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Chronic kidney disease (CKD) is associated with increased risk of cardiovascular (CV) events, and the disease burden is rising rapidly. 
An important contributor to CV events and CKD progression is high blood pressure (BP). The main mechanisms of hypertension in 
early and advanced CKD are renin-angiotensin system activation and volume overload, respectively. Sodium retention is well known 
as a factor for high BP in CKD. However, a BP increase in response to total body sodium or volume overload can be limited by neuro-
hormonal modulation. Recent clinical trial data favoring intensive BP lowering in CKD imply that the balance between volume and 
neurohormonal control could be revisited with respect to the safety and efficacy of strict volume control when using antihypertensive 
medications. In hemodialysis patients, the role of more liberal use of antihypertensive medications with the concept of functional dry 
weight for intensive BP control must be studied. 
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Introduction 

In chronic kidney disease (CKD), cardiovascular (CV) risk 

is increased linearly by 7% per 10 mL/min/1.73 m2 de-

crease in glomerular filtration rate (GFR) [1]. Death from 

CV disease (CVD) is much more common than that from 

progression to end-stage renal disease (ESRD) [2]. In addi-

tion, CKD is a poor prognostic factor in CVD patients [3]. 

CKD is defined as persistently elevated urine albumin 

excretion (≥30 mg/g [3 mg/mmoL] creatinine [Cr]), per-

sistently reduced estimated GFR (eGFR < 60 mL/min per 

1.73 m2), or both for greater than 3 months, in accordance 

with current Kidney Disease: Improving Global Outcomes 

(KDIGO) guidelines [4]. Kidney damage in many diseases 

usually can be ascertained by the presence of albuminuria, 

defined as albumin-to-Cr ratio of >30 mg/g in two of three 
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spot urine specimens based on KDIGO guidelines [5]. In 

addition to chronicity, demonstration of damaged renal 

parenchyma is mandatory for diagnosis of CKD stages 1 

and 2. For CKD stage 3 or higher, chronic decreased kidney 

function as determined by GFR of <60 mL/min/1.73 m2 is 

sufficient for diagnosis regardless of the presence of renal 

damage. 

Approximately one-third of CKD stage 3 and less than 

one-half of CKD stage 4 patients have albuminuria [6–8]. 

Increased blood pressure (BP) aggravates renal damage 

and proteinuria, which results in more rapid loss of kid-

ney function. This decreased renal function contributes 

to higher BP, completing a vicious cycle [9]. Moreover, in-

creased BP not only exacerbates renal function deteriora-

tion but also damages CV systems.  

The differences in the rationale or approach between 

prevention of renal progression and CVD are frequently 

discussed among cardiologists, hypertension specialists, 

and nephrologists. This article will review recent updates in 

BP control in CKD with a major focus on CVD prevention 

in addition to renal outcomes with viewpoints of salt reten-

tion or volume status control and the use of diuretics and 

non-diuretics as antihypertensive medications (AHMs) for 

intensive BP control. This review will not cover specific tar-

get BPs according to specific disease populations of CKD.  

Updates on tissue or skin sodium 

In addition to classic pressure natriuresis relationships, 

recent views highlighted that sodium balance is largely de-

pendent on neurohormonal modulation [10]. Accumula-

tion of sodium in soft tissue measured by skin and/or mus-

cle sodium has been demonstrated to be a buffer between 

sodium intake and changes in volume status, which was 

regarded as an explanation of the time lag or loose connec-

tion between sodium intake and BP response as shown in 

Fig. 1 [11]. Titze et al. [12] reported that glycosaminoglycan 

(GAG) in tissue in the epidermal skin layer plays a role as a 

sodium buffer, assuming that GAG binding to sodium ions 

makes it osmotically inactive. The skin buffer concept by 

hypertonicity is useful to explain the time lag or discrepan-

cy between salt overload and BP increase. 

Figure 1. Hypothetical distribution of skin sodium according to tonicity of skin sodium. (A) A three-compartment model with hy-
pertonic sodium in the skin, muscle, or artery that could buffer the exchangeable sodium overload. Exact mechanisms on how sodium 
could be concentrated in the skin remain unknown. (B) A two-compartment model with isotonic skin sodium exhibiting distribution in 
the other interstitial tissues or edema. The dotted line indicates a sodium gradient across the cell membrane. The broken line means 
sodium distribution by Starling force. The separated bone compartment suggests different exchangeability kinetics from the other. 
ECF, extracellular fluid; ICF, intracellular fluid.
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However, a recent study by Rossitto G et al. [13] showed 

that sodium concentration in the skin is importantly iso-

tonic but could be mistakenly identified as hypertonic due 

to technical reasons during skin magnetic resonance im-

aging. In this respect, the amount of skin sodium could be 

regarded as an extension of the expansion of extracellular 

fluid (ECF) volume or interstitial edema. Inflammation 

was explained not only through hypertonic stress, but also 

by the biomechanical stress of edema. A high salt-related 

increase in peripheral resistance was found to be due to 

compression from perivascular swelling or edema both in 

terms of vasoconstriction and vasodilation [13]. 

Hypertonic or nonosmolar sodium accumulation in tis-

sue compartments can be denied when sodium in tissues 

is isotonic and a reflection of ECF volume [14]. However, 

isotonic edema is also associated with increased GAG and 

biomechanical stress as well as crosstalk between GAG and 

macrophages. This results in prohypertensive effects in the 

kidney, vasculature, and brain [15]. Angiotensin II (Ag II) 

also has proinflammatory effects through macrophage in-

filtration in the renal interstitium, leading to sodium reten-

tion and BP elevation, as well as renal damage mediated by 

T lymphocytes [16]. The direct connection between high 

sodium intake and Ag II induction, both of which are cru-

cial components of the salt-induced hypertension model, 

seems to be weak [16]. 

In CKD, a diverse level of skin or tissue sodium was re-

ported, which now could be interpreted as silent edema 

or volume expansion by high salt intake. In a prospective 

observational study performed in a CKD population, high 

salt intake measured by 24-hour urine sodium excretion 

was significantly correlated with CKD progression and CVD 

events [17]. The harmful effect of sodium intake seems to be 

more obvious in CKD compared to the general population 

[18]. Systematic reviews have exhibited that dietary sodium 

reduction demonstrate short-term reductions in BP in CKD 

populations [19]. However, it is necessary to have more clin-

ical data evaluating the effects of dietary sodium reduction 

on CV events in CKD populations [4]. It is essential to be 

reminded of inconsistencies among studies examining the 

relationship of dietary sodium intake with health outcomes 

in persons with diabetes, suggesting that the effects of di-

etary sodium intake changes on health benefits and harms 

depend on different causes and severities of CKD [4,19–21]. 

The clinical evidence on whether so-called salt toxicity is 

independent of BP changes is debated [22]. 

There is also ample, recent evidence to indicate that 

physical factors are clearly the subordinates of the neu-

rohumoral mechanisms. Essentially, the question is then 

whether the normal physiological situation is best de-

scribed as (i) neurohumoral modulation of the pressure 

natriuresis mechanism, or (ii) neurohumoral control occa-

sionally modulated by pressure natriuresis. The latter pos-

sibility appears attractive.  

Renal salt excretion in sodium balance under 
normal conditions 

Slight changes in osmolarity by salt intake, inducing im-

mediate movement of water from the intracellular to the 

extracellular compartments, thirst, and secretion of antid-

iuretic hormones resulted in increasing and maintaining 

ECF volumes almost without apparent changes in sodium 

concentration [23]. Even small volume increases resulted 

in relatively large pressure elevation through the secondary 

increase in total peripheral resistance [24]. 

When a bout of dietary salt is loaded in a normal subject, 

approximately half is excreted on day 1. With thirst and 

renal water resorption, body weight and ECF volume in-

creases are associated with a variable degree of BP changes 

according to individual salt sensitivity [25]. After 3 to 4 

days when the sodium balance becomes zero, the original 

steady state is recovered as long as no more bout of salt was 

maintained [25,26]. Although the exact details are being 

debated, renal excretion of sodium has been found to be 

related to the function of ECF volume and BP. According 

to Walser’s analysis, the time constant of the relationship 

between ECF volume and renal salt excretion determines 

the speed at which an individual can adapt to a change in 

dietary intake [27]. Daily urinary sodium excretion is pro-

portional to the time constant and the amount of sodium 

excess. While the time constant is approximately 0.79 per 

day–1  in normal subjects, it appears to be reduced by aging 

and CKD, indicating that it takes longer than 3 to 4 days for 

the kidney to recover its sodium balance to zero [27]. Sodi-

um retention might be similar to the setting when a drug in 

maintenance dose is repeated within the elimination half-

life so that increased sodium amount or volume will be 

maintained. 
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Sodium retention, volume overload, and 
hypertension in chronic kidney disease 

The sodium excretion rate appears to be reduced by ag-

ing and CKD, and the mechanisms of decreased sodium 

excretion are a mixture of reduced glomerular filtration of 

sodium and increased tubular reabsorption of sodium in-

dependently, or both situations in combination. CKD is an 

important contributor to salt sensitivity. In a small study for 

male CKD patients on sequential low salt and high salt di-

ets, the salt sensitivity index was calculated by the increase 

in mean arterial pressure in mmHg divided by the increase 

in 24-hour sodium excretion in mEq/day, which is the in-

versed slope of the classic pressure natriuresis relationship 

[28]. In this study, the log of the salt sensitivity index was 

linearly associated with Cr clearance (r = –0.89, intercept = 

–0.74). For example, the salt sensitivity index can be calcu-

lated as 1.4 mmHg / (100 mEq of sodium per day) at a Cr 

clearance of 75 mL/min and was increased to 2.0 mmHg 

and 3.6 mmHg at a Cr clearance of 50 mL/min and 25 mL/

min, respectively. In an animal study, high dietary sodium 

intake in CKD contributes to sodium retention through al-

dosterone-independent activation of the mineralocorticoid 

receptor-mediated through small GTPase Rac1 [29,30]. In 

addition to Rac1, high dietary salt in salt-sensitive rodents 

appears to increase serum and glucocorticoid-induced 

kinase 1 independent of aldosterone, which could be an-

other pathway through which dietary salt directly increases 

distal nephron sodium reabsorption [30,31]. ECF volume 

expansion through a repeated sufficient amount of salt in-

take within the half time that the sodium balance reaches 

zero can lead to a compensatory decrease in tubular re-

absorption of sodium, reestablishment of the steady state 

of sodium balance, a variable degree of hypertension, and 

accompanied with or without other manifestations of ECF 

volume expansion. Once the new steady state is achieved, 

tubular reabsorption of sodium reaches almost the origi-

nal sodium resorption status before increased salt intake, 

producing infinitely small error and infinite gain of control 

(correction/error) where the correction is the change of tu-

bular resorption of sodium during the process [32]. 

In an insightful and comprehensive study by Essig et al. 

[33], CKD stage 3 exhibited higher BP with ECF volume ex-

pansion, even with greater use of AHM, compared to CKD 

stage 1. Compared to CKD stage 2, CKD stage 3 exhibited 

comparable BP and ECF volume expansion. This was the 

case even with more AHM including diuretics and less so-

dium excretion compared to CKD stage 2. The steady status 

of CKD stages 2 and 3 in Fig. 2 did not directly exhibit the 

dynamics such as salt sensitivity index for each stage due 

to the limitation of the cross-sectional study, but it suggest-

ed that the required amount of salt restriction and required 

AHM should be increased to allow for comparable levels of 

BP and ECF volume excesses (Fig. 2).  

In general, the prevalence of masked hypertension (MH) 

is higher in CKD compared to the general population and 

is related to low eGFR and proteinuria [34]. The prevalence 

of normal, MH, and sustained hypertension in CKD stages 

1 and 2 was reported as 58%, 27%, and 15%, respectively 

[35]. MH with elevated nighttime BP is reported to be asso-

ciated with target organ damage [35]. Even in CKD stages 

1 and 2, it is reasonable to have a high level of suspicion 

Figure 2. A clinical example of the steady-state relationships 
among SBP, eGFR, urinary sodium excretion, and eECF ac-
cording to the stage of CKD. All of the relationships between 
sodium excretion and SBP, the relationship between eGFR and 
sodium excretion, and the relationship between sodium excretion 
and eECF are not linear. Linear relationships were observed only 
among eGFR, eECF, and SBP. Crosses indicate projections on the 
two-dimensional planes from the dot points in the three-dimen-
sional space (data from the tables in  Essig et al. [33]). 
CKD, chronic kidney disease; eECF, extracellular fluid excess; 
eGFR, estimated glomerular filtration; SBP, systolic blood pressure.
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of MH in patients with prehypertension. To detect MH 

through increased nighttime BP in CKD stages 1 and 2, 

ambulatory BP monitoring (ABPM) seems to be the best 

method. Moreover, the proportion of CKD patients with 

masked uncontrolled hypertension and sustained uncon-

trolled hypertension is expected to increase when using a 

lower systolic BP (SBP) threshold as per the recommenda-

tion of recent guidelines [4]. 

The association of MH and lower eGFR was observed 

only in patients with increased nighttime BP even though 

the mechanisms of increased MH in CKD are multifactori-

al [35]. Meanwhile, the mechanisms of increased nighttime 

BP in CKD are salt sensitivity, increased sympathetic activ-

ity, and proteinuria [36]. 

Management of hypertension in chronic kidney 
disease 

Role of diuretics and volume control 

ECF volume overload was reported as a group in early 

CKD, but routine assessments on an individual patient 

level are not practical [33]. The existence of an ECF volume 

increase can be detected by noticing impressive BP reduc-

tion when diuretics are added and/or salt was restricted, 

specifically in a situation of uncontrolled high BP through 

the use of AHMs other than diuretics. 

There is insufficient data on the role of diuretics as the 

first-line therapy for the management of hypertension in 

CKD populations, and several guidelines on hypertension 

have shown different opinions and views on the use of 

diuretics [4]. Previously, National Institute for Health and 

Care Excellence (NICE) guidelines recommended that di-

uretics be used in non-proteinuric CKD [37] as a first-line 

therapy. Since albuminuria is a common indicator to diag-

nose CKD stages 1 and 2, and some patients of CKD stages 

3 and 4 do not possess albuminuria [7], the first-line use 

of diuretics seems to be more useful in CKD stages 3 and 4 

with salt retention and reduced GFR. The role of diuretics 

in CKD stages 3 and 4 is increasing, and more potent loop 

diuretics and some thiazide-like diuretics such as chlortha-

lidone, metolazone, and indapamide appear to be effective 

for optimal BP control [4]. However, because the glomer-

ular stretch in the nephron level triggers a vicious cycle of 

CKD progression even in CKD stages 3 and 4, renin-angio-

tensin system blockade (RASB) could theoretically have a 

major role as a first-line therapy, even in non-proteinuric 

CKD stage 3 and 4 patients [37,38]. 

Despite an increase in ECF volume in CKD, most guide-

lines prefer an RASB as the first-line therapy as long as BP 

is well controlled. The ACC/AHA (American College of 

the Cardiology/American Heart Association) 2017 guide-

lines recommend an angiotensin-converting enzyme 

(ACE) inhibitor for CKD and emphasize initial combina-

tion therapy and a target BP of <130/80 mmHg [39,40] so 

that second-line drugs can be used as initial combination 

therapy. As the second-line drug, the National Kidney 

Foundation’s Kidney Disease Outcomes Quality Initiative 

(KDOQI) guidelines recommend diuretics [32], but ESH-

ESC (European Society of Hypertension/European Soci-

ety of Cardiology) 2018 guidelines advocated for calcium 

channel blockers (CCB) [41]. As for CCB, it was reported to 

be associated with mortality in CKD patients with glomer-

ulonephritis [42]. But in a meta-analysis, CCB has similar 

effects to RASB in terms of long-term BP, mortality, heart 

failure, stroke or cerebrovascular events, and renal function 

[43]. For comparable BP levels and salt intake, there can be 

a different volume status according to the proportion of di-

uretics and other AHMs (Fig. 3A vs. 3B). These discrepan-

cies call to attention the need for more individualized ap-

proaches balanced by volume status, side effects, CVD risk, 

and comorbid CVD profiles to select second-line drugs as 

well as further studies demonstrating clinical evidence. 

For example, increased BP and/or ECF volume is the main 

factor for left ventricular hypertrophy (LVH) in CKD [44]. 

In CKD stages 3 and 4, additional furosemide on top of an 

RASB exhibited a greater regression of LVH [45]. Similarly, 

among patients treated with an ACE inhibitor or angioten-

sin II receptor blocker, the combination of salt restriction 

and a diuretic can provide a greater antiproteinuric effect 

as well as improved BP reduction than either intervention 

alone [46]. Therefore, RASB will be the basis for antihy-

pertensive drug therapy in CKD, and the choice between 

diuretics and CCB should be individualized.  

For additional use of diuretics in CKD, there was a recent 

observational study showing the benefit of spironolactone 

in CVD and renal outcomes in CKD stages 3 and 4 [47]. 

However, the risk of hyperkalemia should be more preemp-

tively managed through the use of dietary and/or pharma-

cologic interventions using potassium-wasting diuretics 
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and oral potassium binders [48]. More options for diuretics 

such as a higher dose of loop diuretics in twice a day use 

or in combination with chlorthalidone and spironolactone 

could be considered for optimal BP control [48,49]. 

Newer drugs associated with volume control 

As the elderly population rapidly increases, there are more 

and more cardiorenal syndrome patients with CKD. From 

the randomized controlled trial (RCT) for heart failure in 

which volume control by diuretics is an essential com-

ponent in standard drug therapy, two interesting drugs 

potentially related to volume control or sodium excretion 

are more and more frequently indicated in heart failure 

with CKD. First, the sodium glucose co-transporter 2 in-

hibitor (SGLT2I) has several mechanisms to protect the 

heart and kidneys. Among them, sodium excretion in the 

proximal tubule followed by increased sodium delivery to 

the macula densa and tubuloglomerular feedback results 

in a short-term increase in the excretion of renal sodium 

[50]. BP reduction as the one of the important mechanisms 

of cardiorenal protection has been proven in CKD patients 

[51,52]. Although precise interactions or differential effects 

between loop diuretics and SGLT2I require further studies 

or analyses, it was reported in terms of heart failure that 

SGLT2I prevents the increase of the dose of loop diuretics, 

and that it can overcome the resistance of loop diuretics 

[53]. Second, theoretically, the natriuretic components of 

angiotensin receptor neprilysin inhibitor (ARNI) could 

facilitate renal excretion of sodium. In CKD patients, nepri-

lysin inhibitor components have stable pharmacokinetic 

properties, and the reduction in loop diuretic dose was re-

ported in RCT for heart failure [54]. Since diabetes and car-

diorenal syndrome are frequent comorbidities in CKD, the 

roles of SGLT2I and ARNI in volume control require further 

analysis. 

Intensive blood pressure control in chronic kidney disease 

KDOQI guidelines underscore the purpose of antihyper-

Figure 3. Spectrum of therapeutic options for AHM vs. diuretics or UF in CKD (A, B, and F) and the status at the end of the hemo-
dialysis session (C, D, and E). (A) CKD, with normovolemia. (B) CKD, with permissible hypervolemia, less active use of diuretics. (C) He-
modialysis, absolute dry weight, hypovolemia with minimum use of AHM. (D) Hemodialysis, normovolemia. (E) Hemodialysis, functional 
dry weight or permissible hypervolemia. (F) CKD, intensive blood pressure (BP) control with permissible hypovolemia, more active use 
of diuretics. The achieved BP levels among A–E in the box are conventional and comparable. Relative intensity of antihypertensive ther-
apy was depicted by the area of the rectangles. Compared to C, D–E conditions require more non-diuretics AHM to achieve the com-
parable level. F is the condition in need of intensive BP control to achieve the lower target BPs on the basis of permissible hypovolemia 
through the greater active use of diuretics or UF. The dotted line indicates the ideal status of extracellular volume or normovolemia. 
Each horizontal solid line represents the volume status achieved by diuretics or UF. 
AHM, antihypertensive medications other than diuretics; CKD, chronic kidney disease; UF, ultrafiltration.
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tensive therapy for prevention of both CKD progression 

and CVD [32]. In a meta-analysis, lower achieved BP (SBP 

< 120 mmHg) in those with CKD reported a smaller risk 

reduction for CV events compared to patients without 

CKD [55]. The impact of SPRINT is important in terms of 

clinical evidence in CKD, and the results from SPRINT 

were supported by subsequent meta-analysis examining 

death exclusively in the CKD subgroups of RCTs, which 

found a benefit of lower achieved or target BP [4,56]. In 

the KDIGO 2021 guidelines, it was suggested that adults 

with high BP and CKD be treated with a target SBP of <120 

mmHg. Despite this intensive target BP, some risk-benefit 

ratios need to be individualized, and intensive BP control 

could be harmful, for examples, when BP was measured 

in a non-standardized manner, when it is uncertain if the 

patient has a silent coronary obstruction, when the patient 

cannot tolerate intensive target BP or is extremely old (>90 

years old), and when patient is bed-ridden or when life ex-

pectancy is limited. 

Practically, in general, CKD stage 3 and 4 patients are 

very concerned about GFR decline in terms of fear of dialy-

sis. First of all, it is very difficult for a patient to understand 

that higher GFR associated with higher BP could indicate 

a poor prognosis and that hyperfiltration or glomerular 

stretch at the level of the nephron is harmful. The acute 

decline of GFR especially by RASB, a functional side effect, 

could be uncomfortable for patients. Clearly informing pa-

tients of this potential issue and warning that 10% to 20% of 

the initial Cr increase is normal and reversible seems to be 

essential for patient adherence [57]. In some CKD patients 

who have comorbidities such as heart failure or coronary 

artery disease that requires the use of RASB to reduce CV 

mortality, an initial Cr increase more than >30% could be 

acceptable [58].  

The initial decline in GFR has become a greater chal-

lenge for physicians because intensive BP lowering is in-

creasingly considered for better CVD outcomes. After all, 

recommendations not to retry RASB in cases of an initial 

Cr increase of >30% and in cases of failure to return to 

baseline after dosage reduction or cessation do not seem 

to have a solid scientific basis. Avoidance of an initial Cr 

increase more than >30% could be regarded as a consistent 

application of the “primum non nocere” principle and a 

compromise to alleviate patient apprehension [32,59]. For 

this issue, volume status and a preexisting or combination 

regimen of RASB and diuretics vs. CCB seems to be differ-

ently related to the degree of initial decline [60]. In SPRINT, 

the difference in the rate of such (eGFR) decline was very 

small with comparable biomarker changes, even though 

initial decline during the first 6 months was significantly 

faster in the intensive group compared with the standard 

group [5,61,62]. Moreover, RASB in patients with advanced 

CKD was reported to be rather safe [63], even though there 

are studies from selected small populations reporting that 

habitual use does not appear to be beneficial and might 

even be harmful [63,64]. Despite the risk reduction of dial-

ysis therapy (27.9% vs. 36.1%), stopping RASB was associat-

ed with a higher absolute 5-year risk of all-cause mortality 

(54.5% vs. 40.9%) and major adverse CV events (59.5% vs. 

47.6%) [65]. 

Strict volume control for intensive BP control could have 

increased risk of hypovolemia. Hypovolemia and/or hy-

potension are the most common factors for acute kidney 

injury (AKI). The nonrecovery of kidney function following 

an episode of AKI is a major contributing factor for the prev-

alence of CKD and the progression of CKD to an advanced 

stage [66,67]. Hypovolemic patients in CKD stages 3 and 4 

reported to have lower BP and lower AHM use including di-

uretics. This means that, in some CKD patients, patient-re-

lated factors such as fewer comorbidities, decreased lean 

body mass, anemia, and other unknown causes might be 

more important in determining volume status than is use of 

diuretics [68]. Diuretic use was associated with poor renal 

outcomes independently of BP, volume status, and other 

covariates [68]. Since patient factor-driven hypovolemia is 

associated with lower BP, whether inducing minimal hypo-

volemia by diuretics therapy to comparable level to the pa-

tient factor-driven hypovolemia could be beneficial or not 

for intensive BP control needs future study (Fig. 3F). The 

role of sodium restriction or weight reduction in the context 

of intensive BP control also requires further studies. 

Blood pressure variability in hypertension management 
in chronic kidney disease 

There are several types of BP variabilities (BPV) such as 

visit-to-visit BPV in clinics, day-to-day BPV with home 

BP monitoring (HBPM), and short-term BPV with ABPM. 

The mechanisms for increased BPV in CKD are largely un-

known, but impaired baroreceptor sensitivity, altered sym-
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pathetic nervous system activity, oxidative stress, inflam-

mation, and increased arterial stiffness were suggested [69]. 

Few studies have been performed to correlate high sodium 

intake and BPV [70]. 

The Spanish ABPM registry showed that BPV increases 

as CKD progresses from stage 1 to 5 [71], and short-term 

systolic BPV by ABPM was associated with renal outcome 

independently of 24-hour BP in a CKD population with a 

mean eGFR of 50 mL/min/1.73 m2 [72]. 

For clinic BP, among 114,900 patients with CKD, BPV was 

associated with all-cause mortality, hemorrhagic stroke, 

ESKD, and heart failure [73]. There were also studies show-

ing that systolic BPV predicts the risk of death, but not CKD 

progression to dialysis in CKD [74]. 

However, few studies have reported on the therapeutic 

implications of BPV in CKD. CCB was reported to be asso-

ciated with lower BPV in CKD compared to beta-blockers 

or RASB [75,76]. In SPRINT, similar patterns were observed, 

with lower BPV in participants receiving chlorthalidone and 

CCB and higher BPV variability among those on RASB [73]. 

There could also be a marked reduction in GFR when 

starting RASB in CKD despite the slight BP reduction. Di-

uretics or RASB and diuretics in combination are more 

commonly associated with side effects and a worse BPV 

profile than CCB in CKD [77,78].  

BPV can affect variability in GFR because volume chang-

es and impaired GFR autoregulation can be common in 

CKD, and variability in GFR can predict CV outcomes [79] 

as well as renal outcomes [80]. However, since studies of 

GFR variability have not reported the relationship between 

BPV and GFR variability, BPV could be a significant con-

founding factor.  

Blood pressure control in hemodialysis patients 

This review confined to BP control under a standard reim-

bursement protocol with a thrice a week hemodialysis (HD) 

protocol spanning about 4 hours seems to be limited for 

adopting various dialysis protocols for better BP control. 

For the volume status description, dry weight is defined 

operationally as the lowest postdialysis weight with min-

imal signs or symptoms of hypovolemia even though the 

exact definition of dry weight remains uncertain or mul-

tiple definitions have been suggested [81]. Theoretically, 

reducing volume overload by ultrafiltration (UF) is such 

efficient measure to manage BP as to stop the use of AHMs 

in up to 90% of patients undergoing HD even though the 

long-term consequences have not been studied, as shown 

in Fig. 3C [82,83]. The finding that 36% of normovolemia 

and 54% of hypervolemia patients in whom AHM were 

prescribed in 45% and 54%, respectively, as schematized 

in Fig. 3D and 3E, were hypertensive suggests a huge gap 

in real practice, with more frequent AHM use and low 

probability of hypovolemia [84]. This finding suggests that 

the dry weight concept when used in an effort to simply 

avoid or stop AHM for BP control must be reconsidered 

[85]. There might be a concept of “functional dry weight” 

permitting greater use of AHM instead of “absolute dry 

weight” as long as BP is controlled [86]. In fact, AHM can 

be considered the first-line to lowering BP in patients re-

ceiving HD [87]. It is reasonable to choose AHMs based on 

patient characteristics, CV indications, and availability as 

well as intradialytic BP patterns with regard to drug dialyz-

ability and elimination routes [88,89]. In theory, drugs with 

hepatic clearance could provide stable antihypertensive 

effects, and dialyzable drugs would be better in lower-

ing BPs increased by volume uptick that will be removed 

during dialysis simultaneously with volume. However, an 

optimal combination strategy of drugs with hepatic and re-

nal clearances in which dose reduction is required remains 

unknown (Fig. 4). It is very important to limit interdialysis 

weight gain (IDWG), which results in higher BP levels and 

BPV requiring additional AHMs. 

Optimal predialysis BP for mortality risk was 130 to 160 

mmHg when adjusted for confounding factors including 

AHM [90]. BP measurement methods seem to be limited to 

demonstrate the relationship between volume status and 

BP because HBPM or ABPM could predict CVD outcomes 

better than casual BP in HD patients and because BPV 

during inter and intradialytic periods was much higher in 

HD patients compared to non-dialysis patients [91]. There-

fore, for more reliable BP control, reference methods to 

monitor BP should be HBPM or ABPM, and further studies 

for optimal BP thresholds to prevent hard outcomes are 

necessary. Therapeutic implications of BPV in HD patients 

are not established but, in a large-scale observational 

study, lower visit-to-visit BPV was associated with greater 

UF volume, dry weight attainment, and AHM other than 

β-blockers or RASB, suggesting the roles of volume control 

and CCB for more stable BP control [92]. 
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Volume overload and high BP are the most important 

contributors to LVH. In HD patients, there are other re-

markable factors related to LVH such as anemia, arteri-

al-venous dialysis accesses with high cardiac output, arte-

rial stiffness, and bone mineral hormones [93]. LVH and 

accompanied cardiac fibrosis are strongly associated with 

cardiac diastolic dysfunction in which high left ventricular 

(LV) filling pressure is required to maintain LV end-diastol-

ic volume that will be transferred to stroke volume by LV 

contraction. LVH are strongly associated with CV prognosis 

in HD patients, and a 10% decrease in LV mass predicts a 

28% decrease in CV outcomes [94,95]. It should be essen-

tial to achieve individualized target BPs for prevention of 

severe LVH or diastolic dysfunction to prevent intradialytic 

hypotension (IDH) and CVD until the proven BP target 

beneficial for LVH is available. 

Establishing a balance between AHMs and volume con-

trol is most challenging for treatment of severe IDH. If an 

effective AHM prescription during the phase of advanced 

CKD stage is available in a patient, the same AHM regimen 

with a UF amount equivalent to the role of diuretics during 

the CKD phase seems reasonable to be maintained during 

HD (Fig. 3D) [88]. The so-called “wet strategy” with some 

degree of permissive hypervolemia with profuse use of 

AHM as long as the target BP is achieved caring of residual 

renal function might be an option for IDH [96]. It is manda-

tory to decrease IDWG for which sodium restriction to the 

level to avoid IDH concomitantly with ultrafiltration rate 

adjustment is needed [97]. Routine increase in IDWG to 

avoid IDH is not recommended. 

Conclusion 

In conclusion, sodium retention can be demonstrated in 

both early and late CKD. The BP response to sodium reten-

tion could be modulated by neurohormones to maintain 

stable BP to a certain limit. RAS seems to be involved in 

a common pathophysiology for nephron injury in CKD 

with reduced renal mass. Recent clinical trial data favoring 

intensive BP lowering in CKD imply that the balance be-

Figure 4. Conceptual framework for antihypertensive drug prescription according to elimination route, dialyzability, and adminis-
tration timing. Each arrow represents the start of the fully dialyzable drug. (A) The blood pressure (BP) treated solely by antihyperten-
sive drugs eliminated through the hepatic route. Since dialysis cannot reduce the drug concentration, active treatment targeting interdi-
alytic BP could increase the risk of intradialytic hypotension. (B) It shows that BP treated by both antihypertensive drugs eliminated by 
the hepatic route targeting the BP in dry weight and fully dialyzable drugs targeting the BP increased during the interdialytic period and 
could be fully removed by dialysis without affecting the BP in dry weight. The dotted line represents the threshold for intradialytic hypo-
tension.

Baseline BP

BP treated only with drug
all eliminated via hepatic route

Baseline BP

BP treated with drug
eliminated via hepatic route
and intermittent dosing with
fully dialyzable drug

Sunday Monday Tuesday Wednesday Thursday Friday SundaySaturday
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tween volume and neurohormonal control could be shifted 

by using more AHMs other than diuretics than previously 

believed. More liberal use of AHMs could be allowed for 

effective BP control and CV protection even after HD is ini-

tiated with the concept of functional dry weight. 
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