
The lacrimal gland is the organ that secretes tears, 
which are essential for the lubrication of the eye. Disruption 
of lacrimal fluid composition, production, or release results 
in dry eye, causing discomfort and damage to the ocular 
surface [1]. The lacrimal gland consists of the acini, ducts, 
nerves, myoepithelial cells (MECs), and plasma cells [2,3]. 
Acinar cells compose about 80% of the glands and secrete 
electrolytes, water, and proteins to form primary fluid. As 
the primary fluid moves along the duct system, the duct cells 
modify the primary fluid by secreting or absorbing electro-
lytes. The final lacrimal gland fluid is then secreted onto 
the surface of the eye. Lacrimal gland secretion is primarily 
under neural control, which is achieved through a neural 
reflex arc [4]. A decrease or lack of lacrimal gland secretion is 

the leading cause of aqueous tear–deficient dry eye syndrome 
[5]. Many causes, including autoimmune diseases (e.g., 
Sjögren syndrome [SS]) [6], allogeneic hematopoietic cell 
transplantation [7], ligation of the lacrimal gland duct [8], and 
aging [9], can induce lacrimal gland damage. These injuries 
can result in sufficient lacrimal gland malfunction to cause 
dry eye disease.

The endoplasmic reticulum (ER) is a dynamic cell 
lumen. Its main functions are secretion, synthesis, and 
folding of transmembrane proteins and regulation of calcium 
balance [10]. ER stress has been described in many diseases, 
including rheumatoid arthritis, neurodegenerative diseases, 
cardiovascular disorders, and inflammatory bowel disease 
[11,12]. Recently, it has been found that ER stress may be a 
pathophysiological change in the conjunctival pathogenesis 
of dry eye syndrome [13].

At the same time, inflammatory infiltration and fibrosis 
of lacrimal gland tissue could decrease tear secretion and 
eventually lead to dry eye [14]. Lipid metabolism involves the 
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Purpose: AQP5−/− mice spontaneously exhibit dry eye symptoms. The purpose of this study was to assess the endoplas-
mic reticulum (ER) stress-mediated inflammation generated by a deficiency of aquaporin 5 (AQP5) in the lacrimal gland.
Methods: Hematoxylin and eosin (H&E) staining, Oil Red O staining, and transmission electron microscopy (TEM) 
analysis were performed to identify structural changes in lacrimal gland epithelial cells because of AQP5 deficiency. 
Corneal epithelial defects were assessed with sodium fluorescein staining. The expression profiles of mRNA and proteins 
were determined by quantitative real-time reverse transcription PCR (qRT-PCR) and western blot. Mice in the quercetin 
group were injected intraperitoneally with 40 mg/kg of quercetin, and the control group was injected with an equal 
volume of dimethyl sulfoxide (DMSO) for 4 weeks.
Results: Aqueous tear secretion fell at about 50% in 1- and 6-month-old AQP5−/− mice compared with that of AQP5+/+ 
mice. TEM showed that the ER structure was damaged. ER stress was significantly increased in the lacrimal gland of 
AQP5−/− mice. Lipid droplets accumulated in the matrix and acinar cells, and changes occurred in the lipid metabolism 
and gene expression levels for PPARα, CPT1α, and CPT2 in the AQP5−/− mice. Immune cell infiltration and increases in 
the gene expression levels of the chemokines CXCL1, CXCL2, and CCL5 were found in the lacrimal gland of AQP5−/− 
mice. Quercetin partially reversed ER stress levels, inflammation, and lipid accumulation, and it inhibited tear secretion.
Conclusions: The study data indicated that a deficiency of AQP5 induced pathophysiological changes and functional 
decompensation of the lacrimal gland. Quercetin may improve the inflammation in the lacrimal glands of AQP5−/− mice 
by regulating the ER stress levels.
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synthesis and degradation of lipids in cells [15,16]. The ER is 
the major organelle involved in lipid metabolism because it 
contains many relevant enzymes for this process. ER stress 
is a potential mechanistic link between excess nutrients and 
lipid accumulation, which is a crucial event in the develop-
ment of minor labial salivary gland tissue [17,18]. It has also 
been shown that lymphocytic infiltration destruction of the 
acini increases with age, and abnormal lipid metabolism 
has been found in the lacrimal gland of a sleep deprivation–
induced mouse dry eye model [19].

Thirteen known aquaporins (AQPs) are widely distrib-
uted in various organs and play different roles in the body. 
AQP5 has been detected in the salivary glands, lacrimal 
glands, cornea, and lungs [20]. In the salivary glands, AQP5 
is localized at the apical membrane of serous-type acinar cells 
[21]. AQP5 knockout studies in mice confirm the critical role 
of AQP5 in water secretion in salivary gland acinar cells 
[22,23]. It has been proposed that AQP5 abnormalities may 
occur in SS and that aquaporin gene delivery to the lacrimal 
and salivary glands could increase fluid secretion.

Quercetin is a known phytochemical with antioxidant 
and anti-inf lammatory properties [24,25]. It has been 
reported to directly inhibit the reactive oxygen species 
(ROS)-promoted activation of nuclear factor-κB (NF-κB) 
signaling [26,27]. Moreover, topical application of quercetin 
seems to suppress inflammation of the ocular surface and 
lacrimal gland [28]. The anti-inflammatory effect of quer-
cetin has been reported in several studies, and dry eye can 
be effectively controlled in mice after alleviating lacrimal 
gland inflammation [29]. Found in natural botanical plants, 
quercetin is under basic and early stage clinical research for 
a variety of disease conditions [30]. It can protect RAW264.7 
macrophages from glucosamine-induced lipid accumula-
tion through the suppression of ER stress, as evidenced by 
reduced C/EBP homologous protein (CHOP) and activating 
transcription factor-6 (ATF6) levels [31]. We analyzed the 
anti-inflammatory effects and mechanisms of quercetin on 
ER stress-mediated inflammation raised by a deficiency of 
AQP5 in the lacrimal gland. Our results showed that in the 
lacrimal glands of AQP5−/− mice, ER stress and its induced 
inflammation were present in lacrimal epithelial cells, as was 
abnormal lipid metabolism. Quercetin partially reversed the 

Table 1. The primers used in qRT-PCR.

Gene Primer type Primer sequence
CPT1α Forward CTTCCAACGCATGACAGCAC
  Reverse TTAACCATGATCGGCCCTCG
CPT2 Forward GAGGCATTTGTCAGGGAGCC
  Reverse CTGCTGCCAGATACCGTAGAG
PPARα Forward GAACCGGAACAAATGCCAGT
  Reverse CTTCAGGTAGGCTTCGTGGA
MCP-1 Forward CAGCAAGATGATCCCAATGAGTAG
  Reverse TTTTTAATGTATGTCTGGACCCATTC
CXCL1 Forward CGCTTCTCTGTGCAGCGCTGCTGCT
  Reverse AAGCCTCGCGACCATTCTTGAGTC
CXCL2 Forward CCTGGTTCAGAAAATCATCCA

Reverse CTTCCGTTGAGGGACAGC
CCL5 Forward TTCCCTGTCATCGCTTGCTCT

Reverse CGGATGGAGATGCCGATTTT
IL-1β Forward CTTTCCCGTGAACCTTCCA

Reverse CTCGGAGCCTGTAGTGCAGTT
IL-6 Forward ACCACTCCCAACAGACCTGTCT

Reverse TCAGATTGTTTTCTGCAAGTGCAT

TNF-α Forward ACAAGGCTGCCCCGACTAC

Reverse CTGGGCTCATACCAGGGTTTG
GAPDH Forward GCCACCCAGAAGACTGTGGAT
  Reverse CTCGGAGCCTGTAGTGCAGTT
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inhibited ER stress levels, lipid accumulation, inflammation, 
and tear secretion.

METHODS

Animals: Using clustered regularly interspaced short palin-
dromic repeat - associated Cas9 (CRISPR/Cas9) technology, 
AQP5−/− mice were produced by the high-flux electric transfer 
of fertilized eggs from Cyagen Biosciences Inc. (Guangzhou, 
China) [32]. Age-matched AQP5+/+ and AQP5−/− mice were 
used for our study. Six-month-old AQP5−/− mice were divided 
into quercetin and control groups (n = 7 per group). Quer-
cetin (purity ≥98%, Sigma, St. Louis, MO) was dissolved in 
dimethyl sulfoxide (DMSO; 100%; Solarbio, Beijing, China) 
at 100 mg/ml. Mice were injected intraperitoneally with quer-
cetin in DMSO in the quercetin group (40 mg/kg, 7 μl per 
mouse) or DMSO alone in the control group (100% DMSO, 
7 μl per mouse) once per day for 4 weeks.

TEM: Transmission electron microscopy (TEM) was 
conducted as described previously [33]. In brief, the lacrimal 
glands were cut into 1 mm3 blocks and fixed in prechilled 
2.5% glutaraldehyde. After fixing and dehydration, the 

sections were double-stained with uranium and lead 
and observed under a transmission electron microscope 
(HITACHI, Tokyo, Japan).

Tear measurements and corneal fluorescein staining: Tears 
were measured by inserting cotton phenol red threads (Zone-
Quick, AYUMI Pharmaceutical, Tokyo, Japan) into the 
lateral canthus of the eye for 20 s in unanesthetized animals, 
as described previously [33]. A 1% fluorescein solution 
(Sigma) was applied to the cornea for 2 min. The eyes were 
rinsed with PBS and examined using a cobalt blue light from 
a slit-lamp scope (66 Vision Tech. Co., Ltd., Suzhou, China).

H&E and immunofluorescence staining: Mice were sacri-
ficed by cervical dislocation, and the lacrimal glands were 
fixed in 10% buffered formalin and embedded in paraffin. 
Paraffin sections (4 μm) were stained with hematoxylin and 
eosin (H&E) and observed under a light microscope (CKX53, 
Olympus, Tokyo, Japan). Lacrimal gland cryosections (6 μm) 
were fixed in 4% paraformaldehyde and then immunos-
tained with anti-AQP5 antibody (1:100, Abcam, Cambridge, 
UK) and anti-α-smooth muscle actin (anti-α-SMA; 1:100, 
Abcam). The samples were then incubated with secondary 

Figure 1. AQP5 deficiency induced 
dry eye–like characteristics. A: 
Immunof luorescence staining 
showed the expression of AQP5 
in the lacrimal gland cell location 
(green: AQP5, blue: 4’6-diamidino-
2-phenylindole [DAPI]). B: Expres-
sion of AQP5 and GAPDH were 
examined by western blotting. 
C: Bodyweight (n = 10 samples). 
D: Lacrimal gland weight and E: 
appearance (n = 8 samples). F: 
Tear secretion of AQP5+/+ mice 
and AQP5−/− mice. G: Sodium fluo-
rescein staining of AQP5+/+ mice 
and AQP5−/− mice. Scale bars: (A) 
40 μm. * p<0.05, ** p<0.01, *** 
p<0.0001.
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Figure 2. AQP5 deficiency induced 
ultrastructural abnormalities and 
endoplasmic reticulum (ER) stress 
in the lacrimal gland. A: Transmis-
sion electron microscopy (TEM) 
showing the ultrastructure of the 
acinar cells of the lacrimal gland. 
Data are expressed as mean ± 
standard deviation (SD). *p<0.05, 
**p<0.001. Scale bars: (A) 5 μm, 
2 μm. B: The deficiency of AQP5 
protein induced endoplasmic 
reticulum stress in lacrimal glands 
of mice. Western blot bands 
for CHOP, GRP78, Caspase12, 
Bax, Bcl-2, and GAPDH (n = 3 
samples). C: Quantified intensities 
of western blot bands for CHOP, 
GRP78, Caspase12, Bax, and Bcl-2 
compared with GAPDH (n = 3 
samples). *p<0.05, **p<0.01, *** 
p<0.0001.

Figure 3. AQP5−/− induced abnormal 
lipid metabolism in the lacrimal 
gland. A: Oil Red O (ORO) staining 
(n = 6 samples). B: ORO staining 
intensity analyzed by ImageJ soft-
ware (n = 6 samples). C,D,E: Real-
time PCR analyzed the expression 
of PPARα, CPT1α, and CPT2 (n = 
3 samples). *p<0.05, **p<0.001, 
two-way analysis of variance 
(ANOVA). Scale bars: (A) 40 μm. 
* p<0.05, ** p<0.01, *** p<0.0001.
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antibodies (1:200, Thermo Fisher Scientific, Rockford, IL) 
and 4’6-diamidino-2-phenylindole (DAPI; 1:500, Beyotime 
Biotechnology, Shanghai, China). Sections were sliced and 
immunostained with F4/80 (1:100, Affymetrix, Inc., San 
Diego, CA), Ly6g (1:100, Biolegend, CA), and CD4+ (1:100, 
Affymetrix, Inc.). A laser confocal microscope (Olympus) 
was used to view the images. The immunofluorescence 
results were analyzed using ImageJ (National Institutes of 
Health, Bethesda, MA) software.

Oil Red O staining: All 6-mm-thick frozen sections were 
covered with 4% paraformaldehyde (Solarbio) for 25 min 
and rinsed twice with PBS for 5 min each time. The sections 
were stained with filterable Oil Red O (storage liquid:distilled 
water = 3:2, Cyagen Biosciences Inc.) for 30 min. They 
were then rinsed three times with PBS for 5 min each time. 

Following this, the sections were stained with Mayer’s hema-
toxylin (Sigma) for 1 min and washed with water for 3 min. 
Glycerol (Servicebio, Wuhan, China) was used for the gelatin 
sealing piece. Six different visual fields were selected from 
each group, and the positive density of the images was quan-
titatively analyzed using ImageJ.

Real-time PCR: The GeneJET RNA Purification Kit (Thermo 
Fisher Scientific, Ottawa, Canada) was used for the isolation 
of total RNA. The specific primers for detection of CXCL1, 
CXCL2, CCL5, CPT1α, CPT2, PPARα, MCP-1, IL-1β, IL-6, 
TNF-α, and GAPDH were designed and synthesized by Invi-
trogen (Shanghai, China). The cDNAs of each sample were 
synthesized using a PrimeScript RT reagent kit (TaKaRa, 
Tokyo, Japan). Quantitative PCR was conducted using SYBR 
Green (Vazyme, Nanjing, China) and a Bio-Rad CFX 96 

Figure 4. AQP5 deficiency induced 
inflammation in the lacrimal gland. 
A: Hematoxylin and eosin (H&E) 
staining showed morphology 
changes. CD4+: Immunofluores-
cence staining of CD4+ demon-
strated CD4+ T cells (red: CD4+, 
blue: 4’6-diamidino-2-phenylindole 
[DAPI]). Ly6g: Immunofluores-
cence staining of Ly6g showed 
neutrophils (red: Ly6g, blue: 
DAPI). F4/80: Immunofluorescence 
staining of F4/80 showed macro-
phages (red: F4/80, blue: DAPI). B: 
ImageJ immunofluorescence profile 
analysis showed the CD4+, Ly6g, 
and F4/80 positive scores (n = 6 
samples). C: Real-time PCR results 
exhibited chemokine and proin-
flammatory factors (n = 3 samples). 
*p<0.05, **p<0.001, two-way 
analysis of variance (ANOVA). 
Scale bars: (A) 40 μm. *p<0.05, 
**p<0.01, ***p<0.0001.
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Machine (Bio-Rad, Hercules, CA). The expression levels of 
each mRNA were normalized to glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) expression levels. The relative 
expression level was calculated using the 2-ΔΔCT method. The 
primers are listed in Table 1.

Western blot analysis: Lacrimal gland tissue was extracted 
with Radioimmunoprecipitation Assay (RIPA) Lysis Buffer 
(Beyotime) mixed with phenylmethylsulfonyl f luoride 
(PMSF; Solarbio). Protein extracts were resolved via 10% 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
(SDS–PAGE; EPizyme, Shanghai, China) and then electro-
transferred to a polyvinylidene difluoride membrane. After 
blocking, the membranes were probed with primary anti-
bodies to AQP5 (1:2000, Abcam), α-SMA (1:2000, Abcam), 
GAPDH (1:3000, Kangchen, Shanghai, China), CHOP (1:500, 
Affinity Biosciences, Wuhan, China), Bax (1:1000, Affinity 
Biosciences), Bcl-2 (1:2000, Affinity Biosciences), Caspase12 
(1:1000, Affinity Biosciences), and GRP78 (1:1000, Affinity 
Biosciences). Horseradish peroxidase–conjugated secondary 
antibodies were used, and the bands were developed using a 
Western Bright Electrochemiluminescence (ECL) substrate 
(Applygen, Beijing, China). GAPDH was used for normaliza-
tion of expression [34].

Statistical analysis: All data are presented as the mean ± stan-
dard deviation (SD). One-way analysis of variance (ANOVA) 

was applied to evaluate the significance between different 
groups, and p<0.05 was considered statistically significant. 
The statistical analysis was performed with Prism software 
version 8.0 (GraphPad Software, La Jolla, CA).

RESULTS

AQP5 deficiency induced dry eye–like characteristics: 
Immunof luorescence staining showed that AQP5 was 
normally expressed in the apical membrane of acinar cells 
in the lacrimal glands of AQP5+/+ mice (Figure 1A). Immu-
nofluorescence staining and western blot demonstrated that 
no expression of AQP5 was detected in the lacrimal glands 
of AQP5−/− mice (Figure 1A,B). We found that there was no 
significant difference in body weight between the two groups 
(1 month old, p = 0.5806; 6 months old, p = 0.2528; n = 10 
per group; Figure 1C). The weight of the lacrimal gland was 
greater in the 1- and 6-month-old AQP5−/− mice than it was 
in the age-matched AQP5+/+ mice (Figure 1D,E). The tear 
volume of AQP5−/− mice was significantly lower than that 
of AQP5+/+ mice (Figure 1F). Spontaneous punctate corneal 
epithelial defects in AQP5−/− mice were observed under a slit 
lamp (Figure 1G).

AQP5 deficiency induced ultrastructural abnormalities and 
ER stress in the lacrimal gland: TEM images confirmed 
that the number and structure of organelles in the lacrimal 

Figure 5. AQP5 deficiency induced 
structural damage to lacrimal 
gland myoepithelial cells (MECs) 
in mice. A: Immunofluorescence 
staining of alpha-smooth muscle 
actin (α-SMA) showed myoepithe-
lium morphology (green: α-SMA; 
blue: 4’6-diamidino-2-phenylindole 
[DAPI]). B: ImageJ and GraphPad 
were used to calculate the result 
of A (n = 6 samples). C: Western 
blotting showed the expression 
level of α-SMA and GAPDH in 
lacrimal glands. D: ImageJ and 
GraphPad were used to compute 
the result of C (n = 3 samples). Data 
were expressed as mean ± standard 
deviation (SD). *p<0.05, **p<0.001 
two-way analysis of variance 
(ANOVA). Scale bars: (A) 10 μm, 2 
μm. (D) 40 μm.
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glands of AQP5+/+ mice were normal. Rough ER was dilated 
and mostly short, and the amount of rough ER was lower in 
the lacrimal glands of AQP5−/− mice (Figure 2A). To explore 
the underlying mechanisms of AQP5 deficiency affecting 
structural ER changes, we investigated whether AQP5 regu-
lated ER stress in the lacrimal gland. The ER stress markers 
GRP78 and transcription factor CHOP were elevated in the 
lacrimal glands, suggesting that excessive ER stress was 
induced by AQP5 deficiency. We also detected ER stress-
mediated apoptosis in AQP5−/− mice. The results showed 
that cleaved Caspase12, a caspase that activates ER stress-
mediated apoptosis, was heightened in AQP5−/− mice (Figure 
2B,C). We also found that the expression of the apoptosis 
regulator Bax was increased in AQP5−/− mice (Figure 2B,C). 
In contrast, the expression of Bcl-2, a cellular protein that 
inhibits apoptosis, decreased significantly in AQP5−/− mice 
(Figure 2B,C).

AQP5−/− induced abnormal lipid metabolism in the lacrimal 
gland: Using Oil Red O staining, an accumulation of neutral 

triglycerides in the acinar of AQP5−/− mice was observed 
(Figure 3A). The intensity increased from 1,545.55 ± 523.97 
(1 month) and 5,769.42 ± 1,140.71 (6 months) in AQP5+/+ mice 
to 4,365.87 ± 1,383.92 (1 month) and 8,532.98 ± 1,590.97 (6 
months) in AQP5−/− mice (n = 6 per group; Figure 3A,B). Real-
time PCR was performed with lipid metabolism genes PPAR, 
CPT1α, and CPT2. It was found that PPARα and CPT1α were 
downregulated in the lacrimal glands of 1- and 6-month-old 
AQP5−/− mice compared with age-matched AQP5+/+ mice (n 
= 3 per group; Figure 3C,D). CPT2 was downregulated in the 
lacrimal glands of 1-month-old AQP5−/− old mice (n = 3 per 
group; Figure 3E).

AQP5 deficiency induced inflammatory cell infiltration in 
the lacrimal gland: Inflammatory cells infiltrated around the 
blood vessels in the lacrimal gland of 6-month-old AQP5−/− 
mice (Figure 4Ai). Immunofluorescence staining identified 
time-dependent increases in CD4+ T lymphocyte density 
around the acini in lacrimal glands of 1- and 6-month-old 
AQP5−/− mice compared with the age-matched AQP5+/+ mice 

Figure 6. Quercetin relieved 
endoplasmic reticulum (ER) stress 
and abnormal lipid metabolism in 
AQP5−/− mice. A: Transmission 
electron microscopy (TEM) shows 
the ultrastructure of the acinar 
cells. B: Western blot bands for 
CHOP, GRP78, Caspase12, Bax, 
Bcl-2, and GAPDH. C: Quantified 
intensities of western blot bands for 
CHOP, GRP78, Caspase12, Bax, 
and Bcl-2 compared with GAPDH 
(n = 3 samples). D: Oil Red O 
(ORO) staining. E: ORO staining 
intensity was analyzed by ImageJ 
software (n = 6 samples). F: Real-
time PCR analysis showed PPARα, 
CPT1α, and CPT2 expression (n = 
3 samples). *p<0.05, **p<0.01, **” 
in line 10 on page 22 to “*p<0.05, 
**p<0.001, ***p<0.0001.
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(Figure 4Aii,Bi). Neutrophil infiltration identified by Ly6g 
staining increased in the lacrimal gland of 6-month-old 
AQP5−/− mice (Figure 4Aiii,Bii). F4/80 staining increased 
the mononuclear macrophage density in the lacrimal gland in 
1- and 6-month-old AQP5−/− mice (Figure 4Aiv,Biii). Expres-
sion of proinflammatory factors, such as IL-6, IL-1β, MCP-1, 
and TNF-α, significantly increased in the lacrimal glands of 
1- and 6-month-old AQP5−/− mice compared with the age-
matched AQP5+/+ mice (Figure 4C). In parallel, chemokine 
CXCL1, CXCL2, and CCL5 expression levels significantly 
increased in 1- and 6-month-old AQP5−/− mice (Figure 4C).

AQP5 deficiency induced structural MEC damage in the 
lacrimal gland: α-SMA is a MEC marker [35]. In this study, 
α-SMA expression showed an obvious decline in the lacrimal 
glands of AQP5−/− mice (Figure 5A). According to the analysis 
of α-SMA staining, the intensity decreased from 10.93 ± 0.76 
(1 month) and 10.99 ± 2.52 (6 months) of AQP5+/+ mice to 4.63 
± 0.46 (1 month) and 5.29 ± 1.25 (6 months) of AQP5−/− mice 
(n = 6 per group; Figure 5B). Downregulation of α-SMA was 
further confirmed by western blot in AQP5−/− mice (p<0.05; 
n = 3 per group; Figure 5C,D).

Quercetin alleviated ER stress and abnormal lipid metabo-
lism: TEM images confirmed that the rough ER was abundant 

Figure 7. Quercetin alleviated 
lacr imal gland inf lammation 
caused by AQP5 deficiency. A: 
Hematoxylin and eosin (H&E) 
staining showed morphological 
changes. CD4+: Immunofluores-
cence staining of CD4+ demon-
strated CD4+ T cells (red: CD4+, 
blue: 4’6-diamidino-2-phenylindole 
[DAPI]). Ly6g: Immunofluores-
cence staining of Ly6g showed 
neutrophils (red: Ly6g, blue: 
DAPI). F4/80: Immunofluorescence 
staining of F4/80 showed macro-
phages (red: F4/80, blue: DAPI). 
B: ImageJ immunof luorescence 
profile analysis showed the CD4+ 
positive score, Ly6g positive score, 
and mean fluorescence intensity of 
F4/80 (n = 6 samples). C: Immu-
nofluorescence staining of alpha-
smooth muscle actin (α-SMA) 
showed myoepithelium morphology 
(green: α-SMA, blue: DAPI), and 
ImageJ and GraPade were used to 
compute the result (n = 6 samples). 
D: Western blotting showed the 
expression level of α-SMA and 
GAPDH (n = 3 samples). E: Real-
time PCR exhibits expression of 
chemokine and proinflammatory 
factors (n = 3 samples). F: The 
lacrimal secretion of AQP5−/− mice 
was measured using the phenol red 
cotton thread method. G: Sodium 

fluorescein staining in the cornea. *p<0.05, **p<0.001. Independent sample t test. Scale bars: (A): 100 μm, 40 μm. *p<0.05, **p<0.01, 
***p<0.0001.
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and orderly, with many ribosomes attached to its surface in 
the lacrimal glands of the quercetin group. There was a lot of 
ER retained, and more floccules were found in the reticulum 
pool in the lacrimal gland of the DMSO group (Figure 6A). 
More importantly, the intraperitoneal injection of quercetin 
significantly attenuated the expression of GRP78, CHOP, 
Caspase12, and Bax (p<0.005, n = 3 per group; Figure 6B,C). 
In contrast, the expression of Bcl-2 increased significantly, 
reaching 1 ± 0.001 for the DMSO group and 1.21 ± 0.076 
for the quercetin group (Figure 6B,C). Lipid accumulation 
slightly decreased, with Oil Red O staining density observed 
at 14,118.8 ± 1,307.11 for the DMSO group and 3,484.38 ± 
198.71 for the quercetin group (Figure 6D,E). Real-time PCR 
confirmed that the mRNA levels of PPARα, CPT1α (p<0.05, 
n = 3 per group), and CPT2 (p<0.005, n = 3 per group) were 
downregulated in the lacrimal glands of the quercetin group 
compared with the DMSO group (Figure 6F).

Quercetin reduced the inflammation caused by AQP5 defi-
ciency: Compared with the DMSO group, the quercetin 
group showed less inflammatory infiltration in the lacrimal 
epithelial cells (Figure 7Ai,B). Instead, numbers of inflam-
matory cells, such as neutrophils, macrophages, and CD4+ 
T cells, fell significantly with quercetin treatment (Figure 
7Aii-iv,B). Immunofluorescence staining and western blot 
analysis showed that quercetin had no significant effect on the 
expression levels of α-SMA (Figure 7C,D). Proinflammatory 
factors IL-6, IL-1β, MCP-1, and TNF-α were downregulated; 
CXCL2, a chemokine, was also significantly downregulated 
in the lacrimal glands of the quercetin group (n = 3 per group; 
Figure 7E). The tear volume increased from 6.625 ± 2.501 in 
the DMSO group to 13.938 ± 3.746 in the quercetin group 
(p<0.05, n = 6 per group; Figure 7F). Under a slit lamp, it was 
found that quercetin partially alleviated punctate epithelial 
defects in the corneas of AQP5−/− mice (Figure 7G).

DISCUSSION

The tear film’s aqueous layer is mainly secreted by the 
lacrimal gland. Many factors related to tears and the ocular 
surface can cause dry eye, usually accompanied by increased 
osmolarity of the tear film and ocular surface inflammation. 
Dry eyes can cause eye discomfort, visual impairment, tear 
film instability, and potential damage to the ocular surface 
[36]. It is known that the popularization of air conditioning, 
frequent usage of visual display terminals, and increase in 
wearers of soft contact lenses may all be associated with a 
rise in the incidence of dry eye [37].

Abnormal AQP5 trafficking in SS may contribute 
to decreased lacrimation and dry eye in patients [38]. A 
missense mutation in AQP5 (p.G308A) probably resulted in 
abnormal membrane insertion or ineffective trafficking. Rats 
with this mutation show extremely low water secretion from 
their salivary glands [39]. In our previous study, we found that 
AQP5−/− mice naturally develop dry eye symptoms. However, 
the mechanism by which the loss of AQP5 protein induces dry 
eye in mice remains unclear. To explore the exact mechanism 
of the decrease in tear secretion caused by AQP5 deficiency, 
we analyzed its ultrastructure. Rough ER in the lacrimal 
gland cells of AQP5−/− mice was slightly dilated and mostly 
short, and ribosomes were attached to it without shedding.

Prolonged or severe ER stress affects the function and 
structure of proteins and lipids [40,41]. ER stress–induced 
inflammation in the lacrimal glands plays an important role 
in the pathogenesis of dry eye syndrome or SS [42]. Thus, ER 
stress can potentially serve as a target for treating dry eye. 
Our results indicated that the lacrimal glands of AQP5−/− mice 
undergo more severe ER stresses than normal lacrimal glands 
do. AQP5 deficiency increased the levels of CHOP, GRP78, 
and Bax while decreasing Bcl-2 expression. CHOP is an ER 
stress–specific nuclear transcription factor. GRP78, a calcium 
ion binding molecule located in the ER, shows marker 
upregulation in ER chaperones in response to ER stress [43]. 
In contrast, Bcl-2 is a cellular protein that inhibits apoptosis. 
ER stress induces Caspase12-mediated apoptotic cell death 
[44]. Our western blot results showed a high expression of 
cleaved Caspase12 in AQP5−/− mice. However, low expression 
of the cleaved Caspase12 protein was observed in the normal 
lacrimal glands.

In dry eye, ER stress induces abnormal lipid metabo-
lism and various inflammatory and apoptotic pathways, 
leading to lacrimal gland cell death [45]. We found that 
lipid droplets accumulated along with changes of PPARα, 
CPT1α, and CPT2 in AQP5−/− mice. We also found that ER 
stress activated inflammatory signaling pathways based on 
increases in inflammatory cell infiltration. Expression levels 

Table 2. The gene information.

Gene Gene ID OMIM
CPT1α 12894 138420
CPT2 12896 600650
PPARα 19015 170998
MCP-1 20296 601159
CXCL1 14825 155730
CXCL2 20310 139110
CCL5 20311 187011
IL-1β 16176 147720
IL-6 16193 147620
TNF-α 21926 191160
GAPDH 14433 138400
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of proinflammatory factors, such as IL-6, IL-1β, MCP-1, and 
TNF-α significantly increased in the lacrimal glands of 1- and 
6-month-old AQP5−/− mice compared with the age-matched 
AQP5+/+ mice. It is presumed that ER stress induces lipid 
deposition in acinar cells and the surrounding microenviron-
ment. ER stress also activated inflammation, which induced 
acinar cell apoptosis, as reported previously [45].

Decreased aqueous tear secretion could develop as a 
consequence of several pathological changes in AQP5−/− mice. 
First, lipid deposition induced by ER stress compromises 
cell function [46,47]. Second, infiltration of inflammatory 
cells disrupts acinar cells [48,49]. Third, the inflammatory 
cytokines secreted by infiltrated inflammatory cells directly 
reduce aqueous secretion of acinar cells [50]. Finally, MECs 
exert pressure on the acinus and promote tear secretion 
[51,52]. Our results indicate that the MEC structure became 
disordered and disrupted in AQP5−/− mice. These pathological 
changes are likely to account for how AQP5 deficiency 
reduces aqueous tear secretion.

Quercetin is a natural product with antioxidative prop-
erties [53,54]. It has been shown to inhibit mitochondrial 
dysfunction and inf lammation in osteoarthritis animal 
models [55,56]. Moreover, it has been found that 0.5% quer-
cetin eye drops aid in increasing tear volumes. Quercetin 
treatment can also increase the density of goblet cells [28]. 
Our results indicated that quercetin alleviated ER stress by 
attenuating the expression of GRP78, CHOP, Caspase12, and 
Bax. Our findings revealed that quercetin alleviated lipid 
accumulation in AQP5−/− mice via downregulated expression 
of CPT1α and CPT2. We also found that quercetin reduced 
inflammatory cell infiltration and proinflammatory factor 
expression.

In summary, AQP5 deficiency induced severe ER stress 
and inhibited fatty acid clearance in the lacrimal gland. 
Losses in structural integrity and declines in fluid secretion 
are consistent with proinflammatory cytokine upregulation 
and inflammatory cell infiltration. Quercetin indeed reduced 
inflammation and lipid deposition, while it partially amelio-
rated declines in lacrimal gland tear secretion. These results 
suggest that quercetin may provide therapeutic benefits in dry 
eye induced by AQP5 deficiency.
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