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Abstract

Burn survivors experience myriad associated symptoms such as pain, pruritus, fatigue, impaired 

motor strength, post-traumatic stress, depression, anxiety, and sleep disturbance. Many of these 

symptoms are common and remain chronic, despite current standard of care. One potential novel 

intervention to target these post burn symptoms is transcranial direct current stimulation (tDCS). 

tDCS is a non-invasive brain stimulation (NIBS) technique that modulates neural excitability of 

a specific target or neural network. The aim of this work is to review the neural circuits of the 

aforementioned clinical sequelae associated with burn injuries and to provide a scientific rationale 

for specific NIBS targets that can potentially treat these conditions. We ran a systematic review, 

following the PRISMA statement, of tDCS effects on burn symptoms. Only three studies matched 

our criteria. One was a feasibility study assessing cortical plasticity in chronic neuropathic pain 

following burn injury, one looked at the effects of tDCS to reduce pain anxiety during burn wound 

care, and one assessed the effects of tDCS to manage pain and pruritus in burn survivors. Current 

literature on NIBS in burn remains limited, only a few trials have been conducted. Based on our 

review and results in other populations suffering from similar symptoms as patients with burn 

injuries, three main areas were selected: the prefrontal region, the parietal area and the motor 

cortex. Based on the importance of the prefrontal cortex in the emotional component of pain and 

its implication in various psychosocial symptoms, targeting this region may represent the most 

promising target. Our review of the neural circuitry involved in post burn symptoms and suggested 

targeted areas for stimulation provide a spring board for future study initiatives.
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1. Introduction

Burn survivors experience myriad associated symptoms such as pain, pruritus, fatigue, 

impaired motor strength, post-traumatic stress, depression, anxiety, and sleep disturbance 

[1]. Many of these symptoms are common and remain chronic, despite current standard of 

care. Given these persistent symptoms, there is a need for novel targeted interventions. Burn 

injuries often have lasting ramifications on survivor physical and mental health. In regards 

to mental health, symptoms of post-traumatic stress, depression, and anxiety have been 

observed persisting after injury, creating lasting psychosocial consequences with impact on 

social functioning and disability [2]. About a third of burn survivors report moderate to 

severe psychological or social difficulties [3,4] which dramatically impact return to work, 

social integration, and consequently quality of life [5]. Similarly, symptoms of pain and 

pruritus cause equally concerning sequelae for burn patients, affecting sleep [6], daily 

activities [7], and quality of life [8]. The prevalence and chronicity of these post burn 

symptoms therefore underscores the need to identify effective therapies to ameliorate these 

symptoms and ensuing effects. Treatment of these chronic symptoms would thus have an 

impact on many patients’ quality of life.

One potential novel intervention to target these post burn symptoms is low intensity 

transcranial electrical stimulation (tES) [9]. tES is a non-invasive brain stimulation (NIBS) 

technique that modulates neural excitability of a specific target or neural network. Most 

studies used transcranial direct current stimulation (tDCS), which modulates cortical 

excitability through the application of a weak electrical current in the form of direct current 

brain polarization [10]. Another technique is transcranial alternating current stimulation 

(tACS), which is similar to tDCS but it oscillates a sinusoidal current at a specific frequency 

to interact with the brain’s natural cortical oscillations [11]. In the current literature, tES has 

been shown to reduce pain, improve motor function, enhance cognitive abilities and treat 

depression in various populations. However, there is a paucity of literature in regards to tES 

use on post-burn sequelae.

The aim of this work is to review the neural circuits of the aforementioned clinical sequelae 

associated with burn injuries and to provide a scientific rationale for specific non-invasive 

brain stimulation targets that potentially treat these conditions. This review focuses on the 

adult population only as the issues associated with growth and development of the brain in 

the pediatric population are extremely complex. We review the mechanisms in which tES 

modulates these neural circuits and their related behaviors in various patient populations as 

well as the current state of the science on tDCS to improve burn related symptoms. Given 

that the current literature is limited in the burn population, this review aims to provide a 

model-driven approach for potential neural targets to treat burn associated symptoms that 

will open areas of future inquiry in the field of burn care.

Thibaut et al. Page 2

Burns. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Search methodology

We searched on PubMed using the following search terms: “burn” and tDCS “transcranial 

direct current stimulation” or “neuromodulation” or “non-invasive brain stimulation”.

We included studies investigating the effects of tDCS on burn related symptoms (i.e., pain, 

pruritus, psychosocial disorders, sleep disturbance, fatigue and impaired motor strength) in 

burn survivors. We included case-reports, open-label studies and randomized clinical trials. 

We excluded studies not written in English or French, reviews or opinion papers, conference 

abstracts, and those not using tES to treat burn related symptoms in burn survivors.

We followed the PRISMA statement to evaluate the articles we found and reported the 

results.

3. Results

31 studies were found; only three matched our inclusion criteria (see flowchart) [12–14].

Two studies have investigated the effects of tDCS on pain when applied over the motor 

cortex (M1). A first pilot study including 4 patients with burn injury and chronic pruritus 

showed that a single session of active anodal tDCS over the primary motor cortex induced 

a decrease in cortical excitability (i.e., decreased alpha activity in the occipital area and 

low beta activity in the frontal area) [12]. Another study using similar parameters (anodal 

tDCS over M1) evaluated the effects of 10 sessions of tDCS on pain and itch levels in 

31 burn survivors [14] but active tDCS did not influence pain or itch levels. Finally, one 

randomized control trial on 60 patients tested the effects of a single session of cathodal (or 

sham) tDCS over the sensory cortex aiming to reduce self-reported pain and anxiety [13]. 

Pain and anxiety scores were significantly lower in the active tDCS group compared with the 

sham group.

3.1. Burn symptom 1: pain

Pain management after burn injury is critical since it may have an important impact on burn 

recovery and quality of life [15,16]. Almost half of burn survivors still present with pain 

years after the incident [17]. Further, two-thirds of survivors report that pain interferes with 

their rehabilitation, and about half report that pain interferes with their daily lives [17], thus 

underscoring the significant impact of pain on patients’ quality of life. Pain is therefore a 

critical element to consider at the acute, rehabilitative, and chronic phases of burn recovery. 

In the acute stage, following burn injury, some nerve endings are undamaged, resulting in 

the experience of significant pain at the site of the injury. Conversely, if the nerve ending 

is entirely destroyed, excised or significantly damaged, the injured area is insensate, and 

does not experience pain. Burn survivors may also suffer from neuropathic-like pain, which 

can become chronic [18]. Chronic pain conditions are characterized by several maladaptive 

neural changes, such as central sensitization [19].

Acute pain perception begins with activation of peripheral nociceptors and via the 

spinothalamic tract that reaches the thalamus and the somatosensory cortex. In acute pain, 

processes are in place to prevent tissue damage. However, this pain may become chronic 
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when maladaptive neural changes occur, including central sensitization [20]. The neural 

mechanisms of central sensitization in chronic neuropathic conditions are only partially 

understood [21,22]. Both acute and chronic pain processes are multidimensional, comprising 

of nociceptive, cognitive, emotional, and affective components, each of these relating to 

specific brain structures [23]. Cortical and subcortical brain areas have been investigated in 

previous studies and associated with a common formation called the pain matrix [23,24]. 

This large neural network consists of the primary and secondary somatosensory cortex, the 

prefrontal lobe, anterior cingulate cortex, amygdala, insula, and the thalamus. Besides the 

somatosensory areas activated during pain, neuroimaging studies have also demonstrated 

that the dorsolateral prefrontal cortex, thalamus and medial prefrontal cortex play a crucial 

role in pain modulation as well [25,26]. In addition, the anterior cingulate cortex and the 

insula, part of the limbic system, are also important for the emotional aspects of pain [27] 

(Fig. 1).

tDCS applied over the sensorimotor cortex may help in normalizing pain processes and 

managing neuropathic pain symptoms. Many studies have demonstrated the analgesic effects 

of tDCS applied over the somatosensory cortex, as well as over the prefrontal cortex to 

reduce pain level in various conditions, such as fibromyalgia, osteoarthritis or chronic 

visceral pain (for a review see [28]). In healthy subjects, tDCS has been shown to modulate 

the pain threshold and conditioned pain modulation [29], a marker of the endogenous pain 

inhibitory system, which is altered in patients with neuropathic pain [30]. Given that burn 

injury may result in the development of chronic neuropathic pain due to central neural 

changes associated with sensory deafferentation, tDCS applied over the sensorimotor cortex 

may induce a decrease in maladaptive plasticity and therefore reduce pain in patients with 

burn injuries. The rationale for motor cortex stimulation is to enhance thalamocortical 

connectivity and thus compensate for some of the lost sensory afference that is observed 

with severe burn injury [31]. In fact, the goal is to enhance activity of primary motor cortex 

with anodal tDCS.

In the current literature of burn injury only two studies have investigated the effects of tDCS 

on pain when applied over the motor cortex (M1). A first pilot study including 4 patients 

with burn injury and chronic pruritus showed that a single session of active anodal tDCS 

over the primary motor cortex induced a decrease in cortical excitability (i.e., decreased 

alpha activity in the occipital area and low beta activity in the frontal area) [12]. Another 

study using similar parameters (anodal tDCS over M1) evaluated the effects of 10 sessions 

of tDCS on pain and itch levels in 31 patients [14]. However, in this study, active tDCS 

failed to reduce pain or itch intensities at the end of the 10 sessions and at follow-up. The 

main reason is likely because the subjects in such study had more pruritus than pain [14].

A third study tested the effect of tDCS on pain and anxiety during burn wound care in acute 

patients [13]. The authors found that a single cathodal tDCS session applied over the sensory 

cortex induced a significant reduction of about 10% of anxiety related to pain, compared to 

the sham group.
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Given the limited literature on this topic, further studies are merited to investigate the 

potential therapeutic benefits of this modality on post-burn pain. We also suggest that such 

studies should include subjects with truly neuropathic pain as the main component of pain.

3.2. Burn symptom 2: pruritus

Pruritus is a commonly reported symptom among burn survivors affecting as many as 87% 

of survivors 3 months post-injury and still 67% at 24 months post-injury [32]. Factors found 

to be predictors of itch include deep dermal injury, post-traumatic stress symptoms, female 

gender, total burn surface area >40%, and injuries requiring >3 weeks to heal [32]. Further, 

post-burn pruritus has been demonstrated to significantly impact survivor quality of life, 

affecting sleep, activities of daily living, and psychosocial health [6]. As many as 94% of 

survivors with chronic pruritus in a cross-sectional study described it as unbearable and as 

many as 86% of survivors with acute itch described it as unbearable as well [6].

The primary mechanism of itch involves mediation of the A-delta and C-nociceptors [33] in 

the top layers of the skin [34] with activation of the primary somatosensory cortex, located 

in the post-central sulcus and the secondary somatosensory cortex, located in the upper 

lateral sulcus [35]. Once a pruritogenic agent instigates the itch mechanism, unmyelinated 

C fibers activate and relay the sensation of itch to the brain [33,36]. In addition, it 

is hypothesized that peripheral sensitization decreases the activation threshold and thus 

increases the activity of itch-related receptors and nerve fibers [36]. Central sensitization, 

however, occurs in the spinal cord and brain, and causes non-pruritic stimuli to be presented 

instead as itch, thus increasing and exacerbating the symptomology of itch [36]. Neuropathic 

itch, however, may result from increased peripheral firing or impaired central inhibition of 

neurons involved in the itch neural pathway [37] which may be related to a compensatory 

mechanism. Patients with chronic itch have been noted with developed changes in the 

excitability and organization in their brains [34].

Despite the frequency of reported pruritus among survivors, the modulation of this symptom 

with tDCS is not well investigated in literature thus far. It is hypothesized that tDCS can 

reduce symptoms of pruritus by modulating pathways of neuronal firing and affecting neural 

excitability [38,39]. The neural pathway of itch has been noted to be closely associated with 

that of pain, specifically with overlap in pain-processing networks [34]. Correspondingly, 

tDCS modulates pain processing pathways including the periacqueductal gray area, with 

evidence of itch relief [34,35]. However, differences in the two pathways remain. While 

closely related, chronic pain seemingly involves more extensive changes in neuroplasticity 

compared to chronic itch, thus resulting in decreased receptiveness to tDCS stimulation 

compared to itch [34]. In addition, brain areas involved in pruritus involve activation of 

the thalamus, somatosensory cortex, parietal cortex, motor areas (primary, supplementary, 

premotor cortex). However, in differentiation to pain, the secondary somatosensory cortex is 

not activated with itch symptoms [40].

In a study on healthy subjects and histamine induced itch sensation, bi-hemispheric tDCS 

has been more effective than uni-hemispheric tDCS for symptom alleviation [41]. In a case 

report by Knotkova et al. (2013), a patient with chronic pruritus was administered 20minutes 

of tDCS for 5 days with resultant reduction in pruritus for 3 months [34].
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In the setting of burn injury related itch, a study noted that active tDCS over M1 was 

ineffective in treating itch reported by burn injury patients while the sham condition 

tDCS effectively decreased symptoms two weeks after stimulation [14]. tDCS increases 

the sensory threshold, as shown in healthy subjects [29] and may thus decrease the response 

to peripheral sensory afference of itch, leading to such effects [14]. In fact, we hypothesized 

in that study that tDCS for chronic pain would be different than tDCS for chronic pruritus. 

In the latter case, an inhibitory tDCS may be effective. Currently, no other studies have 

investigated the use of tDCS in alleviating post burn pruritus, or in other populations of 

patients. Therefore, given the lack of literature in regards to burn related itch and tDCS, 

further investigation is merited on the topic.

3.3. Burn symptom 3: psychosocial disorders

Psychosocial disorders encompass, among others, anxiety, depression and post-traumatic 

stress disorder (PTSD). Anxiety refers to feelings of excessive fear, worry, and unease 

caused by external or internal potential threats [42] lasting greater than 6 months [43]. 

Depression is characterized by low mood often in concordance with low self-esteem, loss of 

interest in normally enjoyable activities, and low energy for at least two weeks [44]. Finally, 

PTSD is defined as a mental disorder caused or triggered by exposure to either death, serious 

injury, or sexual violence [43]. Symptoms may include disturbing thoughts, feelings, or 

dreams related to the events, mental or physical distress to trauma-related cues, and attempts 

to avoid trauma-related cues [45].

Following a burn injury, rates of depression are high, reported up to 10–23% at 1 year 

post-injury [46]. Some factors, such as severity of pain, have been shown to be a predictor 

of suicidal ideation [47]. Therefore, pain management may help manage depression and 

reduction of suicidal ideation. Similarly, the prevalence of PTSD in burn survivors can be 

as high as 40% at 6 months and up to 45% at 12 months post-injury [2]. Main symptoms 

reported by survivors include sleep disturbances, recollections of the injury and avoidance of 

thoughts or feelings associated with the burn and distress when reminded of the burn.

Studies have reported high rates of PTSD in burn survivors ranging from 20% to 69% 

[48–50]. Main symptoms comprise of sleep disturbances, recollections of the injury and 

avoidance of thoughts or feelings associated with the burn and distress when reminded 

of the burn [51]. The high incidence and severity of PTSD have been associated 

with extensive post-burn scarring, female gender, large burn surface area, pre-traumatic 

depressive behaviors, low psychological resilience, and inadequate social support [49].

The prefrontal area, similar as for other psychosocial dysregulation pathologies, plays a 

critical role. Indeed, the neural correlates of these psychiatric disorders, neuroimaging 

and lesion studies have identified the medial prefrontal cortex (mPFC) as one of the 

main structures involved [52–54]. More specifically, PTSD is thought to be linked to 

a dysregulated neurocircuit that mainly involves the amygdala, prefrontal regions, and 

hippocampus. A recent meta-analysis of transcranial magnetic stimulation (TMS) on the 

mPFC in psychiatric disorders confirms the involvement of this key structure in the 

management of such symptoms [55].
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tDCS use in management of depressive symptoms has been widely studied. Regarding the 

most efficient target, tDCS studies focusing on the prefrontal region have shown to reduce 

depression symptoms in multiple studies [56]. The most well-known trial is the ELECT 

non-inferiority trial published in 2017 [57] in which the anode and cathode were placed on 

the left and right dorsolateral prefrontal cortexes of participants for a total of 22 sessions. 

This study demonstrated the non-inferiority of tDCS as compared to escitalopram and that 

both escitalopram and tDCS were superior to placebo in reducing depression [57].

From a therapeutic perspective, it is hypothesized that tDCS treatment over the prefrontal 

areas may help management of executive control of fear responses and thus, reduce PTSD 

symptoms. In this context, tDCS applied over the prefrontal area has been investigated for 

various psychiatric disorders including reduction of PTSD symptoms with promising results 

in veterans with PTSD [58,59]. Besides PTSD, tDCS has also been demonstrated to reduce 

stress levels when applied over the prefrontal region (i.e., right medial-prefrontal cortex 

[60]). An increase in cerebral blood flow was observed in the right medial-prefrontal cortex 

and in the amygdala after 20 minutes of anodal tDCS. These results demonstrated that 

application of tDCS over the prefrontal cortex may reduce stress and PTSD symptoms in 

patients with burn injuries.

For depression and PTSD not related to a burn injury (e.g., in veterans), the prefrontal 

area may be the best region to target for treatment. No clinical trial, or open-label studies 

have tested the effects of prefrontal tDCS on these symptoms in patients with burn 

injuries. Following a protocol looking at the effect of M1-tDCS on pain and itch level, 

the injury’s psychosocial impact was also measured (see supplementary material). The data 

demonstrates that tDCS, when applied over M1 did not induce a significant improvement 

on impact of event, depression, anxiety, or sleep. It may be hypothesized that, if pain and/or 

itch levels would have been reduced following M1-tDCS [14], an impact on the associated 

psychiatric symptoms may have been observed via an indirect pathway. However, as neither 

improvement of pain nor itch was observed in this study, it may explain why no reduction 

of depression, PTSD or anxiety was found and targeting the prefrontal area may induce 

stronger effects as for other populations.

Indeed, tDCS applied over the prefrontal region has been shown to reduce depression [61] 

and PTSD symptoms [62] in patients suffering from these pathologies.

3.4. Burn symptom 4: sleep disturbance

Sleep disturbances encompass disorders of initiating and maintaining sleep, excessive 

somnolence, sleep–wake schedule perturbation, and any dysfunctions associated with sleep, 

sleep stages, or partial arousals [63]. Sleep disturbance can be due to traumatic experience, 

psychiatric disorders or neurological diseases. Though sleep affects a significant proportion 

of the population, little is known about the exact mechanisms of these symptoms given the 

heterogeneous nature of the disorders [64].

Among the burn survivor population, sleep disturbance may be related to pain, itch or 

behavioral health conditions. The proportion of patients with sleep disturbance following 

a burn injury is as high as 74%. Most frequently reported problems include nighttime 
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awakenings, daytime napping, nighttime pain and difficulty with sleep onset [65]. Poor sleep 

quality has been shown to be associated with high levels of pain and analgesic intake during 

the day and a myriad of other symptoms [66].

Some recent studies have shown the positive effects of tDCS on sleep to promote vigilance 

and sleepiness [67]. Specifically, prefrontal tDCS applied during a wake period may improve 

the quality of subsequent sleep [68,69] in two different conditions, post-polio syndrome 

[68] and euthymic bipolarism [69]. tDCS may also improve sleep efficiency in patients with 

fibromyalgia [70]. Another study tested the effects of prefrontal stimulation applied during 

stage 2 sleep. In this study, tACS (transcranial alternating current stimulation) at 0.75Hz 

in insomniac patients was used. Prefrontal tACS may thus ameliorate sleep quality and 

decrease the number of wake times after sleep onset [71]. These behavioral findings were 

coupled with electrophysiological changes as an increase of stage 3 duration and a decrease 

of stage 1 duration were also observed.

Based on the current literature on non-invasive brain stimulation to manage sleep 

disturbance, the prefrontal area has been shown to be an effective target both when 

stimulated during wakefulness and during sleep. Unfortunately, there are no current studies 

in burn outcomes evaluating the effects of tDCS on sleep quality. As mentioned previously, 

M1-tDCS applied in patients with burn injuries did not lead to sleep quality improvement. 

As sleep disturbance is linked to pain and itch, it may also explain why M1-tDCS did 

not promote sleep. Therefore, targeting the prefrontal region may induce more promising 

effects.

3.5. Burn symptom 5: fatigue

Fatigue is a common symptom reported after burn injury, with many patient reports of 

persistence even at 24 months post-injury [72]. Symptoms of fatigue may contribute 

negatively to a survivor’s recovery from hindering their ability to fully participate in 

rehabilitation exercises to affecting injury healing [73]. Larger burn size was found to be 

associated with symptoms of fatigue [72]. Further, post-injury fatigue has been demonstrated 

to impact survivors’ post-injury quality of life as well as work-related disability [74]. Given 

the persistent implications of fatigue on quality of life, it is therefore imperative that future 

research targets strategies to alleviate this post-burn sequela.

Fatigue is oftentimes subjective and is defined clinically by an increased sense of effort in 

the initiation and maintenance of both physical and cognitive activities [75]. Fatigue may 

be further categorized as myopathic or subjective fatigue. Symptoms of myopathic fatigue 

are due to muscle weakness resulting from decreased muscle force output [75]. This type 

of fatigue is common among patients with myopathic disorders, neuromuscular junction 

disorders, and peripheral nerve disorders. Conversely, symptoms of subjective, or cognitive, 

fatigue are due to lesions in pathways implicated in arousal and attention, the basal ganglia, 

and the reticular and limbic systems [75]. This type of fatigue is more commonly noted in 

peripheral, autonomic, and central nervous system disorders [75].

Cognitive fatigue, differing from myopathic fatigue, is observed in most acute and chronic 

inflammatory diseases [76]. In chronic inflammatory disorders, fatigue has been found to be 
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correlated with high observed levels of inflammatory cytokines such as IL-6, IL-1, and TNF 

[77]. It is hypothesized that the increased levels of these markers signal the central nervous 

system to subsequently respond and generate the feeling of fatigue. Similarly, in burn injury, 

inflammation markers of IL-6, TNF- α, and IL-1 β are also released, contributing to the 

stress response and thus likely to the symptoms of fatigue as well [78].

tDCS has been previously investigated for treatment of fatigue, specifically, in multiple 

sclerosis (MS). In the treatment of multiple sclerosis, tDCS modulates the postulated 

disrupted cortico-subcortical loop [79]. In addition, in the disease process of multiple 

sclerosis, neural cell axons become demyelinated due to a combination of inflammation, 

demyelination, and oxidative stress [80]. tDCS is also thought to improve the activation 

and migration of neural stem cells and therefore promote axonal regeneration [79,81]. By 

improving conduction though axonal regeneration of the demyelinated neural cell axons 

[80], tDCS may further alleviate symptoms of fatigue [79,80]. Given the implications of 

inflammation and fatigue, tDCS may work to modulate this post burn fatigue through similar 

mechanisms as with fatigue observed in MS. Further, while no studies have investigated the 

use of tDCS on post-burn fatigue, previous studies have noted the use of tDCS in subjective 

cognitive fatigue. tDCS has been demonstrated to have a positive effect on patients with 

mild-moderate cognitive fatigue compared to patients with severe cognitive fatigue with 

parietal stimulation [82]. In addition, tDCS stimulation, applied over the parietal and frontal 

area, was able to improve fatigue-related reaction time while performing cognitive tasks 

[82,83].

Currently, there has not been literature demonstrating the use of tDCS in treating symptoms 

of fatigue after burn injury. However, given the efficacy of tDCS in improving multiple 

sclerosis related fatigue, tDCS applied in the parietal and frontal area may be a likely 

target for future investigation with promising results. Given the safety profile and ease of 

implementation, tDCS may be a potential favorable treatment option to alleviate fatigue 

[38,84], especially given pharmacologic limitations in treatment that patients may encounter 

[79].

3.6. Burn symptom 6: impaired motor strength

Muscular weakness is commonly reported after burn injury whether due to muscle wasting 

or due to the increased catabolism of skeletal muscle, with resultant loss of body mass, 

experienced after injury [85,86]. Critical illness polyneuropathy, a diffuse neuropathy that 

may occur with severe burn injuries, may be another source of weakness, causing extremity 

flaccid weakness due to axonal damage of the motor neurons [87]. The degeneration of 

sensory and motor neuron nerves leads to resultant skeletal muscle degeneration [88] 

and subsequent symptoms of motor weakness. Among the burn population, this type 

of weakness occurs anywhere between 2% and 29% of survivors [89,90]. Predictors 

of impaired motor strength, or muscular weakness, include initial myostatin serum 

concentration levels and greater total burn surface area [91]. In order to generate fine distal 

movements, activation of the primary motor cortex is required [92]. When one side of the 

motor cortex becomes impaired, increased transcallosal inhibition from the unaffected motor 
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cortex to the affected cortex disrupts the primary motor cortex. The resultant decrease in 

cortical excitability thereby impairs muscle strength [92–94].

tDCS has been shown to be efficacious in improving motor function and strength in 

variable disorders through activation of motor areas and enhancement of action potentials for 

movement execution when applied over M1 [95]. Anodal tDCS increases motor learning by 

decreasing GABAergic activity in the motor cortex and subsequently increasing functional 

connectivity of the motor network [96]. Various studies have demonstrated positive effects 

of tDCS stimulation on movement and strength improvement. In a study by Kim et al, 

anodal tDCS applied to the affected hemisphere of patients with subacute stroke was found 

to improve function of the affected hand [97]. Similarly, in a study of children with spastic 

hemiparetic cerebral palsy, anodal M1 tDCS was noted to improve upper limb movements 

of these patients as quantified through decreased total movement duration time, decreased 

returning movement time, and overall reduced movement execution time [95]. Further, M1 

tDCS may also improve the maximum force of knee extension in patients with chronic 

subcortical stroke [98], an effect suggested to be resultant of tDCS induced corticospinal 

excitability over the lower limb primary motor cortex [39,99,100]. Finally, several studies 

have shown that motor cortex stimulation does enhance exercise performance, including 

muscle strength and also physical endurance [101–104].

Though other therapies such as strength training [86] have been demonstrated to be 

efficacious improving muscular strength post burn injury, the role of tDCS in affecting this 

symptom has not been investigated. However, given the positive outcomes of tDCS applied 

over the motor cortex observed in other disorders, future studies may be focused on this area 

of stimulation.

4. Discussion

There is evidence in other fields that suggest that tES may be a successful treatment 

for common post burn symptomology. Although there is a lack of data on the effects of 

tES in the burn population, given the frequency of chronic symptoms there is a need for 

novel interventions. This paper reviews prior literature to develop an anatomical map of 

potential areas of brain stimulation to treat burn symptoms. Many burn symptoms share well 

described neurophysiology seen in other populations and literature examining the utility of 

tES treatments.

Based on these observations we can draw three main conclusions: (1) The prefrontal cortex 

may be a better target than the motor area to reduce both pain and psychosocial symptoms 

related symptoms. (2) tES applied over the parietal cortex may help with fatigue and 

improve vigilance, though data is limited even in other conditions. (3) tES applied over M1 

could be useful to help with muscle weakness in the subpopulation of patients with burn 

suffering from motor disorders.

1. tES applied over the prefrontal area has been shown to improve cognitive 

symptoms, such as attention and memory, in various pathologies [e.g., 105,106], 

as well as to help with psychosocial symptoms of PTSD or anxiety and sleep 

disturbance [e.g., 107,108]. In addition, the prefrontal region may also play a 
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role in the emotional reaction to pain. In the past decade, many neuroimaging 

and neurophysiological studies have demonstrated the critical role of the 

DLPFC not only in pain processes [109] but also in fatigue [79], depression 

[110], or attention [111], including the attentional circuit dedicated to noxious 

stimuli [112]. Therefore, modulating the prefrontal cortex via non-invasive brain 

stimulation could also help manage acute and neuropathic pain in patients with 

burn injury. Similar to management of fibromyalgia or neuropathic pain in 

patients with multiple sclerosis [113], tES over the prefrontal area did show 

promising analgesic effects. Similar montage should also be tested in patients 

with burn injury. This approach appears more promising as this population of 

patients often suffers from depression and fatigue, symptoms involved by the 

prefrontal area.

2. tES applied over the parietal cortex may be efficacious in reducing fatigue, as 

previously investigated, such as in multiple sclerosis. In addition, the parietal 

cortex is also involved in itch regulation as demonstrated by neuroimaging 

studies. tES effects on fatigue may be linked to an improvement of vigilance 

level, as neuroanatomically, vigilance depends on a network involving the 

brainstem, the thalamus, and the frontal and parietal cortices [114].

3. tES applied over the motor cortex may still be useful to help rehabilitation, 

especially when patients remain bedridden for an extended period of time and 

suffer from ensuing muscle weakness. Patients with extensive burn injuries 

often stay in intensive care units before beginning rehabilitation therapy. During 

this time, muscle atrophy can occur, consequently slowing down functional 

improvement. In this scenario, applying tES over the motor cortex during 

rehabilitation may speed up the functional recovery. However, based on our 

previous data, M1 tES, especially using tDCS, does not seem to induce an 

analgesic effect or to reduce itch sensation in patients with burn injury [14]. It 

does not seem to have an effect on psychosocial symptoms, while stimulating the 

prefrontal cortex seems to have a more straightforward approach to improve such 

factors (Fig. 2).

Techniques such as tDCS, tACS or other NIBS tools have several advantages as well 

as some limitations. In our opinion, especially in the burn population, one of the main 

advantages is the non-pharmacological nature of tES. While opioids remain the cornerstone 

of pain management in the burn population [115]; given the risk of addiction, alternatives 

to pharmacological treatment are necessitated. tES represents a safe, inexpensive, and well 

tolerated modality as compared to other treatment strategies [116]. Mechanistically, NIBS 

techniques have the potential to modulate specific brain areas depending on the underlying 

symptoms to treat, via long-term potential and depression-like plasticity mechanisms [117–

119]. However, currentlythistechniquetypicallyinvolvesadministrationby trained staff under 

clinical supervision, requiring the administration of tES to take place in research facilities 

or hospitals. In addition, dosing is an important parameter as the duration of the effects 

is thought to be linked to the duration of tES application. Repeated sessions may have 

cumulative effects leading to long-lasting clinically relevant effects, as shown in previous 

studies evaluating the effects of tDCS in psychiatric [120], motor [121], and pain conditions 
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[122]. Recently, some studies have utilized home-based tDCS devices with promising 

results and, most importantly, with no side-effects [123–125]. Thus, home-based supervised 

sessions, as recommended by Charvetandcolleagues[126], couldbeanalternativetofacilitate 

tDCS and tACS implementation and reduce attrition rates as often observed in clinical trials 

of long duration [127], as well as to promote long-lasting tES-related effects. Besides the 

number of sessions, the intensity of stimulation is another parameter to take into account. 

Recent evidence has shown that 4mA tES is safe and can potentially induce stronger 

neurophysiological effects, and thus stronger behavioral effects too [128,129]. However, a 

direct link between clinical effects and higher intensities of stimulation still needs to be 

proven.

5. Conclusion

Non-invasive brain stimulation (NIBS) techniques represent a valuable alternative to 

pharmacologic interventions in the management of chronic neuropathic pain, psychiatric 

morbidities and sleep disturbance. However, current literature on NIBS in burn for treating 

these and other associated symptoms remains limited and future trials are merited to 

investigate the efficacy of this approach. Specifically, home-based supervised devices may 

be utilized in order to limit attrition rates as observed in previous trials [127]. Our review 

of the neural circuitry involved in post burn symptoms and suggested targeted areas for 

stimulation provides a spring board for future study initiatives. Given the significant impact 

of these symptoms on survivors’ lives, definition of these target areas allow for focused 

studies of treatment of these symptoms and eventual improved quality of life. Based on the 

importance of the prefrontal cortex in the emotional component of pain and its implication 

in various psychosocial symptoms, this region may represent the most promising treatment 

target.
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Fig. 1 –. 
Afferent pain pathways. Nociception information from the spinal cord reach the thalamus, 

parabrachial nucleus (PB), and the peridaqueducal grey nucleus (PAG). From the thalamus, 

nociception information is projected to the insula, anterior cingulate cortex (ACC), primary 

somatosensory cortex (S1), and secondary somatosensory cortex (S2). From the ACC, the 

prefrontal cortex (PFC) will also be activated. Whereas from the PB, information will reach 

the amygdala (AMY) and is then projected to the basal ganglia (BG). Cortical targets 

to modulate pain perception via non-invasive brain stimulation are enclosed within the 

blue circles. M1 represent the primary motor cortex, preferably selected as a target. *the 

stimulated region overlaps M1 and S1. Adapted from [27].
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Fig. 2 –. 
Main suggested cortical regions (red circles) for target treatment. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article).
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