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Abstract

The binding of small molecule ligands to protein or nucleic acid targets is important to 

numerous biological processes. Accurate prediction of the binding modes between a ligand and a 

macromolecule is of fundamental importance in structure based structure-function exploration. 

When multiple ligands with different sizes are docked to a target receptor, it is reasonable 

to assume that the residues in the the binding pocket may adopt alternative conformations 

upon interacting with the different ligands. In addition, it has been suggested that the entropic 

contribution to binding can be important. However, only a few attempts to include the side 

chain conformational entropy upon binding within the application of flexible receptor docking 

methodology exist. Here, we propose a new physics-based scoring function that includes both 

enthalpic and entropic contributions upon binding by considering the conformational variability 

of the flexible side chains within the ensemble of docked poses. We also describe a novel hybrid 

searching algorithm that combines both molecular dynamics (MD) based simulated annealing and 

genetic algorithm crossovers to address enhanced sampling of the increased search space. We 

demonstrate improved accuracy in flexible cross-docking experiments compared with rigid cross-

docking. We test our developments by considering five protein targets, thrombin, dihydrofolate 

reductase(DHFR), T4 L99A, T4 L99A/M102Q and PDE10A, which belong to different enzyme 

classes with different binding pocket environments, as a representative set of diverse ligands and 

receptors. Each target contains dozens of different ligands bound to the same binding pocket. 

We also demonstrate that this flexible docking algorithm may be applicable to RNA docking 
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with a representative riboswitch example. Our findings show significant improvements in top 

ranking accuracy across this set, with the largest improvement relative to rigid, 23.64%, occurring 

for ligands binding to DHFR. We then evaluate the ability to identify lead compounds among 

a large chemical space for the proposed flexible receptor docking algorithm using a subset of 

the DUD-E containing receptor targets MCR, GCR and ANDR. We demonstrate that our new 

algorithms show improved performance in modeling flexible binding site residues compared to 

DOCK. Finally, we select the T4 L99A and T4 L99A/M102Q decoy sets, containing dozens of 

binders and experimentally validated non-binders, to test our approach in distinguishing binders 

from non-binders. We illustrate that our new algorithms for searching and scoring have superior 

performance to rigid receptor CDOCKER as well as AutoDock Vina. Finally, we suggest that 

Flexible CDOCKER is sufficiently fast to be utilized in high-throughput docking screens in the 

context of hierarchical approaches.

Graphical Abstract

INTRODUCTION

The development of new drugs with traditional methods can cost anywhere in the range of 

400 million to 2 billion dollars, with synthesis and testing of lead analogs being a large 

contributor to that sum.1 A successful in silico docking protocol can save a large amount 

of money and time, and this has been a focus of development in the field for decades. 

Generally speaking, docking predicts the orientation and conformation of a small molecule 

(ligand) in the binding site of the target protein and estimates its binding affinity.2–4 Docking 

involves two main components: searching and scoring.3 In one element, searching, one 

generates multiple structures of a ligand within the constraints of the receptor binding site. 

The application of a scoring function, which can be classified as physics based, empirical or 

hybrid,5–8 then ranks these conformations and is expected to differentiate the correct binding 

pose from incorrect ones through the assumption that the correct binding pose is at the top 

rank.

In high-throughput docking for hit identification, multiple small ligands with different 

sizes are docked to the target receptor. During this process, it is reasonable to assume 

the binding pocket undergoes conformational changes, and this has been captured 

experimentally.9–12 Today, multiple off-the-shelf protein-ligand flexible docking programs, 

either commercial or free, are available for use, such as Glide,13,14 ROSETTALIGAND,15 
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Flexible CDOCKER16,17 and AutodockFR.18 As one notable example, the flexible docking 

method in Glide combines induced-fit docking and molecular docking (IFD-MD).13,14 This 

method shows high accuracy in ranking native-like poses as top rank compared with rigid 

docking. However, the average computational cost for an IFD-MD calculation is 400 CPU 

hours and 50 GPU hours,14 which is similar to applications of AutodockFR, making it less 

likely to be applied in high-throughput experiments.

In a previous study we explored flexible receptor docking using the Seq17 dataset,18 which 

comprises 17 pairs of apo-holo structures that were selected to represent a wide range of 

receptors, both Flexible CDOCKER and AutodockFR showed a higher accuracy in finding 

a native-like pose compared with rigid docking.17,18 However, both docking algorithms 

performed less well in ranking the native-like pose as top rank.17,18 For Flexible CDOCKER 

with parallel simulated annealing running on one GPU, the average wall time required 

to compute the ensemble of ligand-receptor poses necessary to identify a cluster of native-

poses for one protein-ligand complex was about 1hr, more than a 10-fold improvement 

in computing time compared to AutodockFR.17 Given this relatively high efficiency in 

finding a native-like pose in Flexible CDOCKER, in the current work we focus on further 

improvements in the search algorithm and on improving the scoring function for flexible 

docking.

Flexible CDOCKER16 uses a physics-based scoring function (eq 1) and does not include 

entropic contributions, which have been reported to be important in many cases.19–22 

Machine learning based scoring functions are constructed by characterizing protein-ligand 

complexes using feature vectors comprising the number of occurrences of specific protein-

ligand atom type pairs interacting within predefined distance thresholds,23,24 using different 

biochemical descriptors to characterize the protein-ligand interaction,25 or assigning 

different weights to physics-based scoring functions.26 Empirical scoring functions, such as 

X-SCORE, propose an additional term for the calculation of conformational entropy based 

on the number of rotatable bonds in the ligand.27 However, both empirical approaches and 

machine learning based approaches may not serve to capture the side chain conformational 

entropy change upon binding because the number of the flexible side chain rotatable bonds 

does not change when binding to two different ligands. In the current work, we seek to 

improve the general physics-based scoring function by including an entropy calculation 

based on the microscopic definition of entropy as described below. We test this idea with a 

range of different datasets that include multiple receptors and ligands.

ΔGbinding = Eprotein internal energy + Eligand internal energy + Evdw + Eelec (1)

METHODS

CDOCKER Algorithm Overview

There are three main elements to the Flexible CDOCKER algorithm: the receptor and ligand 

representation, the newly developed scoring function, which includes the calculation of 

side chain conformational entropy, and a corresponding updated hybrid searching algorithm 
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that combines molecular dynamics (MD) based simulated annealing2,3,16,17,28 and genetic 

algorithm crossovers.2,3,18,29,30 In the current study, the rigid docking algorithm and MD 

based simulated annealing parameters are the same as reported in our previous studies and 

are included in supplementary Table S1.16,17

Receptor and Ligand Representation

All structure files were acquired from the PDB and had a structural resolution better than 

2.0 Å. A complete list of the protein and RNA PDB codes are included in supplementary 

Table S2. MOE (Molecular Operating Environment)31 was used to predict the protonation 

state of the ligands and cofactor at pH 7.4. The dominant protonation state of the compound 

is selected for the following docking experiments. Open Babel32 was used to generate 

random ligand conformations, ParamChem33,34 was used to prepare the ligand topology and 

parameter files and the MMTSB tool set35 was used to cluster the binding poses. The ligand 

is minimized with CHARMM in vacuum before the docking experiments. Clustering used 

the tool cluster.pl with a 1 Å cutoff radius for the K-means clustering based on ligand heavy 

atom RMSD. In preparing each receptor for docking experiments, all co-crystal structures 

from the same receptor were superimposed to each other based on the backbone root-

mean-square deviation of atomic positions (RMSD) using PyMOL36 to provide a common 

reference frame. The CHARMM C36 force fields37 were used and docking was performed 

in CHARMM38 with the CHARMM/OpenMM parallel simulated annealing feature.17 The 

RMSD cutoff to identify native-like poses is set to be 2.5 Å for flexible docking and 2.0 Å 

for rigid docking, to be consistent with the evaluation criteria in the previous studies.17,18,28 

For completeness, in our cross-docking experiment, we record the pose prediction accuracy 

as a function of RMSD cutoff and report the results in supplementary Figures S2, S3 and S4.

The idea of flexible docking is to allow conformational changes of receptor side chains 

to occur so that the ligand can identify its native-like pose. Incorporation of protein 

flexibility has become more feasible due to advances in computational resources. In drug 

discovery, one often starts with one or a few co-crystal structures and uses flexible docking 

experiments to identify the native-like pose for ligands that do not yet have a co-crystal 

structure. To mimic this process, for each receptor-ligand holo complex in a cross-docking 

dataset with N crystal structures, we develop a unique definition of the flexible side chains 

for each receptor based on the distance between ligand heavy atoms and the corresponding 

target structure side chain atoms. We identified a receptor side chain as flexible if at least 

one pairwise interaction of the ligand heavy atoms and the side chain was within a 4Å 

cutoff.17,18 All side chain atoms from the C-alpha carbon are considered flexible. For each 

complex used in this study, the receptor flexible residues are listed in the supplementary 

file (flexible-residues.xlsx). The average number of flexible side chains in this study is 10. 

The distribution of flexible side chains and rotatable bonds within the ligands are shown in 

Figure 1.

For the cross-docking experiment against a given receptor with flexible side chains defined 

as noted above, N − 1 ligands were docked to this structure with no changes in flexible 

side chain selections. The cross-docking experiments were performed for all N receptor 

structures, each with a potentially different set of flexible side chains depending on the 
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bound ligand in that receptor. Thus, we have a total of N × (N − 1) cross-docking 

experiments for a dataset with N crystal structures. For completeness, we also report the 

N self-docking results as well. In the real application, we note that one could incorporate 

more structures with varied ligand interfaces to the receptor if they were available, 

thereby expanding the size of the flexible side chain region to accommodate the additional 

knowledge about the targeted receptor. If one does not have any knowledge of the bound 

state except a targeted binding pocket, one could perform some rigid docking trials to 

identify side chains that may interact with the ligands and choose the flexible region in this 

manner.

Benchmark Dataset

In high throughput screening, the more common case is that there exits a large number of 

different ligands docked to the same receptor. Thus, we use the 6 datasets shown in Table 

1, which cover different receptor classes and binding environments. Each receptor contains 

several ligands. All co-crystal structures from the same receptor class share the same binding 

pocket. A brief description of the data sets and our rationale for choosing each is given in the 

following.

T4 L99A dataset.—dataset was chosen to provide a simple model where the binding 

pocket is small, buried and hydrophobic and is comprised of a total of 23 different holo 

structures. It was chosen to test the performance of the flexible docking algorithm for the 

case of a small, buried and hydrophobic binding pocket.39

T4 L99A/M102Q dataset.—This dataset is examined to provide a simple model where the 

binding pocket is small, buried and contains only one hydrophilic side chain.39 It contains 

a total of 21 different holo structures. It has been included to test the performance of our 

flexible docking algorithm when the binding pocket that is small, buried and hydrophobic 

with only one hydrophilic side chain presented.

Riboswitch dataset.—Many research groups have developed different docking 

algorithms for RNA-ligand docking.40–49 The common feature in these studies is that the 

majority of the investigated targets are complex, including large and flexible ligands and 

water-mediated interactions. These are still challenging in the current protein-ligand docking 

methodologies and make it difficult to distinguish these effects from issues specific to 

RNA-ligand flexible docking. Therefore, we selected a rather simple RNA-ligand docking 

system developed by the Brenk group, which allows us to focus on the impact of side chain 

flexibility on docking accuracy (i.e., backbone RMSD less than 2 Å).50 There are only 4 

different holo structures in this dataset. Compared with the two T4 datasets, this dataset also 

serves the purpose to test the performance of our flexible docking algorithm for cases of a 

small, buried and hydrophilic binding pocket.

PDE10A dataset.—This dataset contains 44 different holo structures of phosphodiesterase 

10A (PDE10A), which is a kinase. There are either two nickel ions or one zinc ion and 

one magnesium ion included as part of the binding pockets. The nickel ions have not been 

parameterized in the CHARMM force field. Since all of the ions have a +2 charge and 
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occupy similar positions in the binding pocket, we used the same zinc ion and magnesium 

ion in the cross-docking experiments. This dataset is built to test the performance of the 

flexible docking algorithm for cases where there are ions in the binding pocket.

DHFR dataset.—This dataset contains 11 different holo structures of dihydrofolate 

reductase (DHFR), which is a folate enzyme.39 It has a more open binding site displaying 

both polar and apolar binding regions. Nine of the holo structures have a common 

cofactor NDP (NADPH dihydro-nicotinamide-adenine-dinucleotide phosphate). One of the 

holo structures (PDBID: 1DR3) has a slightly different cofactor TAP (7-thionicotinamide-

adenine-dinucleotide phosphate). The other holo structure (PDBID: 2CD2) also has a 

slightly different cofactor NAP (NADP nicotinamide-adenine-dinucleotide phosphate). All 

of the cofactors occupy the same position near the binding pocket. To be consistent in the 

cross-docking experiments, we used the same cofactor NDP. The main purpose of including 

this set of structures was to increase the variability of our dataset and test our flexible 

docking algorithm when cofactors are present.

Thrombin dataset.—This dataset contains 14 different holo structures of thrombin, which 

is a serine protease.39 The ligands from this dataset are the largest. The binding pocket is 

also more open than the others. This dataset is built to test our flexible docking algorithm 

with large ligands.

Flexible Docking Scoring Function with Side Chain Entropic Contributions

Upon binding, the change in free energy can be represented by eq 2. In cases of 

differentiating the correct binding pose from incorrect ones, the same ligand is docked 

to the receptor multiple times and generates multiple docking poses. Since the ligand and 

protein always start from the same initial state, Ginitial will be the same for all trials. Thus, 

only Gfinal needs to be calculated for pose identification. The enthalpic contribution (Hfinal), 

including protein-ligand interactions, ligand internal energy and protein internal energy, 

have been well-established in the previous Flexible CDOCKER scoring function.16,28 

The entropic contribution (Sfinal) can be separated into contributions from solvation and 

conformational entropy. Since we consistently dock the same ligand to the same binding 

pocket in one measurement, we assume the solvation contribution is approximately the same 

for different docking poses, and we suggest that it can be neglected. Thus, the flexible 

scoring function can be simplified to eq 3:

ΔGbinding = Gfinal − Ginital
= Hfinal − Hinitial − T Sfinal − Sinitial

(2)

ΔGbinding = Eprotein − ligand interaction + Eprotein internal energy
+ Eligand internal energy − TSconformational entropy

(3)

For a given flexible docking measurement, the docking poses are clustered based on the 

ligand heavy atoms. Thus, in one ligand cluster, all ligand conformations are similar 

to each other. Therefore, the conformational entropy of the ligand within that cluster is 
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assumed to be zero. However, as shown in figure 2, the receptor side chains can adopt 

different conformations, which results in a non-zero side chain conformational entropy and a 

variation of enthalpy within one cluster. Here, we use the microscopic definitions to compute 

the side chain conformational entropy upon binding.

Protein side chain conformational states.—The amino acid side chain 

conformational states can be classified by the dihedral angle of the rotamers, an idea 

originally used for computing side chain conformational entropy in protein unfolded 

states.51 Only the dihedral angle χ, involving four heavy atoms, is considered as a rotamer. 

The IUPAC-IUB convention is used to define trans (±180°), gauche− (g−,−60°) and gauche+ 

(g+,+60°) conformations for a rotamer.52 Gly, Ala and Pro are excluded. Because of the 

symmetry in the benzyl group and phenyl group in Phe and Tyr respectively, these two 

amino acids have χ2 rotamer conformations of 2 instead of 3. The maximum number of 

states that one amino acid can access is listed in Table 2.

RNA side chain conformational states.—The increasing number of RNA crystal 

structures enables a structure-based approach to the discovery of new RNA-binding 

ligands,53,54 and a number of RNA-ligand docking software, such as AutoDock,41 

DOCK41,49 and RiboDock,45 are available. RNA can adopt different three dimensional 

structures that are critical for its function. Thus, it is important to consider receptor 

flexibility during docking. DOCK49 rescores the docking poses with receptor side chains 

being flexible, and RiboDock45 uses an ensemble of receptor structures to mimic the 

receptor flexibility. Here, we want to expand the application of our new flexible docking 

algorithm to RNA-ligand docking, which allows the receptor side chains and ligand 

configurations to explore their conformational space simultaneously.

We define the sugar and phosphate group in the nucleotide monophosphate as the backbone 

of RNA and the nucleobase is considered as the flexible side chain. Thus, only one dihedral 

angle χ is presented in all 4 bases. Instead of using the IUPAC-IUB convention, we rotate 

this dihedral angle and record the total energy for each nucleotide monophosphate. This 

result is shown in the supplementary information (in Figure S1) and the conformational 

states determined by this protocol are summarized in Table 3.

Final flexible docking scoring function.—For a specific side chain in a given ligand 

cluster of size N, the conformational entropy of this side chain is calculated using the 

microscopic definition of entropy (eq 4). The state of a side chain is a function of all 

dihedral angles in that side chain. Different side chains are considered independent of each 

other.

Sside cℎain conformation = − kB∑
j

pjln pj

pj = number of side cℎains in state j
N

state j = f χ1, χ2, …, χn

(4)
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As we mentioned above, differences in structural conformations result in a variation of 

enthalpy in one cluster. For the same cluster, the system can be treated as a classical and 

discrete canonical ensemble. Each docking pose in this cluster is one state. The probability 

of a docking pose in state j can be calculated based on its energy. Since the entropy for all 

ligands in a given cluster is a constant, we can simplify the partition function and calculate 

the ensemble average of the enthalpic contributions with the following equation (eq 5):

pj = e−βΔGbinding, j

∑ie
−βΔGbinding,i

= e−β Hj − TSj

∑ie
−β Hi − TSi

= e−βHjeβTSj

∑ie
−βHieβTSi

= e−βHj

∑ie
−βHi

H = ∑
j

pjHj
(5)

By using an ensemble average of the enthalpy, the minimum energy pose, which has 

the largest weight among the cluster members, will be chosen as the best individual 

(representative) of that cluster. Therefore, we reach the final equation (eq 6). The 

temperature is set to be 298K in all docking experiments in the current study.

ΔGbinding = Eprotein − ligand interaction + Eprotein internal energy
+ Eligand internal energy + kBT ∑

all side cℎains
∑

j
pjln pj (6)

New Hybrid Searching Algorithm

To further augment sampling in the context of flexible receptor side chains, we propose a 

hybrid search algorithm for Flexible CDOCKER that combines molecular dynamics (MD) 

based simulated annealing2,3,16,28 and a continuous genetic algorithm.2,3,18,29,30,55,56 In 

genetic algorithms, the genome is the set of variables to optimize. A given set of values for 

these variables comprises a docking solution and is called an individual. In this study, these 

variables are the coordinates of the ligand and flexible side chains of the receptor. Following 

the ideas of hyperplane sampling in a discrete genetic space, where each individual 

(potential solution) is considered to be a hyperplane and the competition among different 

hyperplanes is reflected by the population55, we cluster the docking poses and each cluster 

is considered to be a hyper-surface partially specified by the coordinates of the ligands, 

where the size of the cluster reflects the competition among different hyper-surfaces. The 

clustering we perform identifies common basins in the docking energy landscape of the 

ligand by identifying the clusters of ligands possessing similar positions and configurations, 

determined by clusters based on the ligand heavy atom RMSD with a radius cutoff of 1 Å. 

We combine the MD based simulated annealing algorithm to optimize the results by local 

minimization and redistributing the population of different hyper-surfaces by crossing genes 

comprised of ligand positions and conformations and flexible side chain conformations. The 

overall workflow is shown in Figure 3.

Each docking measurement creates 500 individuals (these comprise the docking trials). 

The Open Babel functionality (obrotamer), which uses a genetic algorithm to perform 

a systematic search over all ligand rotatable bonds, is used to create a starting library 
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of diverse conformers.32 This library of randomly generated conformers is then centered 

at the binding pocket followed by a random translation (maximum ± 2 Å) and random 

rotation (maximum 360°) to generate the initial ligand coordinates. An energy cutoff is 

applied to filter out significant collisions between ligand atoms and protein atoms due to 

the random translation and rotation.17 The receptor flexible side chains are initialized with 

the coordinates from the input conformation of the receptor. Then these individuals are 

optimized by a MD based simulated annealing algorithm. The docking poses (optimized 

individuals) are then K-means clustered based on ligand heavy atom RMSD with a radius 

cutoff of 1 Å. The top 10 largest clusters are scored with the scoring function described 

above. Since these optimized individuals could include docking poses that are outside of the 

binding pocket (i.e., large RMSD with respect to the (unknown) binding pose). We adopt 

the idea of “promising area” and “intensification” from the continuous genetic algorithm 

purposed by Chelouah.56 The genetic algorithm and clustering method are performed to 

localize multiple local minima in the docking energy landscape (promising area), including 

(potentially) the global minima (native-like poses). The key concept of intensification is the 

concentrating of potential optimal solutions. To test this idea we examined the distribution 

of ligand RMSD with respect to the native pose for each of the ligands associated with 

the 6 receptors listed in Table 1 following the initial application of MD-based simulated 

annealing.

As shown in Figure 4, the less populated clusters are frequently away from the binding 

pocket. For simple systems (i.e., Riboswitch, T4 L99A and T4 L99A/M102Q) where the 

binding pocket is small and buried, the sampling space is small and the majority of the 

docking poses are native-like and clustered into the top 10 largest clusters. For complex 

systems (i.e., DHFR, PDE10A and Thrombin) where the binding pocket is more open and 

the ligands are larger, the sampling space is large and the ligand has a greater probability of 

adopting an incorrect binding pose that is away from the binding pocket. Regardless, the top 

10 largest clusters contain the majority of the native-like poses. There is a small percentage 

of the less populated clusters that also contain native-like poses (i.e., within 2.5 Å RMSD 

cutoff of the native binding pose). This is because the RMSD cutoff for clustering is set to 

be 1 Å so that not all of the native-like poses are grouped into one large cluster. However, it 

is safe to select best individuals from the top 10 largest clusters as the “promising area” to 

construct the next generation of individuals.

Intensification.—The minimum energy pose for each cluster is considered as the best 

individual of a cluster. We select the best individuals from the top 10 clusters as the parents. 

We first select 250 pairs of the individuals randomly using a roulette-wheel selection 

method. The probability of selecting a given parent is based on the population of the clusters 

(eq 7).

Pselect, i = Ni
∑j = 1

10 Nj
Ni, Population of solution j

(7)

Wu and Brooks Page 9

J Chem Inf Model. Author manuscript; available in PMC 2022 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first intensification is done by performing a crossover that swaps the ligand-receptor 

pair to produce the intermediate generation. The probability for a pair of parents to undergo 

crossover is 0.5. The second intensification is mutation. The mutation operator in our 

hybrid searching algorithm is defined as a random translation (maximum 2 Å) and rotation 

(maximum 30°) of the ligand. The idea of the mutation operator is to find a lower energy 

state for the receptor-ligand pair. The probability of mutation for a given individual in the 

intermediate generation is a function of the difference between the total energy of that 

individual and the largest total energy value among the 10 parents (Ecutoff, 1) (eq 8).

Ecutoff, 1 = max Eparent
E = Ecrossover − Ecutoff

P(E) = 1 − 0 . 5 × exp(E), if E < 0 .
0 . 5 × exp( − E), otherwise

(8)

Therefore, the more stable a given individual is, the less likely it is to undergo a mutation. 

The acceptance of this mutation is iterative and an energy cutoff of the total energy is 

applied to avoid collision with the receptor resulting from crossover and mutation. If the 

energy cutoff is reached for a given individual then another mutation will be applied to this 

individual until the system energy is lower than the cutoff value. This energy threshold is 

calculated by adding 500 kcal/mol to Ecutoff, 1. This step allows us generate a new generation 

around the previously found “promising area” and the search around the best individuals 

from the previous generation.

Termination criteria.—One disadvantage of using the genetic algorithm is the number 

of generations (time) needed for the search to converge.55 Currently, Flexible CDOCKER 

requires 1 hr for 500 docking trials (one generation) on a GPU17 and AutodockFR requires 

on average of 7.3 hr for one generation on a CPU.18 AutodockFR considers the solutions 

within 2 kcal/mol of the lowest energy solution as the “promising area” and performs an 

iterative genetic search so that all solutions will result in this focused sampling space, which 

by default uses 50 rounds of genetic evolution.18

However, as we mentioned before, the majority of the native-like poses are clustered into 

a small number of populated clusters and are considered as “promising areas”, and the 

following intensification step concentrates the individuals (potential solutions) in the next 

generation within this focused sampling space. Therefore, our searching algorithm requires 

fewer generations before the population of native-like poses reaches a plateau. This is more 

feasibly applied in practical applications, such as high-throughput virtual screening. Thus, 

we performed flexible docking experiments with 5 generations and recorded the population 

of native-like poses for each generation for all 6 different receptors. As shown in Figure 

5, for all 6 datasets, the average population of native-like poses reaches a plateau after the 

second generation using the move set and gene construction we employ here. Therefore, we 

use 2 generations in our searching algorithm in the following experiments, which provides a 

sufficient population of native-like poses within a reasonable timeframe.
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RESULTS

Flexible Docking vs Rigid Docking

We have demonstrated that our purposed flexible docking algorithm generates solutions 

of well-populated native-like poses in a highly competitive timeframe. The search of the 

optimal orientation (i.e., bound conformation) and ranking it as top rank is the fundamental 

objective of docking.26,57 Now, we consider the following two questions: (1) Compared with 

rigid docking, does flexible docking improve in cross-docking native-pose identification? 

(2) In representative realistic applications, can we identify limitations that suggest areas for 

future improvement? To assess these questions, we performed cross-docking calculations on 

the 6 receptor datasets listed in Table 1 with the proposed flexible docking algorithm. Rigid 

CDOCKER and AutoDock Vina are used for direct comparison.

Datasets containing T4 L99A, T4 L99A/M102Q and the Riboswitch.—These three 

datasets provide simple binding environments: a hydrophobic environment, a hydrophobic 

environment with one hydrophilic side chain and a hydrophilic environment. All of the 

binding pockets are small and buried.39,50 The ligands bound to those receptors are also 

small and rigid compared with ligands in other datasets as illustrated in Figure 6. The 

cumulative docking accuracy for flexible docking and rigid docking trials is illustrated in 

Figure 6 A–C. Top ranking accuracy of pose prediction is shown in Table 4.

As shown in Figure 6 and Table 4, flexible docking overall performs better than rigid 

docking. The top 10 ranking accuracy is above 98% for both T4 datasets. The largest 

improvement in top rank accuracy is for the T4 L99A/M102Q dataset, which is 23.33% 

higher than Rigid CDOCKER. This result suggests that flexible docking performs better 

when there exists differences in the binding environment that increases the specificity. The 

top ranking accuracy for both flexible docking and rigid docking is lower compared with 

the other two datasets for the Riboswitch. Two main differences between proteins and RNA 

in binding are:50 (1) RNA molecules are highly charged and (2) RNA-ligand interactions 

are dominated by polar contacts. In the current docking setup, the docking scoring function 

uses a distance dielectric constant set to 3r.16,28,58 This reduces the electrostatic interactions, 

which are the main interactions in RNA-ligand recognition. Studies have shown that using 

optimized force-field parameters for RNA-ligand docking could improve accuracy.50 This 

could be a potential solution to the relatively lower top rank accuracy in the Riboswitch 

dataset and will be further explored in more focused studies of RNA-based targets but are 

beyond the scope of our current study.

Datasets containing PDE10A, DHFR and Thrombin.—We next move on to evaluate 

the flexible docking algorithm with three more complex systems: PDE10A dataset, DHFR 

dataset and thrombin dataset. All of these systems have a more open binding pocket. The 

PDE10A dataset has two ions within the binding site, while the DHFR dataset has a cofactor 

in the binding pocket. The ligands in the thrombin dataset are larger and more flexible than 

ligands we tested in the other datasets as illustrated in Figure 7. The ions or the cofactors are 

implicitly represented by the grids, but are present within the context of our physics based 

scoring function used to compute the receptor grid. The cumulative docking accuracy of 
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both flexible docking and rigid docking calculations is shown in Figure 7 A–C. Top ranking 

accuracy of pose prediction is listed in Table 5.

We again see better performance for flexible docking compared to the rigid docking. The 

ranking results show that our proposed flexible docking algorithm works well for these 

complex systems. Having ions or cofactors does not appear affect the performance of the 

purposed flexible docking algorithm. The largest improvement in the top rank accuracy is 

observed in the DHFR dataset, which is 23.64% higher than rigid docking. The relatively 

low performance for the AutoDock Vina against the PDE10A could result from the fact that 

it does not support metal ions.

Impact of ligand initial placement on pose prediction accuracy.—One general 

problem in docking is how to place the ligand in the vicinity of the binding site and what 

initial ligand internal conformation to choose. The initial conformation and position of a 

ligand might be in an unfavorable configuration relative to the binding site (i.e., incorrect 

orientation or conformation). Due to the size of the large ligands, instead of adopting the 

correct conformation and reorienting in the binding pocket, they often need to leave the 

binding pocket, reorient the conformation and re-enter the binding pocket. This is very 

unlikely because of the relatively abbreviated sampling schedules required to make high-

throughput docking feasible, and is evident from the decrease in pose prediction accuracy 

for systems with more flexible and large ligands as shown in Figure 6 and Figure 7 for 

all three docking algorithms. To explore the impact of searching exhaustiveness of ligand 

conformational space in docking, we designed and performed another set of flexible and 

rigid cross-docking experiments for the DHFR and Thrombin datasets. In this test, half of 

the docking trials (250 docking poses) in the initial generation had the ligand start with an 

internal conformation that matched that of the native bound conformation, followed by the 

random rotation and translation in docking with Flexible CDOCKER and Rigid CDOCKER, 

while the remaining initial configurations were chose as described earlier using obrotomer. 

For AutoDock Vina, half of the initial ligand configurations matched the native ligand’s 

conformation and the other half was randomly distributed.

As is clear from Figure 8, by having some of the ligands starting with the native 

internal conformation, we observed improved accuracy in pose prediction for all three 

docking methods. It is surprising that ligand internal conformation also affects the docking 

performance of AutoDock Vina, however, the results are clear. In real-world applications, 

the correct conformation will not be known beforehand. This suggests that either better 

methods to choose a ligand’s initial conformation and placement in the binding site, or the 

use of more extensive sampling may improve docking results for large flexible ligands. This 

is not a surprising result because the sampling space for highly flexible ligands is large and 

complex, and alternative approaches for ligand initial conformation picking and placement 

in the binding pocket are a topic of ongoing exploration.

Discriminating Binders from Non-binders

In a real application for lead compound discovery, one typically would face two questions: 

(1) For a given target with no knowledge of any inhibitors, how well does a docking 
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method identify novel lead compounds within a large chemical space? If we have already 

identified several inhibitors for a specific target, one would expect that the derivatives of 

these known inhibitors could contain binders and non-binders for this target. (2) Then the 

question becomes how well does a docking method perform in discriminating binders from 

non-binders among the derivatives? To examine the effectiveness of our new sampling 

and scoring methods in distinguishing non-binders from binders, we perform flexible 

docking experiments against both ligands and non-binding decoys. The area under the curve 

(AUC) value of the receiver operating characteristic (ROC) curve is used to evaluate the 

performance in distinguishing the non-binders from binders.59

Scoring function.—In order to compare different small molecules, we need to augment 

our scoring function to consider the system in the unbound state. Because these compounds 

are docked to the same protein target, the protein internal energy and entropy in the unbound 

state is a constant and can be neglected. The proposed scoring function is augmented by 

subtracting the ligand internal energy and conformational entropy in the unbound state (eq 

9).

ΔGbinding = Eprotein − ligand interaction + Eprotein internal energy at bound state
+ Eligand internal energy at bound state + kBT ∑

all side cℎains
∑

j
pjln pj

− Eligand internal energy at unbound state + TSligand

(9)

The ligand internal energy in the unbound state is calculated by generating 500 ligand 

random conformations using Open Babel. After minimizing each of these conformations, 

the ensemble average of the 500 energies is computed as the ligand internal energy in 

the unbound state. The ligand conformational entropy (Sligand) is calculated based on the 

microscopic definition of entropy (eq 10). We assume that the rotatable bonds of the ligand 

are independent of each other and equally sampling all three states (i.e., trans, gauche− and 

gauche+). The scoring function in Rigid CDOCKER has the same modification to calculate 

solvation free energy, ligand internal energy and entropy at unbound state.

Sligand = − kBNrotorsln
1
3 (10)

The solvation free energy difference is computed using two different approaches: (1) 

implicitly represented in the proposed scoring function by the distance dielectric constant of 

3r.58 and (2) rescoring the docked pose using the FACTS implicit solvent model.60 Because 

we perform clustering towards of the docked poses and collect the minimum energy pose 

(best individual) from each of the top 10 largest clusters as we described previously. These 

10 docked poses (ligand and receptor) are rescored with the FACTS implicit solvent model 

with a short minimization to better estimate each enthalpy terms in eq 9 while maintaining 

the low computational cost. Because this is a short minimization (1000 steps), we assume 

the side chain conformational entropy remains the same for each cluster. The computational 

cost for FACTS implicit sovlent model rescoring is about 10% of the average runtime of the 
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proposed docking algorithm. Detailed FACTS implicit solvent model setup is documented in 

the supplementary information (Section. Minimization with FACTS implicit solvent model).

Identifying novel inhibitors among a large chemical space.—The Database of 

Useful Decoys-Enhanced (DUD-E) contains a large number of experimentally verified 

actives and decoys, and has been widely used in testing different docking methods.59 

These decoys are generated so that they are physico-chemically similar and topologically 

dissimilar to the known actives.59,61 Compared with the original DUD dataset, the 

ligands in each target are clustered using Bemis-Murcho atomic frameworks to ensure 

chemotype diversity (i.e., filtering out actives with similar topology features).59 Here, we 

perform flexible docking experiments against the 3 receptor targets in the DUD-E dataset, 

mineralocorticoid receptor (MCR), glucocorticoid receptor (GCR) and androgen receptor 

(ANDR) and use DOCK for direct comparison because these receptors were a focus of their 

earlier studies.59 All three receptors have hydrophobic pockets with flexible binding site 

residues and are recommended by the Shoichet group for testing flexible receptor docking 

methods.59 The flexible docking setups for these targets are reported in supplementary 

Tables S4 and S5. The ROC curves are plotted in the supplementary Figure S5 and the AUC 

values are reported in Table 6.

As is shown in Table 6, Flexible CDOCKER has better performance than DOCK in 

identifying binders. It is not a surprising result that using the FACTS implicit solvent model 

significantly improves the docking results. Different research groups have tried implicit 

solvent models for physics based scoring function and observed improved results.59,62–64 

On the other hand, in the original DUD-E paper, large variation of the AUC value was 

also observed based on their rigid receptor docking protocol when using different receptor 

structures.59 This also supports the necessity of flexible receptor docking methods.

Discriminating binders from non-binders.—After identifying known inhibitors for a 

specific target, one often constructs a compound library of the derivatives of these known 

ligands and anticipates that docking will rank binders among the top ranks. To examine 

the effectiveness of our new sampling and scoring methods for flexible receptor docking in 

distinguishing non-binders from binders, we selected the T4 L99A and T4 L99A/M102Q 

decoy sets that were collected and constructed by the Shoichet group and perform flexible 

docking experiments. These two receptor targets are well-defined and have been widely 

used for evaluating docking methods.39 The T4 L99A decoy set contains 64 ligands and 66 

experimentally validated non-binders.39,62,64–69 The T4 L99A/M102Q decoy set contains 33 

ligands and 25 experimentally validated non-binders.39,62–64

We compute the Tanimoto score between each pair of non-binder and binder and record 

the largest Tanimoto score for a given non-binder (i.e., the maximum similarity for a given 

non-binder among binders). As shown in Figure 9, the majority of the non-binders in these 

two decoy sets are similar to the binders, which fits the purposes of this experiment. These 

compounds are also relatively small and rigid.

All receptor structures in these two sets as well as the corresponding unique flexible side 

chain selections are used for the docking experiment. AutoDock Vina and Rigid CDOCKER 
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are used for direct comparison. Average AUC value of the ROC curves are shown in 

Table 7. One key reason for the relatively low AUC values observed for T4 L99A/M102Q 

in this table is the small number of compounds in the set, since a small change in the 

compound ordering will make a big difference in the ROC curve (i.e., moving the order of 

one non-binder will result in a change of 4% in false positive rate). Flexible CDOCKER 

with the FACTS implicit solvent model has the best performance which agrees with the 

results in the previous experiment. Both Flexible CDOCKER and Rigid CDOCKER have 

high accuracy in distinguishing binders from non-binders. However, Flexible CDOCKER 

has a smaller standard deviation across different receptor types. This also suggests that our 

proposed flexible receptor docking algorithm is better at modeling side chains in the binding 

pocket when different ligands bind.

CONCLUSIONS AND DISCUSSIONS

In prospective applications, such as virtual screening, it is more common that both ligand 

and receptor undergo conformational changes upon binding. In these cases, accurate 

prediction of the binding pose is fundamental before one uses such methods to conduct 

any structure-function exploration. Many research groups have shown that flexible receptor 

docking is more accurate in finding native-like docking poses for a given ligand.14,17,18 In 

the present work, we have provided further support for the importance of flexible receptor 

docking approaches, and presented a revised flexible docking algorithm, including a new 

physics-based scoring function incorporating side chain conformational entropy and an 

updated hybrid searching algorithm combining molecular dynamics (MD) based simulated 

annealing and a continuous genetic algorithm. The new physics-based scoring function 

provides a framework for the computation of the side chain conformational entropy, which 

allows us to explore and quantify the conformational variance when different ligands bind or 

a ligand binds with different poses. Overall, the cross-docking results we present show that 

the proposed flexible receptor docking algorithm provides greater accuracy in identifying 

native-like poses as top rank in protein-ligand docking and RNA-ligand docking compared 

with rigid docking. The largest improvement in top ranking accuracy is 23.64% for ligands 

binding to DHFR. We also show that the proposed flexible receptor docking algorithm 

with the FACTS implicit solvent model has the ability to identify novel compounds and 

distinguish binders from non-binders.

Flexible receptor docking methods have, however, been less adopted because of the 

relatively large computational cost. As shown in Table 8, compared with AutoDockFR18 

and the Glide flexible receptor docking algorithm,14 our proposed flexible receptor docking 

method significantly reduces the computational cost. We realize that the proposed flexible 

receptor docking method is still expensive compared with rigid receptor docking methods. 

But, we suggest that the speed-ups we observe are sufficient such that they significantly 

broaden the scope of flexible receptor docking methods in high-throughput docking 

campaigns.

As a practical example of this methodology, we worked with a team of experimental 

colleagues to identify potential therapeutics for the host transmembrane serine protease 

TMPRSS2, a promising antiviral target that plays a direct role in SARS-CoV-2 infections. 
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We designed a hierarchical workflow that uses pharmacophore similarity to filter very 

large compound libraries followed by direct application of the flexible receptor docking 

and implicit solvent scoring methodology presented here. A total of 4,308 candidates were 

identified and docked with the flexible docking method described above and led to the 

identification of new inhibitors.70 This hierarchical workflow could take the advantage 

of the flexible receptor docking method in high-throughput virtual screening for lead 

compound identification while reducing the overall computational cost.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Receptor binding pocket complexity. (A) Distribution of number of receptor flexible side 

chains. (B) Distribution of number of receptor rotatable bonds.
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Figure 2: 
2OUN flexible self-docking results using the flexible receptor docking algorithm. These 

two docking poses (pink) belong to the same cluster and are native-like docking poses. 

The corresponding flexible side chain GLU726 adopts two different conformations. The 

backbone atoms of the two GLU726 conformations are shown in orange, while the side 

chain atoms are shown in yellow and blue, respectively. The side chain amide groups adopt 

two different orientations.
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Figure 3: 
Flexible docking searching algorithm.

Wu and Brooks Page 22

J Chem Inf Model. Author manuscript; available in PMC 2022 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Average RMSD distribution of ligand docking poses in the initial generation. The RMSD 

values are binned with a 0.5 increment.
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Figure 5: 
Average population of native-like poses vs generation. Population for each docking 

measurement is calculated by dividing number of native-like poses by 500 (the number 

of trials in a generation). Average population of native-like poses for all 6 datasets is plotted 

with their corresponding error bars constructed by computing the standard deviation.
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Figure 6: 
Cumulative docking accuracy for the (A) T4 L99A dataset, the (B) T4 L99A/M102Q dataset 

and the (C) Riboswitch dataset. Distribution of ligand properties: (D) rotatable bonds, (E) 

logP and (F) molecular weight. A rank of N means the correct docking pose is within the top 

N solutions. AutoDock Vina trials use an exhaustiveness of 20. Rigid CDOCKER uses 500 

docking trials for each cross-docking experiment.
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Figure 7: 
Cumulative docking accuracy for the (A) PDE10A dataset, the (B) DHFR dataset and the 

(C) Thrombin dataset. Distribution of ligand property: (D) rotatable bonds, (E) logP and 

(F) molecular weight. A Rank of N means the correct docking pose is within the top N 

solutions. AutoDock Vina trials use an exhaustiveness of 20. Rigid CDOCKER uses 500 

docking trials for each cross-docking experiment.

Wu and Brooks Page 26

J Chem Inf Model. Author manuscript; available in PMC 2022 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Cumulative docking accuracy for the (A) DHFR dataset and the (B) Thrombin dataset with 

some ligands starting with their native pose internal conformations. Top rank pose prediction 

accuracy of flexible docking is 74.54% and 74.18% using the proposed flexible receptor 

docking algorithm for each dataset, respectively.
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Figure 9: 
Properties of compounds in T4 L99A decoy set and T4 L99A/M102Q decoy set.
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Table 1:

Receptor Dataset

Receptor Name Co-crystal structures Cross-docking/re-docking experiments Receptor class

PDE10A 44 1892 / 44 Kinase

T4 L99A 23 506 / 23 Lysozyme

T4 L99A/M102Q 21 420 / 21 Lysozyme

DHFR 11 110 / 11 Folate enzyme

Thrombin 14 182 / 14 Serine protease

Riboswtich 4 12 / 4 RNA
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Table 2:

Number of Rotamer States for Each Amino Acid

Residue Total number of dihedral angles, χi Maximum number of states

Arg, Lys 4 81

Gln, Glu, Met 3 27

Asn, Asp, His, ILe, Leu, Trp 2 9

Phe, Tyr 2 6

Cys, Ser, Thr, Val 1 3

J Chem Inf Model. Author manuscript; available in PMC 2022 October 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu and Brooks Page 31

Table 3:

Conformational State Determined by Dihedral Angle, χ

Nucleotide monophsphate State 1 State 2

ADE, GUA −91 ∼ 175° −180 ∼ −91° or 75 ∼ 180°

URA, CYT −170 ∼ 137° −180 ∼ −170° or 137 ∼ 180°
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Table 4:

Top Rank Accuracy in Pose Prediction of Cross-docking/Re-docking

Receptor Name Flexible CDOCKER Rigid CDOCKER AutoDock Vina

T4 L99A 66.21% / 82.61% 56.13% / 60.87% 49.01% / 47.83%

T4 L99A/M102Q 77.62% / 61.90% 54.29% / 80.95% 51.19% / 80.95%

Riboswitch 25.00% / 50.00% 41.67% / 50.00% 41.67% / 50.00%
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Table 5:

Top Rank Accuracy in Pose Prediction of Cross-docking/Re-docking

Receptor Name Flexible CDOCKER Rigid CDOCKER AutoDock Vina

PDE10A 36.84% / 50.00% 18.92% / 47.72% 6.87% / 31.82%

DHFR 50.91% / 54.54% 27.27% / 36.36% 17.27% / 54.54%

Thrombin 40.11% / 50.00% 32.42% / 50.50% 8.24% / 14.28%
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Table 6:

AUC Value for Docking Against MCR, GCR and ANDR.

Receptor Name Flexible CDOCKER
a

Flexible CDOCKER
b

DOCK
c

MCR 58.20 39.53 36.29

GCR 65.76 53.83 43.92

ANDR 55.60 47.73 51.06

a
Solvation free energy is calculated using FACTS implicit solvent model.

b
Solvation free energy is calculated using a distance dielectric constant of 3r.

c
AUC values as reproted in the original DUD-E paper.59
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Table 7:

Summary Average AUC Values for T4 L99A and T4 L99A/M102Q Decoy Sets

Method T4 L99A decoy set T4 L99A/M102Q decoy set

Flexible CDOCKER 
a 81.10 ± 5.62 67.72 ± 2.61

Rigid CDOCKER 
a 78.96 ± 6.67 66.94 ± 3.54

Flexible CDOCKER 
b 63.43 ± 3.55 48.77 ± 3.29

Rigid CDOCKER 
b 61.44 ± 5.73 48.41 ± 4.30

AutoDock Vina 
c 56.71 ± 0.02 53.33 ± 0.03

AutoDock Vina 
d 56.70 ± 0.01 53.32 ± 0.06

a
Solvation free energy is calculated using FACTS implicit solvent model.

b
Solvation free energy is calculated using a distance dielectric constant of 3r.

c
Exhaustiveness = 8.

d
Exhaustiveness = 20.
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Table 8:

Average Runtime for Different Flexible Receptor Docking Algorithm

Methods Runtime

Glide 400 CPU hours and 50 GPU hours for 20 docking trials

AutoDockFR 365 hours with 10 flexible side chains

Flexible CDOCKER 100 minutes for 500 docking trials with 10 flexible side chains
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