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A B S T R A C T   

The outbreak of Coronavirus Disease 2019 (COVID-19) poses a great threat to the world. One mandatory and 
efficient measure to prevent the spread of COVID-19 on construction sites is to ensure safe distancing during 
workers’ daily activities. However, manual monitoring of safe distancing during construction activities can be 
toilsome and inconsistent. This study proposes a computer vision-based smart monitoring system to automati-
cally detect worker breaching safe distancing rules. Our proposed system consists of three main modules: (1) 
worker detection module using CenterNet; (2) proximity determination module using Homography; and (3) 
warning alert and data collection module. To evaluate the system, it was implemented in a construction site as a 
case study. This study has two key contributions: (1) it is demonstrated that monitoring of safe distancing can be 
automated using our approach; and (2) CenterNet, an anchorless detection model, outperforms current state-of- 
the-art approaches in the real-time detection of workers.   

1. Introduction 

Pandemic such as the prevailing Coronavirus Disease 2019 (COVID- 
19) poses a significant threat to public health worldwide (Wiersinga 
et al., 2020). As of January 22, 2021, a total of 38 million confirmed 
cases have been reported around the world with 70.51 million recovered 
and 2.10 million deaths (Johns Hopkins University, 2020). In the face of 
the pandemic, governments throughout the world mandated or pro-
moted measures such as maintaining safe distance and preventing over- 
crowding to prevent the spread of COVID-19 (Ministry of Health, 2020). 

With the construction industry having one of the highest COVID-19 
infection rates during the pandemic (National Statistic, 2020), safe 
distancing and crowd control, among other measures, need to be duti-
fully implemented to allow work to continue. To reduce the risk of 
infection during COVID-19, numerous safety policies and procedures 
have been established, including reduced physical interaction, and 
ensuring safe distance of one to 1.5 m between people at all times, 
including working in outdoor environment (e.g., OSHA, 2020; BCA, 
2020). Chu et al. (2020) also emphasized the importance of physical 
distancing of one metre or more in reducing the risk of human-to-human 
transmission. In addition, public health authorities consistently advised 
maintaining a safe distance between people, including outdoor activities 

(e.g., CDC, 2021; Ministry of Health, 2021). However, people may un-
consciously violate the mandatory safe distancing and overcrowding 
rules. Furthermore, traditional human supervision of safety measures 
and behaviour observation during construction can be toilsome and 
inconsistent. As a result, an automatic real-time monitoring system to 
monitor safe distancing on construction site is needed. Even though 
there had been many computer vision-based monitoring systems 
developed in the past, this study is the first to propose an automatic real- 
time monitoring system to monitor safe distancing on construction sites. 

Non-visual sensors such as radio frequency identification (RFID) 
tags, and global positioning system (GPS) sensors can be used to auto-
matically track workers’ locations in real-time. However, sensor-based 
approach requires workers to wear sensors at all time and this is diffi-
cult to implement. Furthermore, many sub-contractors work across 
multiple sites, and they are frequently short-term workers, hence it may 
not be feasible to issue a sensor to every worker. In contrast, computer 
vision approaches alleviate some of these issues and have been used for 
automatic safety inspection and unsafe behavior recognition in the 
construction industry (e.g., Chian, Fang, Goh, & Tian, 2021; Fang, Love, 
Luo, & Ding, 2020; Fang, Ding, et al., 2020; Luo, Li, Wang, et al., 2019; 
Luo, Li, Yang, Yu, & Cao, 2019; Yu, Guo, Ding, Li, & Skitmore, 2017; 
Seo, Han, Lee, & Kim, 2015). For example, Ding et al. (2018) developed 
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a hybrid deep learning system by integrating conventional neural net-
works (CNN) and long short-term memory (LSTM) to detect people’s 
unsafe behaviour (e.g., abnormal climb) from videos. 

With this in mind, a computer vision-based real-time monitoring 
system is proposed to automatically detect workers who violate safe 
distancing rules and send warning alerts to relevant site personnel for 
necessary actions. In addition, statistics generated by the system can be 
used to facilitate behaviour-based safety (BBS) management (Goh, 
Ubeynarayana, Wong, & Guo, 2018; Fang, Love, et al., 2020; Fang, Ding, 
et al., 2020). However, a limited amount of research has been under-
taken that has applied computer vision to examine the social distance for 
prevention of COVID-19 transmission (Yang, Yurtsever, Renganathan, 
Redmill, & Özgüner, 2020; Ahmed, Ahmad, Rodrigues, Jeon, & Din, 
2021). The most important studies that have been undertaken to identify 
social distance violation are Yang et al. (2020) and Ahmed et al. (2021). 
In Yang et al. (2020)’s work, Faster R-CNN and YOLOv4-based pedes-
trian detection method is proposed to measure social distancing. The 
effectiveness of the proposed method was tested in publica database (e. 
g., Oxford town center database, mall dataset, and train station dataset). 
In Ahmed et al. (2021)’s work, a computer vision with YOLOv3 model is 
proposed to identify social distance violation in indoor environment. 

Despite the success of the work that has been undertaken to identify 
safety distancing violation in public database, there is no research focus 
on in construction industry. The construction industry poses many 
challenges to computer vision-based systems including varying sizes of 
objects, and cluttered background compared with public database. 
These challenges limit the performance of current anchor-based object 
detection approaches (e.g., Faster R-CNN, YoLov3) in construction 
research. To achieve higher level of accuracy, an anchorless model, 
CenterNet, is employed to detect workers in video surveillance for the 
real-time detection of safety distancing violations. To the best of our 
knowledge, this is the first time that CenterNet had been used in 
construction-related research. To validate our developed system’s 
feasibility and effectiveness, a construction project in Singapore is used 
as a case study. 

Our paper commences by providing a review of computer vision 
technologies in construction sites (Section 2). Then, it describes our 
developed computer vision-based real-time safe distancing monitoring 
system (Section 3). Next, a case study is used to validate our developed 
system (Section 4). The contributions, limitations, and conclusions are 
discussed subsequently. 

2. Related works 

2.1. Deep learning-based object detection in construction sites 

A plethora of deep learning-based computer vision approaches have 
been used and developed to detect objects (e.g., people, plants, and 
equipment) in construction sites (Fang, Ding, Luo, & Love, 2018; Fang, 
Ding, Zhong, Love, & Luo, 2018; Fang, Li, et al., 2018; Fang, Love, et al., 
2020; Fang, Ding, et al., 2020; Guo, Zou, Fang, Goh, & Zou, 2021). Fang, 
Ding, Luo, et al. (2018), Fang, Ding, Zhong, et al. (2018), Fang, Li, et al. 
(2018) employed an improved Faster R-CNN model to detect people and 
heavy equipment in construction sites. In their work, the deep learning 
model achieved higher accuracy than approaches that rely on hand- 
crafted features (e.g., histogram of oriented gradient (Dalal & Triggs, 
2005), scale-invariant feature transform (Lowe, 2004)) in the detection 
of objects on images. Table 1 presents examples of prior works on deep 
learning-based object detection in construction sites. 

Table 1 demonstrates that computer vision and deep learning tech-
nologies have been successfully used to detect construction objects. 
However, it should be acknowledged that the dynamic and complex 
nature of construction sites (e.g., cluttered background, varying size of 
objects, occlusion, and variation in human pose) affects the detection 
accuracy of deep learning models (Fang, Ding, Luo, et al., 2018; Fang, 
Ding, Zhong, et al., 2018; Fang, Li, et al., 2018; Son, Seong, Choi, & Kim, 

2019). These prior works are based on anchor-based object detection 
architectures that make use of anchor boxes to initiate the detection 
process. The image to be processed is reduced in size and tiled across 
with anchor boxes. The anchor box nearest to the target object in the 
image becomes the detected object bounding box. These anchor-based 
object detection approaches can be further categorized into two types: 
(1) one-stage detector (e.g., Yolov2); and (2) two-stage detector (e.g., 
Faster R-CNN). 

Two-stage detectors extract feature maps for each possible bounding 
box and then classify and regress those extracted features (Li, Peng, Yu, 
Zhang, Deng, & Sun, 2017). Compared with a two-stage detector, the 
architecture of one-stage detector is simpler and has faster detection 
speed. One-stage detectors slide a complex arrangement of possible 
bounding boxes and then regresses them directly (Tian et al., 2019; 
Bochkovskiy, Wang, & Liao, 2020). The accuracy of anchor-based 
detection methods can be increased by adjusting the anchor boxes’ pa-
rameters (e.g., size and aspect ratio). However, these anchor-based ap-
proaches need a large number of anchors to ensure a sufficiently high 
Intersection-over-Union (IOU) with the ground-truth and anchor 
boxes’ parameters (e.g., size and aspect ratio) are typically manually 
designed. In doing so, such anchor-based approaches may not be useful 
for multi-scale object detection, as it is difficult to specify suitable values 
for all possible anchor boxes’ parameters (Duan et al., 2019). 

CenterNet, an anchorless and key point-based object detection 
approach developed by Zhou, Wang, and Krähenbühl (2019), can be 
used to address the drawbacks of anchor-based approaches. The Cen-
terNet outperformed current state-of-the-art object detection ap-
proaches when tested on the MS COCO database1. To achieve higher 
accuracy on the detection of people in construction sites, CenterNet is 
employed to detect people in this study. To our knowledge, this study is 
the first time that CenterNet had been applied in construction-related 
research. 

Table 1 
Prior works on deep learning and computer vision-based object detection in 
construction sites.  

Author (Year) Algorithms Target objects 

Nath, Behzadan, and 
Paal (2020) 

One- 
stage 

YOLOv3 Personal protective 
equipment (e.g., 
hard hat and vest) 
and people 

Luo, Liu, et al. (2020), 
Luo, Wang, et al. 
(2020) 

YOLOv2 People and 
excavator 

Wu, Cai, Chen, Wang, 
and Wang (2019) 

Single Shot MultiBox 
Detector (SSD) 

Hardhat and people 

Luo, Liu, et al. (2020), 
Luo, Wang, et al. 
(2020) 

Two- 
stage 

Stacked Hourglass 
Network (HG), 
Cascaded Pyramid 
Network (CPN), 
ensemble model of HG 
and CPN 

Excavators, trucks, 
cranes, and 
bulldozers) 

Fang et al. (2019) Mask R-CNN People and 
structural support 

Fang, Ding, Luo, et al. 
(2018), Fang, Ding, 
Zhong, et al. (2018), 
Fang, Li, et al. 
(2018) 

Faster R-CNN People and 
excavator 

Fang, Ding, Luo, et al. 
(2018), Fang, Ding, 
Zhong, et al. (2018), 
Fang, Li, et al. 
(2018) 

Faster R-CNN People and hardhat  

1 COCO is a large-scale object detection, segmentation, and captioning 
dataset. https://cocodataset.org/#home 
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2.2. Vision-based distance measurement 

Several approaches have been used to determine the distance be-
tween objects in images and videos. Initially, most research utilized a 
single vision camera to measure the distance. For example, Rahman 
et al. (2009) developed a system to measure the distance between people 
and camera from a single camera. Similarly, Wahab, Sivadev, and 
Sundaraj (2011) developed a system with Hough transforms to deter-
mine the distance between objects. Likewise, Kim, Kim, and Kim (2017) 
applied a homography matrix to warp a camera view to another camera 
view whereby the reference pixel distance to a real distance ratio is 
known, and hence it is able to estimate the distance between objects in 
an image. Despite their success on distance measurement, it is unable to 
achieve good performance as it loses depth information from a single 
camera. 

To address this problem, some research used stereo cameras to 
determine the distance between objects. For example, Mustafah, Noor, 
Hasbi, and Azma (2012) developed a stereo system to accurately mea-
sure the distance and its size of object in images. Despite the success of 
this approach, the accuracy is sensitive to binocular baseline and image 
resolution. In addition, it needs more computing resources to measure 
the distance from the stereo camera. Other studies focus on using depth 
camera (e.g., Kinect) to measure distance between objects. However, the 
depth camera has a limited range and is sensitive to lighting condition, it 
is not able to be used in outdoor construction sites. It is noted that most 
construction sites do not currently install stereo and depth cameras. To 
facilitate implementation, researchers frequently have to determine 
ways to estimate distances based on single cameras. 

2.3. Computer vision-based proximity warning system for construction 
sites 

High-resolution video cameras, increased storage capacity of data-
bases, and high throughput of the internet have increased the capacity to 
document operations in the construction industry (Szeliski, 2010; 
LeCun, Bengio, & Hinton, 2015). Computer vision-based approaches 
have tapped on this increased capacity in recent years to automatically 
perform supervision tasks, such as workers’ unsafe behavior identifica-
tion (Fang, Ding, Luo, et al., 2018; Fang, Ding, Zhong, et al., 2018; Fang, 
Li, et al., 2018; Ding et al., 2018; Fang et al., 2019), workers’ activities 
recognition (Luo et al., 2018), and object detection (Fang, Ding, Luo, 
et al., 2018; Fang, Ding, Zhong, et al., 2018; Fang, Li, et al., 2018). 

Studies have used computer vision to detect people’s proximity to 
dangerous objects to identify hazardous situations (Kim, Kim, & Kim, 
2016; Son et al., 2019; Luo, Liu, et al., 2020; Luo, Wang, Wong, & Cheng, 
2020). For example, Luo, Liu, et al. (2020), Luo, Wang, et al. (2020) 
developed a computer vision system that alert supervisors if workers 
enter an excavator’s working radius when the excavator is being oper-
ated. In their work, a Yolov2 model was employed to detect people and 
excavators from videos, and a transformation matrix was applied to 
calculate the distance between people and excavators to determine un-
safe behaviour. Table 2 presents some prior works on computer vision- 
based proximity warning systems in construction sites. As can be seen in 
Table 2, a computer vision-based proximity system can be used to 
identify hazards (e.g., stuck-by) and improve safety in construction. To 
the best of our knowledge, there is no existing research that used com-
puter vision to automatically identify people breaching safe distancing 
rules for prevention of disease transmission in construction. 

It should be noted that the performance (e.g., accuracy and speed) of 
these computer vision systems depends on the accuracy of object 
detection and distance measurement. For example, Luo, Liu, et al. 
(2020), Luo, Wang, et al. (2020) noted that a cluttered construction site 
could hinder the model’s ability to recognize people. In Luo, Liu, et al. 
(2020), Luo, Wang, et al. (2020), small worker could not be accurately 
detected by the Yolov2 model. Existing computer vision-based prox-
imity detection systems have performance issues when applied in 

practical applications with dynamic and changing environment and 
objects of varying sizes. CCTV cameras are frequently installed on top of 
tower cranes to have a bird eye’s view of the construction site and 
construction floor. However, as the tower crane gets jacked up, the 
distance between the construction floor and camera can increase, 
resulting in decreased sizes of worker images, as shown in Fig. 1. 
Therefore, developing a computer vision system to identify workers 
breaching safe distancing rules accurately remains a challenge for the 
construction industry. 

3. Research approach 

A design science research approach is adopted to develop a real-time 
computer vision-based smart monitoring system that can automatically 
detect workers breaching safe distancing and overcrowding rules during 
COVID-19. Design science is a research approach that describes and 
predicts the current natural or social world by understanding problems 
and designing solutions to improve human performance (van Aken, 
2005, Geerts, 2011). Therefore, design science approach can be used to 
design and implement the proposed smart monitoring system. The 
research process used to develop the real-time computer vision-based 
smart monitoring system for detecting people breaching safe 
distancing rules during COVID-19 is presented in Fig. 2. 

Table 2 
Prior works on computer vision-based proximity warning system.  

Author 
(Year) 

Descriptions Algorithms/ 
methods 

Limitation 

Luo, Liu, 
et al. 
(2020), 
Luo, 
Wang, 
et al. 
(2020) 

A smart video 
surveillance system 
with Yolov2 is 
proposed to real-time 
detect people entering 
excavator’s working 
area. 

Yolov2 and 
transformation 
matrix 

The proposed 
system is not able to 
detect small worker 
images in video. 

Kim, Liu, 
Lee, and 
Kamat 
(2019) 

An unmanned aerial 
vehicle (UAV) system 
with Yolov3 was 
developed to prevent 
people from being 
stuck by plants in 
construction sites. 

Yolov3 The developed UAV 
system is not able to: 
1) detect hazards in 
real-time; and 2) the 
plant’s status. 

Son et al. 
(2019) 

A computer vision 
system is developed 
for detection of 
collisions between 
people and equipment 
in construction sites. 

Faster R-CNN and 
Homography 
matrix 

The developed 
computer vision 
system has a limited 
field of view for 
detection of 
collisions. 

Kim et al. 
(2016) 

Determination of 
safety levels on-site 
based on detected 
accidents in 
construction sites 

Gaussian mixture 
model (GMM) 

The developed 
approach has the 
limitations that 1) 
the plant’s status 
was not considered; 
and 2) the actual 
accuracy did not 
meet the desired 
requirement 
because of the 
dynamic nature of 
construction sites 
(cluttered 
background, and 
occlusion).  
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3.1. Design development of smart monitoring system 

3.1.1. People detection module 
Compared with anchor-based approaches (e.g., Faster R-CNN), 

anchorless approach has fewer number of anchor parameters and does 
not need non-maximum suppression (NMS)2. In this case, the models 
developed using the anchorless approach is more generalizable and have 
faster detection speed. Based on the comparison of performances of 
different object detection methods, the CenterNet object detection 
approach is selected to detect construction workers due to its better 
performance. As mentioned, CenterNet is an anchor-free and key point- 
based detection model. It detects an object first as a center point and 
then regresses the object bounding box’s height and width with respect 
to the center point. 

In this research, Deep Layer Aggregation-34 (DLA-34) with hierar-
chical skip connections are used as the backbone network. Following 
Zhou et al. (2019), the fully convolutional upsampling version of the 

DLA network used for dense prediction is employed. Then, the dense 
prediction with iterative aggregation is used to increase the resolution of 
extracted feature maps. Following Zhou et al. (2019), the original 
convolution of DLA-34 is replaced with 3 × 3 deformable convolutions 
at each upsampling layer, a 3 × 3 convolutional layer with 256 channels 
is added before each output head, and a 1 × 1 convolution is added. 
More details on CenterNet can be found in Zhou et al. (2019). The 
structure of CenterNet is presented in Fig. 3. 

In this approach, we assume that I is the input image, and (x(k)
1 , y(k)1 ,

x(k)
2 , y(k)2 is the coordinate of bounding box of object k with category ck. 

As presented in Fig. 3, we firstly input images (I) to DLA-34 network for 
extraction of feature maps. Then, our model outputs a heatmap (see 
Fig. 4(a)) containing the center points of the objects as per Eq. [1]. 
Examples of bounding boxes are presented in Fig. 4(b). 

Ŷ ∈ [0, 1]wR×H
R×c (1)  

where, R is the output stride, C is the number of key point types, W is the 
width of input image, and H is the height of image. In this research, we 
followed Cao, Simon, Wei, and Sheikh (2017) where the output stride, R, 
is set to 4. 

The peaks in the generated heatmap correspond to the center of the 

Fig. 1. Examples of CCTV camera footage installed on tower crane in construction site.  

Fig. 2. Workflow of design science approach (adapted from Chu, Matthews, and Love (2018) and Luo et al. (2018)).  

2 NMS is a technique used in computer vision algorithms to select one 
bounding box out of many overlapping bounding boxes according to intersec-
tion over union (IOU). 
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object, which can be used to predict the width and height of the object’s 
bounding box (Fig. 4(b)). To extract the peak of each heatmap, all re-
sponses with value higher than or equal to its 8-connected neighbors are 
detected and the top 100 peaks are retained. 

To address the issue of discretization error caused by the output 
stride, a local offset for each center point is predicted. 

Let P̂c be the set of n detected center points P̂ =
{(

x̂i, ŷi
) }n

i=1 of class 
c. We use the key points value Ŷxiyic as a measure of its detection con-
fidence, and produce a bounding box at a location as per Eq. [2]: 
[

x̂i + δx̂i − ŵi/2 ŷi + δŷi − ĥi/2
x̂i + δx̂i + ŵi/2 ŷi + δŷi + ĥi/2

]

(2)  

where, 
(
δx̂i, δŷi

)
= Ô x̂i ,̂yi 

is the offset prediction, (xi,yi) is the integer 

coordinates of key point, and (ŵi, ĥi) = Ŝ x̂i ,̂yi 
is the size prediction. 

The overall training loss include three parts: (1) heatmap; (2) center 
offset; and (3) box size, which is included in Eq. [3]: 

Ldet = Lk + λsizeLsize + λoff Loff (3)  

where, Lk is loss of heatmap, Lsize is the loss of boxes size, and Loff is 
center offset. Here, we set λsize = 0.1 and λoff = 1 in this research.  

(1) Heatmap 

The loss of heatmap is based on Eq. [4]. 

Lk =
− 1
N
∑

xyc

⎧
⎨

⎩

(
1 − Ŷ xyc

)αlog
(

Ŷ xyc
)

if Yxyc = 1
(
1 − Yxyc

)β( Ŷ xyc
)β otherwise

log
(
1 − Ŷ xyc

)
otherwise

(4)  

where, α and β are hyper-parameters of the focal loss.  

(2) Center Offset 

The loss of center offset Loff is noted in Eq. [5] 

Loff =
1
N
∑

p

⃒
⃒
⃒Ôp −

(p
R
− p
)⃒
⃒
⃒ (5)    

(3) Box Size 

The loss of bounding box size is noted in Eq. [6] 

Lsize =
1
N

∑N

k=1

⃒
⃒Ŝpk − sk

⃒
⃒ (6) 

Here, we assume that the center point is pk =

(
x(k)1 +x(k)2

2 ,
y(k)1 +y(k)2

2

)

. Key 

point estimator Ŷ predicts all center points. Furthermore, the object size 

sk =
(

x(k)
2 − x(k)

1 , y(k)
2 − y(k)

1

)
for each object k is regressed. 

To reduce the computational burden, a single size Ŝ ∈ RW
R×

H
R×2 is 

employed for the prediction of people in this study. 

3.1.2. Distance measurement module 
To measure the distance among people captured in a video footage, a 

Homography approach (Belongie & Kriegman, 2007) is used to project 
the plane of interest (e.g., construction floor) in the camera view to the 
corresponding construction floor plan (Fig. 5). Euclidean Distance Ma-
trix (Dokmanic, Parhizkar, Ranieri, & Vetterli, 2015) is then used to 
determine the distance among people on construction floor plan (Fig. 5). 
These two approaches are briefly introduced as follows.  

(1) Project plane of area of interest to construction floor plan 

Homography is a transformation that is used to project a plane of 
interest (e.g., construction floor) in the camera view to construction 
floor plan, as shown in Fig. 5. Given a plane of interest in camera view 
(Fig. 5(a)) and the construction floor plan (Fig. 5(b)), the homography 
approach defines a 3 × 3 matrix that can be used to warp the same plane 
between these two images as noted in Eq. [7]: 

Fig. 3. Structure of CenterNet.  

Fig. 4. Examples of output from model: (a) heatmap; (b) bounding boxes.  
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⎡

⎣
x
y
1

⎤

⎦ =

⎡

⎣
h11 h12 h13
h21 h22 h23
h31 h32 1

⎤

⎦

⎡

⎣
p
q
1

⎤

⎦ (7)  

where, p and q are coordinates of a point of a plane of interest in camera 
view and x and y are the corresponding coordinates of the point on the 
construction floor plan. hij (i = 1,2,3; j = 1,2,3) are transformation co-
efficients, which can be calculated by using Direct Linear Transformation 
(Shapiro, 1978) using OpenCV Python Package in a one-time offline 
calibration step by specifying at least four points of the plane of interest 
in camera view and four corresponding points on the construction floor 
plan.  

(2) Distance measurement 

In this study, the bottom center point of a bounding box is used to 
represent the position of worker in image plane. After projecting the 
image plane to the construction floor plan, the proximity among people 
can be estimated by calculating the Euclidean distance on construction 
floor plan. The scale bar on the construction floor plan is used as a 
reference, and the pixel distance in the image is transformed to the meter 
metric unit. The distance between people can be calculated based on Eq. 
[8]. 

proximitymeter = proximityCAD × Sscale bar (8)  

where, proximityCAD is the distance of objects in construction floor plan. 

3.1.3. Warning alert generation and data collection module 
If the distance between construction workers is less than a pre- 

determined threshold (Lmin), i.e., safe distancing rule had been 
breached, a warning alert will be generated and sent to site personnel 
using Telegram. Similarly, if the number of workers in a zone exceeds a 
pre-determined threshold (Dmax), i.e., overcrowding occurs, a Telegram 
alert can be sent to the relevant site personnel. The site personnel to 
receive the Telegram can be site managers, supervisors, and workers. It 
is also possible for onsite alarms to be triggered when either the prox-
imity or density thresholds are exceeded. Furthermore, statistics about 
violations of safe distancing and overcrowding rules can be collected to 
help managers assess the effectiveness of their BBS and COVID-19 
interventions. 

4. Experimental control group studies 

4.1. Data resource 

In our study, a public housing construction site in Singapore was 
used as a case study to evaluate the feasibility and effectiveness of our 
proposed computer vision system. The construction contract requires 
CCTV cameras to be installed on the tower cranes for safety and security 
reasons. Hence, this study makes use of the existing system and video 
data. Accordingly, privacy issues related to recording human work ac-
tivities (Rashwan, Solanas, Puig, & Martínez-Ballesté, 2015) are less of a 
concern. In addition, the work area being monitored is at the con-
struction level, so the likelihood of contravening the workers’ privacy is 
also minimized. 

Fifteen cameras were mounted on seven tower cranes for daily 
monitoring of the construction site. It is important to note that we made 
use of existing CCTV cameras installed on tower cranes and there was no 
need for the contractor to install any new cameras on site, which made it 
easier to implement. In this case study, we focus on two CCTV cameras 
covering one construction block. The monitoring of overcrowding is 
essentially a subset of safe distancing monitoring because it is based on 
the detection of workers and is more easily implemented. Thus, in this 
study, we are focusing on the safe distancing function. 

As construction progress and the tower crane is jacked up, the dis-
tance between the CCTV camera and construction level changes. Based 
on the samples collected in Table 3, the approximate distance between 
the camera and the construction floor varies between 6.6 m and 17.8 m 
(see Table 3 and Fig. 6). 

In our study, the image dataset created for model training is collected 
from the site’s CCTV system. We firstly extracted images from the CCTV 
video footage by collecting 36 images from every eight consecutive days 
of each month (1–8, 9–16, 17–24, and 25–31). The 36 images were 
collected randomly from three periods: (1) 8:00am to 11:00am, (2) 
11:00am to 16:00 pm and (3) 16:00 pm to 19:00 pm, while ensuring that 
each period has 12 images. The resolution of each image is 1080 × 1920. 
A database of 5616 CCTV images, which contain 16,285 worker images, 
was created. The images are divided into training set and testing set with 
a ratio of 8:2. In other words, 4492 CCTV images were used for training 
and 1124 images were used for testing. 

Due to the varying distances between the workers on the construc-
tion levels and the CCTV cameras, the pixel size of people in the images 
varies significantly. With reference to Fig. 7, and in accordance to COCO 
database’s definition of small, medium, and large images (Lin et al., 
2014), we find that most of the worker images in our database falls in the 

Fig. 5. Calibration between camera image plane (left image) and Construction floor plan (right image).  
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range of small and medium size. 

4.2. Data annotation 

The following exclusion rules are defined in this study to improve 
consistency of labelling of worker images:  

1. Worker occluded by objects (e.g., heavy equipment and temporary 
structure) will not be labelled (see Fig. 8(a));  

2. Worker in blurred images will not be labelled (see Fig. 8(b)); and  
3. Worker with very small pixel size will not be labelled (see Fig. 8(c)). 

In this study, the annotation tool, ‘LabelImg’, is used. LabelImg is a 
graphical image annotation tool written in Python. Each bounding box is 
a rectangular box denoted by the top left corner point and bottom right 
corner point, enclosing the object of interest. Fig. 9 shows an example of 
the creation of annotated worker bounding boxes on the original image 
using LabellImg. 

5. Experimental results 

5.1. Detection of construction workers 

Our smart monitoring system is implemented on a server equipped 
with Intel i7 9th Generation CPU Computer with Nvidia GeForce RTX 
2070 graphics card. Following Zhou et al. (2019), a standard dense su-
pervised learning approach (Newell, Huang, & Deng, 2017) is adopted 
for training. In terms of hyper parameters of the CenterNet model, the 
batch-size was set at 2 and the learning rate of 5e− 5 was used for 140 
epochs. In this study, the learning rate dropped 10× at 90 and 120 
epochs. 

To assess performance, two key performance indicators (KPIs) 
including Average Precision (AP), and Average Recall (AR) are used to 
evaluate the CenterNet detection performance. AP measures the area 
under the precision and recall curve and AR measures recall of detec-
tion. Precision and recall are calculated using Eq. [9] and Eq. [10] 
respectively. 

precision =
TP

TP + FP
(9)  

Table 3 
Distance between camera and construction level during January 2019-September 2019.  

Month Jan Feb. Mar. Apr. May Jun. Jul. Aug. Sep. 

Distance/m 10  7.2  4.4  16.8  11.2  8.4  17.8  12.2  6.6  

Fig. 6. Snapshot of CCTV camera system.  

Fig. 7. Pixel size distribution of database.  
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recall =
TP

TP + FN
(10)  

where, ‘precision’ refers to the ratio of correctly detected workers to the 
total number of objects classified as workers. ‘recall’ refers to the ratio of 
correctly detected workers to all the actual workers in the images. A 
‘true positive’ (TP) refers to a worker that is correctly detected. A ‘false 
positive (FP)’ occurs when a detected worker is actually some other 
object. A ‘false negative (FN)’ refers to a failure to detect a worker in the 
image. 

In this study, following the work of Everingham, Van Gool, Williams, 
Winn, and Zisserman (2010), a threshold value of ‘true positive’ is set to 

0.5. A true positive occurs when the detected bounding box overlaps 
with the ground truth annotated box by more than 0.5 IOU (Intersection 

Fig. 8. Examples of images not labelled.  

Fig. 9. Example of manual annotation of workers with ‘LabelImg’.  

Table 4 
CenterNet-based worker detection results based on testing dataset.  

Resolution time batch AP0.5 
(All) 

AP0.5 
(small) 

AR0.5 
(All) 

AR0.5 
(small) 

512 × 512  0.085 4  0.595  0.283  0.825  0.569 
960 × 544  0.110 4  0.782  0.486  0.948  0.892 
1440 ×

832  
0.175 2  0.800  0.555  0.950  0.906  
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over Union). If the IOU is less than 0.5 then it is considered a false 
positive. Table 4 presents the test results on the use of the trained 
CenterNet model to detect workers. It also demonstrates that our applied 
CenterNet can accurately detect construction workers. Fig. 10 presents 
examples of correct detections and errors, respectively. 

To compare the performance of CenterNet to anchor-based detection 
network, two anchor-based detection approaches including Faster R- 
CNN and SSD were selected for comparison. The Faster R-CNN was 
proposed by Ren, He, Girshick, and Sun (2015) and it consists of three 
essential parts: (1) detection network; (2) region proposal network 
(RPN); and (3) fully connected layers for classification and bounding box 
regression. The Faster R-CNN achieved an accuracy of 73.2% mAP on 
PASCAL VOC 2007 and 70.4% mAP on PASCAL VOC 2012. The anchor 
boxes with different sizes and aspect ratios are essential to the detection 
performance with Faster R-CNN. In this study, Faster RCNN was 
implemented based on Google TensorFlow Object Detection API. We set 
the parameters as follows: (1) three different aspect ratios (0.5, 1.0, and 
2.0); (2) one base size (256 × 256); and (3) four scale size (0.25, 0.5, 1.0, 
and 2.0). 

SSD, the one-stage detector approach proposed by Liu et al. (2016), 
achieved 74.3% mAP on VOC2007 test at 59 FPS. SSD extracted feature 
maps from images and then produced bounding boxes and scores to 
detect object class instances. In this study, the SSD was implemented 
based on Google TensorFlow Object Detection API. Two critical pa-
rameters including anchor scale (4 × 4) and aspect ratio (0.5, 1.0, and 
2.0) are set. 

In our evaluation of the different object detection networks, we use 
the same training and testing dataset that was used for our CenterNet 
model. The hyper parameters (e.g., each model’s learning rate) were 
based on the values used in the relevant references for the respective 
algorithm. Table 5 presents the detection performance, which shows 
that CenterNet is more accurate and has faster detection speed than the 
two anchor-based approaches. The evaluation also showed that the 
CenterNet model has the highest detection speed when the resolution of 
images is 512× 512. 

5.2. Detection of violation of safe distancing rules 

After correctly detecting workers from the CCTV video in real-time, 
we then sought to determine the proximity between workers. In 
Singapore and many other countries, safe distancing rules by the gov-
ernment stipulates a minimum distance of at least one meter must be 
enforced at all times to reduce the risk of disease transmission during 
COVID-19 and this applies to all public places and workplaces, including 
construction sites. By applying the method presented in Section 3.1.2, 
each pixel represents a distance of 30 mm on the construction level and 
the distance between each pair of workers is determined based on the 
Euclidean distance matrix. When the safety distance of one metre was 
continuously breached for a predefined period of three seconds, a 
Telegram alert will be triggered. It is noted that the predefined period 
can be adjusted if necessary. Fig. 11 presents an example of a positive 

detection of workers breaching safe distancing rules in the case study. 
The warning alert was immediately sent to site personnel via Telegram 
and the data is captured on the management dashboard. 

While our approach can accurately detect workers violating safe 
distancing rule, there are still some misdetections and errors. Fig. 12 
presents examples of erroneous detection results (see red circles in the 
Figure). 

6. Discussion 

One of the challenges for site management during COVID-19 is to 
ensure that workers comply with safe distancing rules in a sustained 
manner. Many policies and regulations have been made in different 
countries to reduce physical interaction and ensure compliance to safe 
distancing and overcrowding rules. Our smart monitoring system pro-
vides site management with a real-time mechanism to proactively detect 
workers who have violated safe distancing rules during operations. As 
discussed earlier, the system can easily include monitoring of over-
crowding, where a certain number of workers is congregating in a small 
area for more than certain amount of time. The system can alert any site 
personnel, but it will be especially useful to site managers and super-
visors who can take immediate actions to modify workers’ behaviours 
and emphasize the importance of compliance to safety rules. Our system 
also helps to identify trades and groups of workers with higher tendency 
for close proximity work. In the event that it is not possible for these 
workers to comply with the safe distancing rule continuously, the 
management can pay more attention to their temperature, hygiene, and 
segregation with other workers. 

Thus, the contributions of this research are as follows. First, this 
study developed a smart real-time monitoring system that can be used to 
automatically monitor construction workers’ compliance with safe 
distancing requirements. To reduce the risk of transmission of COVID- 
19, it is important to implement continuous supervision to encourage 
safe behaviour and identify safety violations and errors. However, 
behaviour supervision is time-consuming and there could be different 
observation biases between different observers. Furthermore, requiring 
human observers to be on site exposes the observers and workers to 
additional disease transmission risk. Thus, instead of human observers 
observing workers for extended period of time, the proposed smart real- 
time monitoring system provides an automated means to monitor safe 
distancing between workers and identify overcrowding situations. The 
developed system will help to minimize the observation biases and 
obtain consistent behaviour observation results. The observation data 
collected will also be more extensive and helps site management pro-
duce more reliable BBS indicators that can act as leading indicators for 
safety management. Second, as compared to previous studies, the Cen-
terNet model used herein can better detect small worker images in CCTV 
footage. CenterNet can also address the drawbacks of anchor-based 
approaches (e.g., Faster R-CNN) in detecting small worker images in 
construction site video footages. Our experiments have demonstrated 
that CenterNet has better performance than popular state-of-the-art 

Fig. 10. Examples of worker detection using CenterNet.  
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object detector like Faster-RCNN and SSD when applied on the same 
dataset. We note that CenterNet had not been used in construction 
research, and based on the findings of this study, it is a promising al-
gorithm that can be applied more widely in the construction industry. 

Furthermore, this paper suggests that future studies on BBS 

management should consider the use of computer vision. One of the 
critical success factors of BBS approaches is the availability of reliable 
behaviour observation data, but traditional BBS implementation relies 
heavily on manual observation, which can be inconsistent, resource 
intensive and provides inadequate amount of data (Fang, Love, et al., 

Table 5 
Comparison of state-of-the-art approaches.  

Model Resolution Speed (sec) AP0.5 (All) AP0.5 (Small) AP0.5 (Medium) AR0.5 (All) AR0.5 (Small) AR0.5 (Medium) 

Faster RCNN 1024 × 600  0.108  0.585  0.231  0.640  0.703  0.448  0.780 
SSD 640 × 640  0.106  0.601  0.310  0.638  0.639  0.363  0.730 
CenterNet 512 × 512  0.085  0.595  0.283  0.648  0.825  0.569  0.869 
CenterNet 960 × 544  0.110  0.782  0.486  0.832  0.948  0.892  0.958 
CenterNet 1440 × 832  0.175  0.800  0.555  0.835  0.950  0.906  0.958  

Fig. 11. Example of detection result with warning alert.  

Fig. 12. Examples of detection errors.  
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2020; Fang, Ding, et al., 2020). Instead of manual observation, computer 
vision can automatically identify, and measure safety behavior of 
workers, which can support the effective implementation of BBS. For 
example, based on Guo, Goh, and Le Xin Wong (2018) the percentage of 
safe or unsafe behavior can be determined for different time intervals (e. 
g., morning, afternoon, week, and month) and for different locations in a 
worksite. Then, based on the more detailed indicator of safety behav-
iour, different interventions (e.g., feedback, and training) can be 
implemented in a more targeted manner to improve safety performance. 

7. Limitations and future works 

There are four limitations in our study. Firstly, the Homography 
approach used in this research to determine distance is sensitive to the 
point selections, and the estimation error is linearly proportional to the 
distance from the camera to the workers. With further improvement of 
distance algorithms (Rodríguez-Quiñonez et al., 2017), the distance 
errors in the developed system can be reduced. However, it must be 
noted that in comparison to manual observations, the developed system 
is able to monitor the site continuously, consistently, and more accu-
rately. Secondly, due to the lack of depth information from a regular 
CCTV camera, the distance measurement using Homography are esti-
mated. In terms of safe distancing, such estimates are acceptable. 
Furthermore, our developed system is more implementable as it uses 
existing CCTV cameras and do not require any additional specialized 
cameras. However, our further work will consider the use of stereo 
camera to improve accuracy on distance measurement. Thirdly, the 
calibration for distance measurement needs to be conducted every time 
the tower crane is jacked up. The calibration is time-consuming and can 
contribute to errors. We are currently developing an automated cali-
bration method that can self-adjust the calibration parameters. Fourthly, 
occlusion is still a major issue that affects most computer vision-based 
systems, and our developed system is not an exception. To address 
this limitation, we will consider the use of multi-cameras approaches to 
detect and track target workers across different cameras. Lastly, the 
developed smart monitoring system was only tested on two construction 
sites in Singapore. The generalizability of our proposed smart moni-
toring system still needs to be improved further. Currently, more data 
are being collected from different sites to improve the performance of 
the model across different construction sites. Concurrently, self-learning 
algorithm (Le, Sugimoto, Ono, & Kawasaki, 2020) is being explored to 
facilitate efficient improvement of the models. 

In future, the proposed computer vision-based system can also be 
integrated with Internet of Things (IOT), Cloud platform and wearables 
(e.g., wrist band), person-ReID detection method. By integrating these 
technologies, a more robust and responsive system can be developed and 
the worker who is breaching the safety distancing can be detected and 
tracked. 

8. Conclusion 

This study proposes an automatic real-time monitoring system for 
detecting workers violating safe distancing rules on construction sites 
during the on-going COVID-19 pandemic. The developed system in-
tegrates the recent advances in computer vision and deep learning, 
including object detection with CenterNet, proximity determination 
with Homography and Euclidean distance matrix, and warning alert 
generation. A case of a public housing project in Singapore is used to 
validate the effectiveness and feasibility of our developed system. The 
experimental results show that CenterNet performs better than other 
popular object detection networks, including Faster RCNN and SSD. Our 
proposed computer vision-based smart monitoring system supports 
efficient implementation of behaviour-based safety (BBS) such that 
behavioural observation is continuous and automated. In doing so, 
workers’ safe behaviour can be reinforced, and unsafe behaviour can be 
corrected. Considering the observation biases, time and effort required 

for human supervision of people’s behaviour, our developed system is a 
favourable alternative or supplement. The key contributions of our 
paper are twofold: (1) it is demonstrated that monitoring of safe 
distancing on construction sites can be automated using the proposed 
computer vision-based smart monitoring system; and (2) CenterNet, an 
anchorless detection model, outperforms current state-of-the-art ap-
proaches (e.g., Faster R-CNN, SSD) in the real-time detection of con-
struction workers. 
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Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv preprint arXiv: 
1904.07850. 

Y.M. Goh et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0360-8352(21)00751-8/h0085
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0085
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0085
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0090
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0090
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0090
https://doi.org/10.1016/j.aei.2019.100980
https://doi.org/10.1016/j.autcon.2019.103013
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0105
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0105
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0105
https://doi.org/10.1016/j.aap.2018.06.002
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0115
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0115
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0115
https://doi.org/10.1016/j.ssci.2020.105130
https://doi.org/10.1016/j.ssci.2020.105130
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000562
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000562
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0130
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0130
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0130
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0135
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0135
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0135
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0140
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0140
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0140
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0140
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0145
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0155
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0155
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0155
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0160
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0160
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0160
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0165
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0165
https://doi.org/10.1016/j.aei.2020.101100
https://doi.org/10.1016/j.autcon.2019.103016
https://doi.org/10.1016/j.autcon.2019.103016
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0180
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0180
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0180
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0185
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0185
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0190
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0190
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0190
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0190
https://www.moh.gov.sg/news-highlights/details/stricter-safe-distancing-measures-to-prevent-further-spread-of-covid-19-cases
https://www.moh.gov.sg/news-highlights/details/stricter-safe-distancing-measures-to-prevent-further-spread-of-covid-19-cases
https://www.moh.gov.sg/covid-19-phase-advisory
https://www.moh.gov.sg/covid-19-phase-advisory
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0205
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0205
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0205
https://doi.org/10.1016/j.autcon.2020.103085
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/bulletins/coronaviruscovid19relateddeathsbyoccupationenglandandwales/deathsregistereduptoandincluding20april2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/bulletins/coronaviruscovid19relateddeathsbyoccupationenglandandwales/deathsregistereduptoandincluding20april2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/bulletins/coronaviruscovid19relateddeathsbyoccupationenglandandwales/deathsregistereduptoandincluding20april2020
https://www.osha.gov/SLTC/covid-19/construction.html
https://www.osha.gov/SLTC/covid-19/construction.html
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0230
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0230
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0230
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0230
https://doi.org/10.1007/s10207-015-0286-9
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0245
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0245
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0245
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0245
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0250
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0250
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0255
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0255
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0255
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000845
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000845
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0265
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0265
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0270
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0270
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0270
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0275
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0275
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0275
https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0285
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0285
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0285
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0290
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0290
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0290
https://doi.org/10.1016/j.autcon.2019.102894
https://doi.org/10.1016/j.autcon.2019.102894
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0305
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0305
http://refhub.elsevier.com/S0360-8352(21)00751-8/h0305

	Management of safe distancing on construction sites during COVID-19: A smart real-time monitoring system
	1 Introduction
	2 Related works
	2.1 Deep learning-based object detection in construction sites
	2.2 Vision-based distance measurement
	2.3 Computer vision-based proximity warning system for construction sites

	3 Research approach
	3.1 Design development of smart monitoring system
	3.1.1 People detection module
	3.1.2 Distance measurement module
	3.1.3 Warning alert generation and data collection module


	4 Experimental control group studies
	4.1 Data resource
	4.2 Data annotation

	5 Experimental results
	5.1 Detection of construction workers
	5.2 Detection of violation of safe distancing rules

	6 Discussion
	7 Limitations and future works
	8 Conclusion
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgement
	References


