 11 7:84E − 05
MF term GO:0004252~serine-type endopeptidase activity 10 0.001235

MF term GO:0002020~protease binding 7 5:84E − 04
MF term GO:0000977~RNA polymerase II regulatory region sequence-specific DNA binding 7 0.019798

MF term GO:0004888~transmembrane signaling receptor activity 7 0.022448

KEGG pathway hsa04060:cytokine-cytokine receptor interaction 14 8:47E − 06
KEGG pathway hsa05200:pathways in cancer 12 0.009391

KEGG pathway hsa05146:amoebiasis 11 6:57E − 07
KEGG pathway hsa04145:phagosome 11 1:54E − 05
KEGG pathway hsa04151:PI3K-Akt signaling pathway 11 0.010471
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MF analysis showed that the DEGs were enriched in recep-
tor activity, protease binding, RNA polymerase II regulatory
region sequence-specific DNA binding, and transmembrane
signaling receptor activity. The results of the KEGG pathway
enrichment analysis showed that DEGs were mainly
enriched in cytokine-cytokine receptor interaction, path-
ways in cancer, amoebiasis, phagosome, and the PI3K-Akt
signaling pathway. The results obtained by enrichment anal-
ysis were illustrated by a bubble diagram (Figure 2). The
results of the enrichment analysis of DEGs performed by

Metascape are shown in Figure 3. DEGs are mainly concen-
trated in response to the bacterium and immune effector
process. DEGs associated with innate immune responses
and defense responses may play an important role in inflam-
mation associated with peri-implantitis.

3.3. Analysis of the PPI Network and Identification of Hub
Genes. Protein interactions among the DEGs were predicted
with STRING tools. A total of 143 nodes and 601 edges were
involved in the PPI network, as shown in Figure 4(a). The
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Figure 2: Results of GO and KEGG analysis results of differentially expressed genes: (a) KEGG pathway enrichment results; (b) GO
biological process enrichment results; (c) GO cell component enrichment results; (d) GO molecular function enrichment results. The x
-axis represents gene ratio, and the y-axis represents GO terms. The size of each circle indicates gene count. The color of circles
represents different -log10(P.values).
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top 10 genes according to their degree of connectivity in the
PPI network were identified as hub genes (Figures 4(b) and
4(c)). The results showed that IL6, TLR4, FN1, IL1β,
MMP9, CXCL8, CXCR4, CXCL1, PECAM1, and SPP1 were
identified as hub genes (Table 2). Among these genes, IL-6
and TLR4 showed the highest node degrees, suggesting that
they may play important roles in peri-implantitis. All the 10
hub genes were upregulated in peri-implantitis. As shown in
Figure 4(c), all hub genes interact with each other directly.
The hub genes were closely related to the results of GO

and KEGG pathway enrichment analyses (Table 3). As shown
in Table 3, CXCL8, CXCL1, IL-6, IL-1β, and TLR4 are
involved in the immune response (GO:0006955), while
CXCL8, CXCR4, CXCL1, IL-6, IL-1β, SPP1, and TLR4 are
involved in the inflammatory response (GO:0006954).
CXCL8, CXCL1, IL-6, and IL-1β are directly involved in the
cytokine-cytokine receptor interaction pathway (hsa04060).

3.4. The Potential Target Genes Associated with Peri-
Implantitis. Sixty-two target genes associated with peri-
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Figure 3: DEG enrichment results obtained using Metascape: (a) significantly enriched GO terms and KEGG pathways of DEGs; (b)
network contact of GO terms and KEGG pathways.
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implantitis were downloaded from the DisGeNET database,
and 217 potential target genes were obtained from the OTP.
The intersecting genes, including IL-6, TLR4, FN1, IL-1β,
CXCL8, MMP-9, and SPP1, were identified using the Venn
diagram web tool (Figure 5(a)). The gene-disease network
around the peri-implantitis was generated by using the Dis-
GeNET Cytoscape plugin (Figure 5(b)).

4. Discussion

In the present study, bioinformatics methods were used to
analyze the critical genes and pathways that were associated

with peri-implantitis using the GSE33774 microarray and
bioinformatics tools. By using the GSE33774 microarray
dataset, Becker et al. found that peri-implantitis and peri-
odontitis show different mRNA signatures [22]. In the pres-
ent study, we investigated the DEGs between seven gingival
tissue samples of peri-implantitis and eight healthy gingival
samples by using the GSE33774 dataset. We examined a
total of 13,057 DEGs, of which 205 DEGs were considered
for further studies and 10 hub genes were identified. Poten-
tial disease-related genes were collected from the DisGeNET
database and the OTP. The DisGeNET database has been
used to study a variety of biomedical issues, and it contains
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Figure 4: (a) Protein-protein interaction network of DEGs. (b) The top 10 hub genes in the PPI network with neighbors and expanded
network. (c) Subnetwork of the top 10 hub genes from the PPI network.
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one of the largest publicly available collections of genes and
variants related to human diseases for investigating the
molecular basis of specific diseases [32]. The OTP provides
disease-centric or target-centric workflows that facilitate tar-
get selection and validation [33]. The validity was verified by
intersecting the hub genes with the potential target genes
obtained from the DisGeNET and OTP. Finally, the poten-
tial target genes, namely, IL-6, TLR4, FN1, IL-1β, CXCL8,
MMP-9, and SPP1, were found to be associated with peri-
implantitis, and our results were consistent with those of
previous studies [16, 34].

A previous study showed that osteoclastogenesis-related
cytokines may be associated with the occurrence and the
severity of peri-implantitis [35]. Moreover, the proinflam-
matory cytokines, such as IL-1β, IL-6, and TNF-α, have been
used as biomarkers to diagnose periodontitis and peri-
implantitis [11]. Analysis of cytokine levels may help to con-
firm the early diagnosis of peri-implantitis in high-risk
patients. In vitro experiments have shown that the levels of
proinflammatory cytokines increase in peri-implantitis, and
these levels significantly decrease after clinical treatment
[34]. In the present study, our results showed that the proin-
flammatory cytokines IL-6, IL-1β, and CXCL8 were upregu-
lated in peri-implantitis. The monitoring of TNF-α, CXCL8,
and IL-1β levels could be considered as one of the diagnostic
elements [36].

For the BP terms, the DEGs were enriched in the immune
response and inflammatory response, and this result was con-
sistent with that of previous studies [37]. For the CC terms of
GO, the DEGs were enriched in the integral component of the
membrane, which included 68 DEGs. In the MF analysis, the
DEGs were the most significantly enriched in the immune
response, inflammatory response, signal transduction, and
cytokine-cytokine receptor interaction pathway. The hub
genes play an important role in understanding the biological
mechanism of peri-implantitis. The hub genes were closely
related to the results of GO and KEGG pathway enrichment
analyses as shown in Table 3. Our findings showed that
the CXCL8, IL-6, IL-1β, and TLR4 genes are related to
immune response (GO:0006955) and inflammatory response
(GO:0006954). The CXCL8, IL-6, and IL-1β genes are
directly involved in the cytokine-cytokine receptor interac-

tion pathway (hsa04060). The hub gene IL-6 is a cytokine
that stimulates immune response and is upregulated in
peri-implantitis [37]. SPP1 is also known as OPN, and it is
a type of osteoimmunoinflammatory marker related to the
inflammation and regulation of cytokine production [17].

Deng et al. [38] found that TLR4 signaling may mediate
inflammation and bone resorption in peri-implantitis through
the regulation of B cell infiltration, the RANKL/OPG ratio,
and differential inflammatory cytokine production. Previous
studies have shown that the anti-inflammatory microRNA
miR-146a enhances the inhibition of peri-implant bone
resorption through the regulation of TLR2/4 signaling [39]
and Wnt5a involved in TLR4 signaling induces the produc-
tion of inflammatory cytokines and causes breakdown of
extracellular matrix in peri-implantitis [40]. The micro-
RNAs miR-146a and miR-146b are the most common
members of the miR-146 family in periodontitis lesions,
and miR-146a may protect gingival tissue from immune-
mediated periodontal inflammation [41]. Correspondingly,
the KEGG pathway analysis showed that these DEGs were
mapped to cytokine-cytokine receptor interaction, pathways
in cancer, amoebiasis, phagosome, and the PI3K-Akt signal-
ing pathway, all of which were consistent with the results of
previous studies.

Regarding the other target genes, the expression level of
FN1 can reflect the progress of periodontitis or peri-
implantitis. The mRNA expression of FN1 in the peri-
implantitis group was significantly higher than that in the con-
trol group [42]. Cellular fibronectin occurs abundantly in the
periodontium andmay be associated with the state of implants
[40]. MMP-9 is involved in the progression of peri-implantitis
and is correlated with LOX-1 and the ERK1/2-mediated sig-
naling pathway [43]. However, the regulatory mechanisms of
MMP-9 in peri-implantitis need to be well elucidated. The
LOX-1/MMP-9 signaling pathway and OPN may be potential
drug targets to decrease the levels of proinflammatory cyto-
kines and increase apoptosis in peri-implantitis [37, 43].

Host modulation therapy with anti-inflammatory drugs
has been used as a potential method for treating periodon-
titis [44]. Based on the present literature, many immuno-
inflammatory molecules can be considered as potential
biomarkers for diagnosis of peri-implantitis [45].

Table 2: Top 10 hub genes with higher degree of connectivity.

Gene symbol Gene description Degree

IL-6 Interleukin-6 46

TLR4 Toll-like receptor 4 43

FN1 Fibronectin 1 33

IL-1β Interleukin-1 beta 32

CXCL8 C-X-C motif chemokine ligand 8 32

MMP-9 Matrix metallopeptidase-9 31

CXCR4 C-X-C motif chemokine receptor 4 30

CXCL1 C-X-C motif chemokine ligand 1 27

PECAM1 Platelet and endothelial cell adhesion molecule 1 26

SPP1 Secreted phosphoprotein 1 22
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Table 3: Top 10 hub genes that were closely associated with the results of GO and KEGG analyses.

Term Genes

GO:0006955~immune response
CCR1, XBP1, CXCL8, GPR65, AQP9, NCF4, CXCL1, SERPINB9, SAMHD1, THBS1, LAX1,
C3, IL-6, IGKC, RGS1, IL-1β, PXDN, ENPP2, CD27, CD36, CCL18, TLR4, HLA-DQB1

GO:0006954~inflammatory response
CCR1, CXCL8, CD180, CYBB, CXCR4, CXCL1, PTGS2, THBS1, PIK3CG,

C3, IL-6, THEMIS2, CXCR1, IL-1β, SPP1, C3AR1, CD27, CD14, CCL18, TLR4

GO:0007165~signal transduction CD53, GABRP, SH3GL3, CSF3R, CXCL8, CXCL1, ABCC9, HTR3A, ARHGAP15, LYVE1,
C3, EVI2A, CHL1, RGS1, IL-1β, MRC1, PECAM1, TNFRSF17, CD38, CCL18

GO:0007155~cell adhesion NLGN4Y, CCR1, CSF3R, LAMB4, TNC, FN1, LYVE1, THBS1, CTGF, THEMIS2,
SELL, FAP, CHL1, BOC, SPP1, PECAM1, CNTN1, SLAMF7, CD36

GO:0007186~G-protein-coupled
receptor signaling pathway

CXCL8, GPR34, GPR65, CXCR4, CXCL1, AREG, PIK3CG, C3, SFRP4, SFRP2, CXCR1, RGS1,
C3AR1, ENPP2, CCL18, ADGRL4, TGM2

GO:0005886~plasma membrane

CSF3R, GPR65, AQP9, SLC2A3, TREM1, PIK3CG, CTGF, RGS5, RGS2, CHL1, RGS1, BOC,
MRC1, ENPP2, C3AR1, CD38, CD36, LRRFIP1, TGM2, GUCY1A3, CD53, IFNAR2, FCER1G,
FCRL5, ANXA3, DCC, CYBB, RHOH, HTR3A, ABCC9, PRLR, LAX1, CDHR1, PECAM1,
SLC27A6, PLIN2, MAPT, DSC1, TLR4, HLA-DQB1, SLC47A2, NPR3, KCNA3, CXCR4,
SAMHD1, SLC7A2, RASGRP3, P2RY8, C3, CD79A, IGKC, CXCR1, GPC3, SLAMF7,

TNFRSF17, SLAMF6, CD14, CCR1, MSR1, GABRP, IL-10RA, MERTK, LYVE1, PTPRC,
FCGR2A, DLG2, SELL, FAP, VNN2, CD207, CNTN1, CD27, ADGRL4, CDK14, F2RL2, CD200

GO:0016021~integral component
of membrane

CSF3R, DENND5B, GPR65, AQP9, LRMP, SLC2A3, TREM1, AREG, MS4A4A, AADACL2,
CHL1, ENPP2, C3AR1, CD38, CD36, UTY, GUCY1A3, CD53, IFNAR2, ST6GAL1, FCER1G,

GPR34, FCRL5, DCC, CYBB, HTR3A, ABCC9, PRLR, LAX1, SFRP4, SFRP2, CDHR1,
PECAM1, SLC27A6, CFAP54, DSC1, HLA-DQB1, SLC47A2, NPR3, CXCR4, SEL1L3, P2RY8,
CD79A, CXCR1, SLITRK3, SLAMF7, TNFRSF17, SLAMF6, CCR1, MSR1, GABRP, XBP1,
IL-10RA, MERTK, LYVE1, SCIMP, TMEM156, PTPRC, FCGR2A, EVI2A, SELL, FAP,

CD207, ESYT3, EVI2B, ADGRL4, F2RL2, CD200

GO:0070062~extracellular exosome

KPRP, SH3GL3, NPR3, CXCR4, PLAT, SLC2A3, THBS1, C3, IGKC, CHL1, GPC3, SPP1,
CTSH, CD38, SLAMF6, CD14, TGM2, CD53, SERPINB4, SERPINB1, ST6GAL1, KRT3,
ANXA3, KRT2, FN1, KLK14, SERPINB9, KRT76, LYVE1, MMP-9, ALDH1A3, PTPRC,
FCGR2A, FABP4, IL-1β, PXDN, MGP, PI15, PECAM1, CNTN1, CD27, DSC1, MS4A1

GO:0005615~extracellular space
CXCL8, TNC, PLAT, CXCL1, THBS1, AREG, CTGF, C3, SRPX2, IGKC, GPC3, SPP1, ENPP2,
CTSH, CD14, CD36, CCL18, NLGN4Y, SRGN, IFNAR2, SERPINB4, SERPINB1, KRT2, MMP-
3, FN1, KLK14, SERPINB9, IGFL1, MERTK, MMP-9, SFRP4, IL-6, SFRP2, FAP, TCN1, IL1-β,

PXDN, PECAM1, MS4A1, BPIFC

GO:0005576~extracellular region
CSF3R, OLFML2B, CXCL8, LUZP2, TNC, PLAT, CXCL1, TREM1, THBS1, CTGF, C3,

AADACL2, IGKC, SPP1, LIPM, LIPK, CD14, SRGN, IFNAR2, MMP-1, MMP-3,
FN1, MMP-9, PRLR, MFAP5, GZMK, SFRP4, IL-6, SFRP2, FNDC1, TCN1, IL-1β,

MZB1, CD27, PLIN2, SPINK9, F2RL2, PNLIPRP3

GO:0004872~receptor activity GUCY1A3, NLGN4Y, CSF3R, IL-10RA, CD180, MRC1, TNFRSF17, TREM1,
TLR4, LYVE1, CD200

GO:0004252~serine-type
endopeptidase activity

GZMK, C3, IGKC, FAP, MMP-1, MMP-3, KLK14, CTSH, PLAT, MMP-9

GO:0002020~protease binding SERPINB4, XBP1, SELL, FAP, CHL1, FN1, SERPINB9

GO:0000977~RNA polymerase II
regulatory region sequence-specific
DNA binding

MEF2C, XBP1, HLF, ELF5, EAF2, ZFY, BARX2

GO:0004888~transmembrane signaling
receptor activity

CD79A, EVI2A, DCC, MRC1, CD27, TLR4, LYVE1

hsa04060:cytokine-cytokine receptor
interaction

CCR1, IFNAR2, CSF3R, CXCL8, IL-10RA, CXCR4, CXCL1, PRLR, IL-6,
CXCR1, IL-1β, TNFRSF17, CD27, CCL18

hsa05200:pathways in cancer
IL-6, CSF3R, CXCL8, MMP-1, DCC, LAMB4, FN1, CXCR4, PTGS2, MMP-9,

PIK3CG, RASGRP3

hsa05146:amoebiasis SERPINB4, IL-6, SERPINB1, CXCL8, IL-1β, LAMB4, FN1, SERPINB9, CD14, TLR4, PIK3CG

hsa04145:phagosome C3, MSR1, FCGR2A, NCF4, MRC1, CD14, CD36, NOS1, THBS1, TLR4, HLA-DQB1

hsa04151:PI3K-Akt signaling pathway IFNAR2, IL-6, CSF3R, LAMB4, SPP1, TNC, FN1, THBS1, PRLR, TLR4, PIK3CG
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5. Conclusion

Our bioinformatics analysis identified 205 DEGs between
gingival tissues of peri-implantitis and healthy tissues based
on the gene expression datasets obtained from the GEO
database, and the potential therapeutic target genes were val-
idated by the analysis of the DisGeNET database and the
OTP. We found that IL-6, TLR4, FN1, IL-1β, CXCL8,
MMP-9, and SPP1 might be used as potential biomarkers
for the diagnosis of peri-implantitis. Further studies are
needed to reveal the potential association of these genes with
peri-implantitis and to determine potential therapeutic drug
targets for peri-implantitis.
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