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Abstract

Purpose: Recent advances in computational image analysis offer the opportunity to develop
automatic quantification of histologic parameters as aid tools for practicing pathologists. We
aim to develop deep learning (DL) models to quantify nonsclerotic and sclerotic glomeruli on
frozen sections from donor kidney biopsies.

Approach: A total of 258 whole slide images (WSI) from cadaveric donor kidney biopsies
performed at our institution (n ¼ 123) and at external institutions (n ¼ 135) were used in
this study. WSIs from our institution were divided at the patient level into training and valida-
tion datasets (ratio: 0.8:0.2), and external WSIs were used as an independent testing dataset.
Nonsclerotic (n ¼ 22767) and sclerotic (n ¼ 1366) glomeruli were manually annotated by study
pathologists on all WSIs. A nine-layer convolutional neural network based on the common
U-Net architecture was developed and tested for the segmentation of nonsclerotic and sclerotic
glomeruli. DL-derived, manual segmentation, and reported glomerular count (standard of care)
were compared.

Results: The average Dice similarity coefficient testing was 0.90 and 0.83. And the F1, recall,
and precision scores were 0.93, 0.96, and 0.90, and 0.87, 0.93, and 0.81, for nonsclerotic and
sclerotic glomeruli, respectively. DL-derived and manual segmentation-derived glomerular
counts were comparable, but statistically different from reported glomerular count.

Conclusions: DL segmentation is a feasible and robust approach for automatic quantification of
glomeruli. We represent the first step toward new protocols for the evaluation of donor kidney
biopsies.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.8.6.067501]

Keywords: kidney allograft; frozen section; deep learning; donor biopsy; segmentation.

Paper 21119R received May 17, 2021; accepted for publication Nov. 8, 2021; published online
Dec. 20, 2021.

*Address all correspondence to Laura Barisoni, Laura. Barisoni@duke.edu; Kyle J. Lafata, Kyle.Lafata@duke.edu
†These authors contributed equally to the paper.

2329-4302/2021/$28.00 © 2021 SPIE

Journal of Medical Imaging 067501-1 Nov∕Dec 2021 • Vol. 8(6)

https://orcid.org/0000-0001-8219-2939
https://orcid.org/0000-0002-5100-6299
https://orcid.org/0000-0003-0848-9683
https://doi.org/10.1117/1.JMI.8.6.067501
https://doi.org/10.1117/1.JMI.8.6.067501
https://doi.org/10.1117/1.JMI.8.6.067501
https://doi.org/10.1117/1.JMI.8.6.067501
https://doi.org/10.1117/1.JMI.8.6.067501
https://doi.org/10.1117/1.JMI.8.6.067501
mailto:Laura. Barisoni@duke.edu
mailto:Laura. Barisoni@duke.edu
mailto:Laura. Barisoni@duke.edu
mailto:Kyle.Lafata@duke.edu


1 Introduction

Renal allograft transplantation has superior long-term survival compared with dialysis.1

However, fewer allografts remain available for transplantation than the number of patients
on the transplant waiting list.2–4 To address this problem, the extended criteria donor (ECD)
program was introduced in 2002 in the United States, which allowed for transplantation of allog-
rafts from deceased donors >60 years of age and those with comorbidities.2 To increase the
utilization of deceased-donor kidneys and improve the prediction of their function, the ECD
was later supplanted by the kidney donor profile index (KDPI).5,6 While the utility of morpho-
logic parameters to predict allograft function and outcomes is controversial,4,5,7–13 histologic
analysis of frozen sections of kidney wedge biopsies stained with hematoxylin and eosin
(H&E) remains the current practice in North America for determining the suitability of
deceased-donor kidneys for transplantation.

Semiquantitative assessment of interstitial fibrosis and inflammation, tubular atrophy
and acute tubular injury, arterial intimal fibrosis and arteriolar hyalinosis, presence of intra-
vascular thrombi or glomerular pathology, and percent of globally sclerotic glomeruli are rou-
tinely evaluated prior to implantation to prognosticate post-transplant kidney function.14,15

Moreover, these semiquantitative features are often evaluated prior to implantation by pathol-
ogists on-call who do not always have a kidney domain expertise,3–5,8,9 resulting in implan-
tation of suboptimal donor renal allografts or improper discarding of otherwise suitable
allografts.3,5 High inter- and intraobserver variability further complicates this paradigm.14,16

In addition, the overall longevity of the allograft depends also on other post-transplant super-
imposed events, such as episodes of T cell or antibody mediated rejection, measured by the
Banff scores, response to immunosuppression, viral infections, and other recipient-specific
clinical conditions.17 More recently, the i-Box algorithm, which integrates demographic, clini-
cal, and morphologic data, was shown to be a useful tool to better predict allograft long-term
outcomes.18

Digital pathology has become an increasingly important aspect of pathology workflows
in both research and clinical practice.19–28 Digital pathology enables computational image
analysis to be applied to digitized tissue samples. In particular, deep learning (DL), a specific
type of machine learning, is a useful tool for image representation and image analysis
tasks.29–32 DL methods have been implemented for a wide array of digital pathology
domains,28,31,33 such as cell detection32 and segmentation,34 detection of breast cancer meta-
stases in lymph nodes,35 and grading of gliomas.36 DL approaches have also been applied to
kidney biopsies for the automatic detection of normal structures (e.g., glomeruli, urinary space,
tubules, and vessels)34 and abnormal structures (e.g., global sclerosis, interstitial fibrosis, and
tubular atrophy),24,26–28,37–39 using WSIs derived from formalin-fixed and paraffin-embedded
sections.

However, DL studies on frozen sections of kidney remain limited.15,40 Relative to paraffin-
embedded tissue, frozen tissue presents a unique challenge in computational renal pathology.
For example, glomeruli typically present with better morphology on paraffin-embedded sections
versus frozen sections. Furthermore, the variability in stain quality of frozen sections is greater
compared with paraffin-embedded sections and depends on multiple variables associated with
deceased-donor kidney biopsies (e.g., the underlying illness of the donor, the ischemic time
between organ procurement and biopsy, etc.). Other factors that may affect frozen tissue pre-
sentation are the room and cryostat temperature where the frozen section was obtained and cut,
the humidity of the room that may affect the percentage of water in the staining solution,
etc. (Fig. 9).

This paper describes the development, characterization, and evaluation of a DL model to
automatically detect and segment sclerotic and nonsclerotic glomeruli on frozen sections of
donor kidney biopsies prior to organ transplantation. We hypothesized that a DL approach would
outperform standard-of-care pretransplant biopsy characterization based on visual glomerular
counting. We tested this hypothesis by deploying our proposed model on a multiinstitutional,
independent testing dataset, where DL results were compared with historically reported
standard-of-care results.
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2 Materials and Methods

2.1 Whole Slide Imaging Dataset

This study was approved by the Duke University Institutional Review Board. A total of 211
kidney donors deceased between January, 2015, and January, 2020, were included in the
study, for a total of 268 frozen section H&E-stained slides. Of these, 75 donors had a wedge
kidney biopsy performed, frozen, cut, and stained with hematoxylin and eosin (H&E) at Duke
University Medical Center (DUMC) for a total of 128 frozen section H&E-stained glass slides
(internal cases). Of these 75 donors, 53 had bilateral biopsies and 22 had unilateral biopsies
performed. The remaining 136 deceased donors had a wedge kidney biopsy performed, frozen,
cut, and stained with H&E in other institutions (external cases) and subsequently reviewed at
DUMC, for a total of 140 frozen section H&E-stained slides [Fig. 1(a1)].

Whole slide images (WSIs) were acquired at 40× magnification on a Leica AT2 whole-slide
scanner located in the Duke University Department of Pathology’s BioRepository and Precision
Pathology Center for all cases. All WSI were reviewed for image quality, where 10 WSIs were
excluded because they had with severe artifacts, including excessive folding, poor quality of stain-
ing, and the presence of bubbles under the coverslip. Complete exclusion criteria are provided
in Table 4. The final WSI dataset included a total of 258 WSIs (123 internal and 135 external).

2.2 Manual Segmentation of Glomeruli

Manual segmentation of glomeruli was performed as follows. Each WSI was first segmented by
one of the three junior observers (with 1, 2, and 5 years of experience in pathology).
Segmentation was achieved by manually outlining glomeruli in all 258 WSIs using a publicly
available digital pathology tool (QuPath, version 0.1.2). For nonsclerotic glomeruli, annotations
were made by tracing the Bowman’s capsule and through the vascular and tubular pole of the
glomerulus, when visible, to maintain a continuous outline of the individual glomeruli. As the
Bowman’s capsule of globally sclerotic glomeruli is generally inconsistent or separated from

Fig. 1 Overall research design. (a) The material preparation process consisted of collection of
cases from DUMC and outside institutions, followed by manual annotation and QC by expert renal
pathologists. (b) The training process included selection and augmentation of training samples,
followed by model optimization for segmenting the glomeruli. (c) Predictions were made based on
sequential patches, which were concatenated together to recover a WSI full field-of-view predic-
tion. (d) The model performance was further investigated by comparing to the standard-of-care
report indicating the number of glomeruli based on visual assessment.
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the tuft by a white space representing a processing/freezing artifact, only the sclerosed tuft was
outlined during the segmentation process (Fig. 2).

Following the initial manual segmentation, the dataset was reviewed by two senior renal
pathologists with 25 and 40 years of experience in renal pathology, and modifications were made
where it was necessary to achieve expert consensus. This procedure was implemented to reca-
pitulate what is clinically done in renal pathology practice (i.e., a trainee performs the first pass of
glomeruli counting, which is then reviewed by a senior renal pathologist). Matched pairs of shift-
invariant WSIs and manual segmentations were considered as DL training samples [Fig. 1(a2)].

2.3 Deep Learning Implementation and Performance Evaluation

2.3.1 Network architecture

ADL framework was developed to automatically identify and segment nonsclerotic versus glob-
ally sclerotic glomeruli on frozen section WSIs. A nine-module convolutional neural network
(CNN) based on the common U-Net architecture41 with a dilated bottleneck was developed for
glomerular segmentation (Fig. 3). Our U-Net architecture is a symmetric encoder–decoder fully
convolutional network with a 256 × 256 × 3 input layer that produces pixel-level segmentation
results. Each encoder module contains two convolution blocks consisting of a 3 × 3 convolu-
tional layer, a batch normalization procedure, and a rectified linear unit activation function.
Modules are connected by a 2 × 2 max-pooling layer for downsampling.

The downsampled bottleneck module consists of three dilation operations42 for each con-
volutional layer, which enlarge the receptive field to capture coarse field-of-view imaging details
within the high-level feature maps. The decoder modules recover and upsample the semantic
information generated from the bottleneck module, each of which includes a 2 × 2 transpose
convolution block and a 3 × 3 convolution block. Long-term skip connections are used for
enhancing different scale texture details provided in the encoding layers. Finally, a 1 × 1

convolutional layer is used to output a two-layer probability map representing glomerular fore-
ground versus background.

2.3.2 Model training and validation

The 75 internal cases (123 WSIs) were divided at the patient level into training and validation
datasets with a 0.8:0.2 ratio, respectively, and used to train/fine-tune the DL model. The 135
external cases (135 WSIs) were used as an independent testing dataset. The training dataset
consisted of tissue that was cut and stained at Duke University under a standard institutional

Fig. 2 An illustrating example of a WSI with glomerular segmentations. Manual segmentations
of nonsclerotic glomeruli (blue segmentations) and sclerotic glomeruli (red segmentations) on
WSIs are generated using QuPath.
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protocol used for clinical practice. As testing data were—by design—acquired from other insti-
tutions, there was a higher variation in tissue sectioning and staining protocols. The rationale for
this experimental design was to provide a good estimate of true model generalization when
applied to heterogeneous data.

Two independent models were trained in parallel for normal and globally sclerotic glomeruli,
respectively. A well-balanced, patch-based training set that represented both glomerular signal
and background tissue was engineered as follows. Each WSI of the training set was stochas-
tically sampled with 500 iterations by extracting random 256 × 256 patches from the entire tissue
field-of-view. Patches with a glomerular pixel density of at least 20% were included as training
examples (i.e., to represent a high degree of glomerular signal during the training process).
Patches with a glomerular pixel density of 0% (i.e., no glomeruli in the patch) were also included
as training examples (i.e., to represent pure background tissue during the training process).
Patches with a nonzero glomerular pixel density <20% were excluded from the training dataset
to minimize partial volume effects and edges of different glomeruli at the perimeter of the patch.
Matched pairs of shift-invariant image patches and corresponding manual segmentations were
used as training examples.

To boost model generalization, a data augmentation procedure was applied, including basic
operations (e.g., horizontal vertical flip, crop resize), morphological transformations (e.g., shift
scale rotate, elastic transform), color distortions (e.g., contrast brightness, hue saturation value),
and other image processing operations (Gaussian blur, random cutout). Training also utilized
transfer learning, where the network’s first four fully convolutional blocks were initialized
as the pretrained ImageNet43 weights of the publicly available VGG1628 data. During the training
process, a cross entropy loss function was minimized based on Adam optimization37 to learn
optimal model hyperparameterization. Training was run for 200 epochs with a batch size of 16
input patches and an initial learning rate of 0.001. The training implementation achieving the
lowest validation loss was computationally locked down and deployed as the final model for
testing.

2.3.3 Model testing

Model performance was independently evaluated on the testing dataset. Each testing set WSI
was decomposed into nonoverlapping patches using a sliding window technique, and the model

Fig. 3 DL model architecture. (Left) An input glomeruli patch of size 256 × 256 × 3 is fed into a
nine-module U-Net model. For this model, each of the four encoder (i.e., left side of the network)
modules are loaded with VGG pretrained weights, which are then finetuned during training. The
bottleneck module consists of three dilated convolution layers with different dilation rates. The
feature maps at this level are added elementwise at the end of the bottleneck. The four decoder
modules (i.e., right side of the network) use transpose convolutions to upsample the feature maps,
and skip-connections incorporate the encoder information. Finally, a 1 × 1 convolution layer maps
the information to a 256 × 256 binary image of pixel-level predictions of glomerular locations.
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was applied in a patch-by-patch basis and then concatenated together to generate a biopsy-level
prediction at the full 40× field-of-view. Glomeruli at the perimeter of patches were handled with
a patch padding technique, where the model was applied to 50% padded windows and then
cropped to the original patch size. This was done to avoid clipping artifacts of glomeruli at the
border of each patch.

Since our testing dataset consisted of multi-institutional data, there was variation in color
distribution compared with the training dataset. As such, a stain color normalization
method44 was performed to match the color density of each testing image to a uniform reference
color space, while preserving histology structure.

Segmentation accuracy was quantified based on the dice similarity coefficient (DSC),45

which measures the pixel-level overlap between DL-generated segmentation results and manual
segmentation results. In addition, model accuracy, sensitivity, and specificity of sclerotic versus
nonsclerotic glomeruli were quantified based on F1, precision, and recall scores.46

2.3.4 Effect of transfer learning and color variation on model performance

The effect of transfer learning and sample size on model performance was evaluated for both
nonsclerotic and sclerotic glomeruli segmentation models. Model performance metrics with and
without the transferred VGG16 weights were compared and their differences quantified. To
evaluate the effect of color variation, model performance was compared with and without
test-time color normalization.

2.4 Deep Learning Glomerular Count versus Standard of Care Pathology
Reporting

External cases where the reported glomerular count was available (N ¼ 47) were used to com-
pare the DL-derived glomerular count to the current standard of care. The reported glomerular
counts for nonsclerotic and globally sclerotic glomeruli performed on the frozen section, along
with the sclerotic-nonsclerotic glomerular ratio, were compared with both the corresponding
manual segmentation-derived counts and the DL-derived counts [Fig. 1(d)].

Pairwise t-tests and Pearson correlation coefficients were used to quantify statistical
differences between the (a) historically reported, (b) manual segmentation-derived, and (c) DL-
derived glomerular count. The Bonferroni–Holm method47 was implemented to correct p-values
for multiple hypotheses testing. A corrected p-value lower than 0.05 was considered statistically
significant.

3 Results

3.1 Manual Segmentation of Glomeruli

A total of 21,146 nonsclerotic (8897 from the internal dataset and 12,249 from the external
dataset) and 1322 sclerotic glomeruli (682 from the internal dataset and 640 from the external
dataset) were manually segmented on 258 images.

3.2 Deep Learning Detection and Segmentation Performance

DL model performance results on the external testing WSIs are summarized in Table 1. The
nonsclerotic glomeruli model achieved a DSC of 0.91 (implying high spatial overlap compared
to manual segmentation), an F1 score of 0.93 (implying strong overall detection performance),
high recall of 0.96 (implying accurate recognition of true positive nonsclerotic glomeruli),
and high precision of 0.90 (indicating a high overprediction of nonsclerotic glomeruli compared
to sclerotic glomeruli). Similarly, the sclerotic glomeruli model achieved a DSC of 0.83, an F1
score of 0.87, recall of 0.93, and a precision of 0.81. AWSI final prediction example is visualized
in Fig. 4.
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Figure 5 shows examples of false-positive and false-negative predictions of sclerotic and
nonsclerotic models. Sources of model error included two major categories: procedure artifacts
(e.g., tissue processing artifacts such as overstaining, folds, air bubbles, and chatter) and glo-
merular histologic mimics (e.g., fibrosis of the urinary space, dense interstitial fibrosis, and red

Table 1 Model performance on the testing dataset. Glomerular detection and segmentation
performance for the nonsclerotic glomeruli were >0.9 for all performance metrics. The sclerotic
performance was slightly less robust but still good with measures >0.8 with recall being 0.91.
The slightly worse precision compared to recall means there were more false positives than false
negatives. When compared with the performance of the nonsclerotic algorithm, the precision is
less robust which is consistent with the smaller amount of data in the sclerotic cohort and the
relatively greater variety histologic mimics of sclerotic glomeruli on the WSIs.

Detection Segmentation

Precision Recall F1 DSC

Nonsclerotic 0.898 0.957 0.926 0.901

Sclerotic 0.812 0.931 0.865 0.829

Fig. 4 An illustrating example (testing set) of DL segmentation of glomeruli on a WSI. Results are
color coded relative to reference manual annotations to demonstrate the performance of the DL
algorithm on testing data.
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blood cell casts). The global sclerosis model had a relatively high false positive rate, due to the
variety of sclerotic textures and the relative lack of global sclerosis training data. Hence, most of
the incorrect predictions were due to histology mimics. The nonsclerotic model generally learned
well. Extreme procedure artifacts (e.g., distorted glomeruli, tangential cuts with small glomerular
profiles, and poor staining) were the major reasons for failed predictions.

3.3 Effect of Transfer Learning and Color Normalization on Model
Performance

As shown in Fig. 6, when training on a relatively small sample size (e.g., number of glomeruli
<600), transfer learning had a significant effect on DL model performance. Despite less data,
model performance was improved based on the transfer learning procedure. The effect of transfer
learning was less significant when >600 glomeruli were used for training. The nonsclerotic

Fig. 5 False-positive and false-negative predictions for globally sclerotic and nonsclerotic glo-
meruli. (a)–(c) False positive for the global sclerosis model; (d)–(f) false negative for the global
sclerosis model; (g)–(i) false positive for the nonglobal sclerosis model. (i) A probable nonglobally
sclerotic glomerulus was not manually annotated by the primary annotator nor by the quality
control pathologist, but it was detected by the DL model; (j)–(l) false negative for the nonglobal
sclerosis model.

Fig. 6 Effect of transfer learning and sample size on model performance of (left) nonsclerotic glo-
meruli and (right) sclerotic glomeruli. Transfer learning improved model performance significantly
with limited data (i.e., <600 glomeruli) for both (a) nonsclerotic and (b) sclerotic model. Less
glomeruli samples are needed for the nonsclerotic model to reach a performance saturation
(i.e., DSC ¼ 0.9 with 1500 glomeruli), compared to sclerotic model.
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glomeruli model required less training samples (i.e., 1500 nonsclerotic glomeruli) to achieve per-
formance saturation (i.e., DSC ¼ 0.9) compared with the sclerotic glomeruli model. Meanwhile,
the sclerotic glomeruli model appeared to not achieve performance saturation, implying that more
sclerotic data would likely improve performance. As demonstrated in Table 2, test-time color nor-
malization had a nominal effect on model performance, which shows the DL training pipeline with
suitable data augmentation can help resist color variation in the data source.

3.4 Deep Learning Glomerular Count versus Standard of Care Pathology
Reporting

Direct statistical comparisons between (i) historically reported glomerular counts, (ii) manual
segmentation glomerular counts, and (iii) DL-model glomerular counts are reported in Table 3.
When the glomerular count from the manual segmentation was compared with the glomerular
count from the DL model, statistically similar counts were observed for both nonsclerotic
(p ¼ 0.837) and sclerotic glomeruli (p ¼ 0.0950). This implies that the DL-model is operating
at a noninferior counting performance relative to an expert renal pathologist. When the glomeru-
lar counts from the manual and DL segmentation were compared to the historically reported
standard-of-care glomerular counts, a statistically significant difference was observed for both
nonsclerotic (p ¼< 0.0001) and sclerotic (p ¼ 0.002) glomeruli. This implies that both manual
counting by a renal pathologist and automatic counting by the DL model are both more accurate
than historically reported clinical data. Correlation plots of the three category results among three

Table 2 Effect of test-time color normalization onmodel performance.

Detection Segmentation

Precision Recall F1 DSC

Noncolor normalized

Nonsclerotic 0.898 0.957 0.926 0.901

Sclerotic 0.812 0.931 0.865 0.829

Color normalized

Nonsclerotic 0.908 0.963 0.934 0.907

Sclerotic 0.807 0.934 0.863 0.824

Table 3 Comparison of glomerular counts. For the non-sclerotic model, the model-annotation
count is not significantly different from the reference segmentations, whereas the standard of
care count is different from the reference segmentations. The same is true for the sclerotic model,
which is not significantly different from the reference segmentations, whereas the standard of care
has a significantly different count from the reference segmentations.

Manual
segmentation DL model

Pathology
report

Manual
segmentation
versus DL
model

Manual
segmentation

versus
pathology
report

DL model
versus

pathology
report

Average
number
(range)

Average
number
(range)

Average
number
(range)

Nonsclerotic 84.6 ± 14.5
(14 to 253)

85.0 ± 15.2
(18 to 265)

75.6 ± 18.3
(11 to 306)

p = 0.837 p = 1.3426e-6 p = 1.085e-7

Sclerotic 5.3 ± 1.7
(0 to 26)

6.0 ± 1.9
(0 to 29)

3.4 ± 1.2
(0 to 18)

p = 0.095 p = 0.002 p = 0.002

% Sclerosis 5.5 ± 1.2
(0 to 18.75)

6.4 ± 1.5
(0 to 21.48)

4.6 ± 1.1
(0 to 18.56)

p = 0.385 p = 0.256 p = 0.060
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methods for each data point are shown in Fig. 7. In Fig. 8, testingWSIs on the correlation plot are
displayed with different procedure artifact conditions, which were a major source of model per-
formance deviation.

4 Discussion

Digital pathology and state-of-the-art computational techniques are changing the landscape of
pathology practice.24 Unlike in oncologic pathology, where computational image analysis has
been extensively developed and is slowly being introduced into clinical practice, drug develop-
ment, and clinical trials,48 native and transplant nephropathology still relies entirely on visual
assessment. In the current study, we developed a robust, accurate, and generalizable DL model

Fig. 7 Glomerular characterization results on testing data samples for the DL model, manual seg-
mentation, and standard-of-care pathology reporting. High Pearson correlation demonstrates
good agreement between DL and manual segmentation, relative to standard-of-care pathology
reporting results. (a)–(c) The percentage of sclerotic glomeruli detected by the DL model com-
pared to the pathology report and the manual segmentations. (d)–(f) The absolute number of non-
sclerotic glomeruli detected by the DL model compared to the pathology report and the manual
segmentations. (g)–(i) The absolute number of sclerotic glomeruli detected by the DL model com-
pared to the pathology report and the manual segmentations. These findings indicate that DL-
based glomerular characterization outperforms historical pathology reporting results based on
standard-of-care methods.

Li et al.: Deep learning segmentation of glomeruli on kidney donor frozen sections

Journal of Medical Imaging 067501-10 Nov∕Dec 2021 • Vol. 8(6)



for automatic segmentation of nonsclerotic and globally sclerotic glomeruli on H&E frozen sec-
tion WSIs from donor kidney wedge biopsies. Compared to paraffin-embedded sections, glo-
meruli on frozen tissue have inferior morphology and more artifacts. Illustrating examples are
included in Fig. 9. We stress that interrogation of frozen tissue is paramount to clinical transplant
medicine. Our results demonstrate high predictive performance on an independent dataset and
show that machine-derived glomerular counts are more accurate than historically reported stan-
dard-of-care clinical data. These positive findings provide hypothesis generating data and moti-
vate future applications of AI techniques to transplant medicine.

While other groups have primarily investigated DL-based glomerular detection and segmen-
tation on WSIs of paraffin-embedded tissue,38–40,49–62 our study represents the largest application

Fig. 8 Visualization of WSIs relative to model performance on testing data. (a)–(c) WSIs contain
tissue freezing and folding artifacts, glass slide (bubble between the cover slip and the glass slide)
and cutting artifacts, and tissue folding artifacts, which may have contributed to decreased per-
formance. (d) The tissue section is intact and without artifacts, with accuracy for sclerosis from the
DL model prediction.

Fig. 9 Examples of artifacts in frozen sections compared with paraffin-embedded sections.
(a) Example of a glomerulus from a formalin-fixed and paraffin-embedded kidney biopsy stained
with H&E (archival image). (b)–(f) Examples of glomeruli from frozen sections stained with H&E:
In (b) is represented a glomerulus from a native kidney biopsy that is frozen relatively quickly
after the biopsy procedure (archival image), and in (d)–(f) glomeruli from cadaveric donor kidney
biopsies that were used in this study. Section folding and freezing artifacts are noted, resulting in
high variability in image presentation.
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using frozen sections from kidney donor wedge biopsies. Previous work by Marsh et al. suc-
cessfully demonstrated elliptical detection15 and quantification40 of glomeruli on frozen sections.
Although their approach to DL was different than ours and their cross-validated model lacked
independent testing, our key findings are comparable and thus both provide promising insight.

The generalization of DL models is critical for future clinical translation. Even though labo-
ratories in the United States follow general College of American Pathology (CAP)21,26 and
Clinical Laboratory Improvement Amendments (CLIA) guidelines,63 pre-analytical variability
is still significant. Computational pathology techniques are highly sensitive to pre-analytical
tissue variations24 (Fig. 9), including room and freezing temperature, wedge biopsy tissue thick-
ness, the percentage of water in the biopsy tissue (freezing artifacts), frozen section thickness, the
presence of folds (cutting artifacts), and composition of the stain solutions (stain artifacts).27

These tissue artifacts are summarized in the appendix under Table 4. Furthermore, the time from
organ procurement from the deceased donor to biopsy/implantation (ischemic time) is often
highly variable (sometimes in excess of 24 hours). Longer time delays from death to implanta-
tion often lead to greater autolysis artifacts on the frozen sections. Pre-existing conditions lead-
ing to patient death can also degrade tissue presentation, although these generally affect tubules
and interstitium more so than glomeruli. Unlike the previously published work,15,40 our model
was independently evaluated on a multi-institutional test dataset. Thus, our results provide a
reasonable representation of how well the model generalized to new information not observed
during training. Since independent model testing is a hallmark of quality machine learning, this
is a key novelty of our research design.

Our data have also shown that the DL algorithm on digital images operates with more accu-
racy than clinical reads using conventional microscopy. Several reasons may account for this
increased performance. First, often, pathologists assessing frozen sections donor biopsies not
only operate overnight but also are not subspecialty trained in renal pathology. Second, the spa-
tial–visual memory of any human is limited, resulting in missing some glomeruli while counting
or counting the same glomeruli twice. The manual annotation of all the glomeruli allows for the
mapping of the glomeruli on the WSIs, so the count can be more accurate51 and serve as a better
clinical marker.

In this work, we chose to implement a UNET architecture that incorporated several state-of-
the-art techniques, including transfer learning, data augmentation, and convolutional dilation.64

The motivation behind this design choice was based on recently published work, where UNET
was successfully implemented to segment glomeruli on nonfrozen tissue.38,65,66 Since our work
is the first of its kind on frozen tissue, we chose a relatively simple model architecture that is
commonly used in diverse biomedical image segmentation applications. We acknowledge,
however, that there are newer DL architectures, some of which have been applied to glomeruli
detection, including the Inception V3 Architecture.67 Future work will focus on comparing dif-
ferent model architectures on frozen tissue, including advanced segmentation networks, such as
DeepLab V342 and Mask R-CNN,68 and effective network modules, such as residual blocks69

and attention blocks.70 While such an analysis is out of scope of the current work, the charac-
terization of different model architectures is essential to eventually implementing these new
technologies in clinical practice.

We note that many classical algorithms do very well at glomeruli detection, including multi-
radial local binary patterns,49 HOG descriptors,53 and Butterworth band-pass filtering.71

However, these techniques often require multimodal imaging, do not generalize well to glomeru-
lar segmentation, or result in highly polygonal approximations of Bowman’s space. While the
detection of glomeruli is important to pretransplant clinical workup, segmentation is essential
to more sophisticated downstream glomerular characterization and new biomarker discovery.
Thus, our goal was to develop a workflow to perform both detection of glomeruli (to recapitulate
standard-of-care clinical practice) and segmentation of glomeruli (to promote next-generation
characterization of glomeruli via pathomic feature extraction).

Nevertheless, we believe our research design is suitable for the current dataset. First, transfer
learning was shown to boost model performance using pretrained weights obtained from the
publicly available ImageNet database as initial parameter conditions.72 This implies that these
natural images encode generalized features of quantitative image representation that are appli-
cable to digital pathology tasks. Our results demonstrate that the relative effect of transfer
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learning is indirectly proportional to sample size. This finding is consistent with machine learn-
ing theory73,74 and implies that the performance of our sclerotic glomeruli model may asymp-
totically improve with more data. Second, data augmentation was also shown to increase the
generalization of our DL results, suggesting artificial augmentations may capture important char-
acteristics of renal pathology.25 For example, shape deformation was shown to be effective in
improving the recognition of various shapes and sizes of glomeruli. In addition, color jitter was
useful to harmonize the large variation in stain quality, especially between the training data and
the testing data. We observed sclerotic glomeruli to be most affected by color jitter, whereas
nonsclerotic glomeruli were more sensitive to texture deformation. We hypothesize that this
is due to sparser image texture in the compact structure of sclerotic glomeruli. Other augmen-
tation methods (e.g., Gaussian blur) generally yielded better performance in the presence of
freezing artifacts. Finally, our network architecture included a dilated block at the bottle-
neck.25,69,70,72–74 The rationale behind this design choice was to enable a larger receptive
field-of-view to aggregate multiscale imaging information. Based on our results, we found that
this dilation procedure reduced misclassification errors in the presence of tissue fold artifacts.

While our results are promising, this study has some limitations. First, all images were
acquired on the same whole slide scanner. As such, it is currently unclear how scanning vari-
ability will affect the quality and performance of our trained DL models. Future work should
address these issues based on dedicated quality assurance software for digital pathology75 and
digital phantoms as reference, which is becoming common practice in quantitative radiology
applications.76,77 Second, differences in model performance noted between the nonsclerotic and
globally sclerotic glomeruli were due to the limited number of globally sclerotic glomeruli in the
WSI dataset. We anticipate that model performance will increase based on more examples of
sclerotic glomeruli. Finally, while our approach generated a robust reference segmentation data-
set reflecting institutional renal pathology practice, interobserver variability was not addressed
in this work. To minimize interobserver variability, future work should focus on using immuno-
fluorescent and/or immunohistochemical stains that are shift-invariant to H&E images71 or con-
duct observer studies to generate robust reference datasets.

In conclusion, the work developed, characterized, and evaluated a DL model to automatically
detect and segment sclerotic and nonsclerotic glomeruli on frozen sections of donor kidney biop-
sies prior to organ transplantation. Digital pathology and automatic image analysis enable sol-
utions that may aid in the clinical transplant nephropathology environment by providing robust
and standardized quantitative observations, higher efficiency, centralized interpretation by expert
pathologists with overall reduced error rates,78 and by reducing the known limitations associated
with visual examination.14,16,24 In addition, a digital solution offers a more rapid and efficient
allocation of the kidney overcoming the limitations, expenses, and loss of precious time from the
transferring of a donor organ and associated frozen section of the wedge biopsy from institution
to institution, in search of a recipient.

5 Appendix

Table 4 Slide artifact assessment and quality assurance.

Location of
the artifact Type of artifact

Criteria for discarding WSI
by visual assessment Comment

Glass slide Dirty glass slide See comment Glass slides were cleaned prior
to scanning, however occasional
glass dust was still present in
rare slides prior scanning.

Pen marking See comment Pen marking affected a very small
percentage of WSI, and a small
fraction of the tissue section, with
minimal interference with tissue
analysis.

Li et al.: Deep learning segmentation of glomeruli on kidney donor frozen sections

Journal of Medical Imaging 067501-13 Nov∕Dec 2021 • Vol. 8(6)



Disclosures

The authors have no conflict of interests to disclose.

Acknowledgments

This is a collaborative study between the Department of Pathology, Division of AI and Compu-
tational Pathology, the Department of Medicine, Division of Nephrology, the Department of
Electrical & Computer Engineering, and the Woo Center for Big Data and Precision Health

Table 4 (Continued).

Location of
the artifact Type of artifact

Criteria for discarding WSI
by visual assessment Comment

Cover slip
(i.e., cracks)

Broken glass slides were
not scanned

n/a

Mounting medium
(i.e., bubble)

Over 50% of the section
was compromised

Occasional small bubbles were
present in a small fraction of WSI.
Those affected the DL
performance.

Tissue
section

Folding Over 50% of the section was
compromised

Folding of the tissue section is
often unavoidable while cutting
frozen sections. Those affected
the DL performance.

Knife chatters/holes Over 50% of the section was
compromised

Occasional tissue holes/knife
chatters were present in a small
fraction of WSI, which affected the
DL performance.

Thickness Tissue sections were not reliably
interpretable by human eye

Variability in tissue thickness was
noted.

Staining Tissue sections were not reliably
interpretable by human eye

Staining variations are very
common even within the same
laboratory and may affect the
performance of the model.
However, by using a large dataset
for training and validation, we
assured a sufficient heterogeneity
of staining variation.

• overstaining
• understaining
• uneven staining

Autolysis Tissue sections were not reliably
interpretable by human eye

Autolysis affects tubules more
severely than glomeruli. In
glomeruli, autolysis may manifest
as more irregular contours of
individual glomerular cells
(mesangial, endothelial, and
visceral and parietal epithelial
cells) and structures (mesangium,
basement membranes, capsule).

Freezing procedure Tissue sections were not reliably
interpretable by human eye

Occasional focal freezing artifact
present in the tissue can interfere
with the model performance.

Glomerular histologic
mimic

N/a The glomerular histologic mimics
represent a learning point for the
future to interpret false positive
and false negative.

Scanning Focus Blurry—out of focus

Grid noise No exclusion criteria were defined
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