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Abstract

Background: Chronic airway diseases including chronic obstructive pulmonary

disease (COPD) and asthma are heterogenous in nature and endotypes within are

underpinned by complex biology. This study aimed to investigate the utility of

proteomic profiling of plasma combined with bioinformatic mining, and to define

molecular endotypes and expand our knowledge of the underlying biology in

chronic respiratory diseases.

Methods: The plasma proteome was evaluated using an aptamer‐based affinity

proteomics platform (SOMAscan®), representing 1238 proteins in 34 subjects with

stable COPD and 51 subjects with stable but severe asthma. For each disease, we

evaluated a range of clinical/demographic characteristics including bronchodilator

reversibility, blood eosinophilia levels, and smoking history. We applied modified

bioinformatic approaches used in the evaluation of RNA transcriptomics.

Results: Subjects with COPD and severe asthma were distinguished from each

other by 365 different protein abundancies, with differential pathway networks and

upstream modulators. Furthermore, molecular endotypes within each disease could

be defined. The protein groups that defined these endotypes had both known and

novel biology including groups significantly enriched in exosomal markers derived

from immune/inflammatory cells. Finally, we observed associations to clinical

characteristics that previously have been under‐explored.
Conclusion: This investigational study evaluating the plasma proteome in clinically‐
phenotyped subjects with chronic airway diseases provides support that such a

method can be used to define molecular endotypes and pathobiological mechanisms

that underpins these endotypes. It provided new concepts about the complexity of

molecular pathways that define these diseases. In the longer term, such information

will help to refine treatment options for defined groups.
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S CH L Ü S S E LWÖR T E R
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MOT S ‐C L É S
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PA L A B RA S C L AV E

EPOC, endotipos, exosomas, proteómica, asma severa
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1 | INTRODUCTION

Chronic airway diseases such as chronic obstructive pulmonary

disease (COPD) and asthma are common and significant causes of

morbidity and mortality. COPD is characterized by persistent res-

piratory symptoms and airflow limitation due to airway and alveolar

abnormalities.1 Asthma is characterized by variable respiratory

symptoms and expiratory airflow limitation.2 The differential diag-

nosis of these is problematic especially in older adults, due to the

presence of overlapping clinical features. For instance, fixed airflow

limitation is observed in patients with severe asthma3,4 with distinct

phenotypes observed in smokers.4 While 50% of COPD patients

had at least one asthma‐like feature (bronchodilator reversibility,

blood eosinophilia, or atopy) even if they were not clinically diag-

nosed with asthma.5 Hidden in these clinical groups may be a

diverse range of molecular endotypes, where lack of knowledge of

the underlying pathobiology hampers determining the best treat-

ment regime.

Study of biological networks that govern chronic airway diseases

may help to identify the unique underlying biology. This concept of

molecular endotypes in asthma was initially discussed in terms of

type 2 and non‐type 2 asthma.6,7 Extension to these endotypes have

been proposed with the transcriptome analysis of peripheral blood,8

epithelial brushings and bronchial biopsies,9 as well as metab-

olomics.10 For COPD, a meta‐analysis of endotypes was achieved

from peripheral blood gene expression analysis.11

However, as proteins are central to almost all cellular processes,

and dysregulation of expression and function is associated with a

range of disorders, it makes sense to assess proteome‐derived
endotypes. In respiratory diseases, the de novo detection of such

proteins has been limited to low throughput analysis usually of in-

flammatory mediators. The application of proteomics in clinical and

research applications in respiratory disease has been recently

reviewed12 including the developments in protein detection tech-

nologies, that enables the simultaneous quantitation of large

numbers of circulating proteins, including low‐abundance analytes,

with high sensitivity and precision cohorts.13,14 The use of these has

led to the identification of biomarkers signatures and new concepts

about disease pathology in allergic skin disease,15 in respiratory

disease such as idiopathic pulmonary fibrosis16 and bronchiectasis in

cystic fibrosis,17 and in chronic diseases such as cardiovascular dis-

ease18 and inflammatory bowel disease.19

We hypothesized that molecular endotypes of COPD and severe

asthma may be achieved through evaluation of the plasma proteome.

Furthermore, we addressed whether using bioinformatics ap-

proaches adopted from the study of RNA sequencing data could help

to elucidate the underlying biology. We evaluated the abundance of

1238 proteins in a subset of individuals from the Hokkaido COPD

cohort5,20,21 and the Hokkaido‐based Investigative Cohort Analysis

for Refractory Asthma (Hi‐CARAT)4,22,23 studies. Our results indicate

that large scale plasma proteome approach offers potential to define

novel molecular endotypes and unique underlying biology.

2 | METHODS

Details of the methods are shown in the Supporting Information.

2.1 | Patients cohorts

The protocols for the Hokkaido COPD cohort, Hi‐CARAT, and this

study were approved by the ethics committee of Hokkaido University

School of Medicine (med02‐001) and Hokkaido University Hospital

(009‐0025, 015‐0336), respectively. They were performed in accor-

dance with the Declaration of Helsinki. All subjects provided written,

informed consent with an additional opt‐out consent for this study.

2.2 | COPD cohort

A subset of Hokkaido COPD cohort subjects5,20,21 was selected

(Figure S1). Subjects with physician‐diagnosis of asthma were

excluded. To ensure we evaluated the broadest range of clinical

features, we included those with asthma‐like features (n = 17): high

blood eosinophil levels (>300/μl) and bronchodilator reversibility

(ΔFEV1 ≥ 200 ml and ≥12% after inhalation of 400 μg of salbutamol,

the average value for three visits taken during the first year) as well

as without them (n = 17). Subject's baseline clinical measures were

found to be stable as assessed by yearly evaluation of blood
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eosinophil levels and bronchodilator reversibility over 5 years. Sex,

age, pack‐years, and BMI on this cohort can be found in the sup-

plementary information datasets (Dataset‐1).

2.3 | Asthma cohort

A subset of Hi‐CARAT severe asthmatics4,22,23 (hereafter “asthma”)

was selected (Figure S1). To ensure we evaluated the broadest range

of clinical features, we included those with smoking history (≥10
pack‐years) and low (<150/μl) (n = 17) or high (>300/μl) (n = 17)

blood eosinophil levels, as well as nonsmoking asthmatics with high

blood eosinophil levels (n = 17). Sex, age, pack‐years, and BMI on this

cohort can be found in the supplementary information datasets

(Dataset‐1).

2.4 | Blood sampling in COPD and asthma cohorts

Blood samples were collected between 2003 and 2005 (Hokkaido

COPD cohort study) and 2010–2012 (Hi‐CARAT). Blood was

drawn in the morning after a fast of ≥12 h. Plasma was obtained

by centrifugation of EDTA whole blood at 3000 rpm, 10 min and

stored at −80° C. In the COPD cohort, the plasma samples were

collected from different hospitals in a same manner, and all

samples were stored at the Hokkaido University Hospital. In

asthma cohort (Hi‐CARAT), all plasma samples were collected and

stored at the Hokkaido University Hospital. Then, all samples

were thawed once, aliquoted, and stored at −80° C until assayed.

The median storage time for the COPD samples was 4602 days

(range 4123–4804) and for asthma it was 1962 days (range

1429–2316).

2.5 | Statistical analyses of clinical data

Differences among the groups were analyzed using Student's t‐test,
one‐way analysis of variance, the Mann–Whitney U‐test, the

Kruskal–Wallis test, or Fisher's exact test. Annual change in clinical

parameters were estimated using linear mixed‐effects models.

Exacerbation‐free survival was analyzed using the Kaplan–Meier

method with the long‐rank test. Statistical significance was defined

as p < 0.05.

2.6 | Proteomic analysis overview

The proteome was assessed by SomaLogic (Boulder, Colorado, USA)

using SOMAscan® assay v3.2.13,14 100 μl of samples were provided

to SomaLogic for the analysis although each analysis took only a few

μl. SomaLogic data analysis workflow included hybridization

normalization, median signal normalization, and signal calibration to

control for inter‐plate differences. Here, 77 SOMAmer probe‐sets

failed quality control, leaving 1233 that represented 1238 proteins,

as 35 probe‐sets could not distinguish between protein isoforms, and

a further 11 probe‐sets recognized a complex of two different pro-

teins. These are shown in the supplementary information datasets

(Dataset‐9). They cover a diverse range of protein and biological

functions and as such do not impact the overall pathway and func-

tional analysis. Data were analyzed based on probe‐set abundance as

expressed by SomaLogic in relative fluorescent units.

Data and statistical analysis of the SomaLogic probe‐sets (here-

after "proteins") used R (v3.4.4) functions and python (v2.7.12).

Specific analyses are detailed in the supplementary information.

Protein set enrichment analyses were based on gene set enrichment

methodology using bespoke python scripts for calculating normalized

directional enrichment scores24 and non‐directional scores (earth

mover's distance).25 Exosomal marker proteins in the SOMAscan®

array were identified from the ExoCarta database.26 Putative cell

source of proteins was assessed from mRNA expression patterns in

79 human tissues using GeneAtlas U133A, gcrma data from Bio-

GPS.27 All proteomic data can be found in the supplementary infor-

mation datasets (Dataset‐2 to ‐8).

3 | RESULTS

3.1 | Patient cohorts

Patient characteristics of the COPD and asthma cohorts are sum-

marized in Table 1. In general, COPD patients were slightly older, had

a lower body mass index (BMI) and a higher smoking index, whereas

the prevalence of current smokers was comparable between COPD

and asthma cohorts. The differences in clinical features reflect the

definition of the two diseases. However, there was overlap in both

the demographic and clinical characteristics due to our subgroup

selection strategy. This was by design, to include a range of blood

eosinophil levels, degree of airflow limitation, and smoking index.

Furthermore, we matched for age and BMI among predefined clinical

subgroups within each disease (Tables S1 and S2). By taking this

approach we challenged the methodology to identify systemic dif-

ferences between the disease subgroups as well as to minimize

effects of some potential covariances.

3.2 | The plasma proteome differs between COPD
and severe asthma

To determine whether the plasma proteome could differentiate be-

tween COPD and asthma, a principal component analysis (PCA) was

undertaken. This PCA scattergraph showed a clear separation be-

tween the two diseases (Figure 1A) despite using predefined groups

that overlapped in their clinical and demographic features. 365

proteins were found to have different abundances between COPD

and asthma (p ≤ 0.05 BH‐adjusted). The overall distribution of these

proteins is visualized in the heatmap (Figure 1B), while the violin
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plots of some selected proteins show proteins that have greater

abundance in COPD or asthma (Figure 1C). On the other hand, PCA

scattergraph and heatmap showed no obvious differences in prote-

ome pattern among different predefined clinical subgroups of each

disease (Figure S2).

Loss of integrity of the samples over time in storage, which was

several years longer for the COPD than the asthma samples, did not

appear to contribute to the differences between the two diseases.

Comparison of the SOMAscan® protein abundancies to single pro-

tein assessments (ELISAs and radioimmunoassay), performed shortly

after sample acquisition, showed a significant Spearman's correlation

(p ≤ 0.01) for 10 out of 11 assessments (IgE, leptin, CRP, CCL18,

adiponectin, YKL40, CD5L, periostin, SPP1, but not albumin)

(Figure S3). This was true when the correlation contained both

asthma and COPD samples which supports the observation that the

longer storage time between the two did not appear to impact the

SOMAscan assay results. Furthermore, we observed only 17 and 25

proteins correlated with storage time respectively for asthma and

COPD, none of which overlapped (Figure S4E and H). Finally, the

individual PCAs of asthma and COPD showed no global effect of

storage time (Figure S5G and H).

Additionally, while demographic characteristics, such as BMI

and sex, varied between these diseases, no pattern with protein

abundance of the 365 differentially expressed proteins was

observed when they were aligned to the heatmap (Figure 1B).

Indeed only 3, 5, and 7 proteins differ between the two cohorts for

age, BMI and sex, respectively. This did not represent an enrich-

ment over background (hypergeometric test, p < 0.05). Finally, to

confirm that the asthma versus COPD differences were not driven

by potential confounders, we plotted the five most highly significant

asthma versus COPD proteins against age and gender (Figure S6A

and B). These showed these confounders did not correlate within

disease, for example, the youngest asthma patient had comparable

protein abundance to the oldest, and this was also true for COPD.

Finally, simultaneous correction for these three confounders did not

alter substantially the results: there were 365 significant proteins

TAB L E 1 Characteristics of the
COPD and asthma groups

COPD Asthma p‐value

Number of subjects 34 51

Female sex, N (%) 2 (6) 21 (43) <0.001b

Age (year) 67.2 � 7.1 61.2 � 11.6 0.009c

BMI (kg/m2) 22.9 � 3.4 25.1 � 5.7 0.04c

Smoking index at entry, pack‐years 64.9 � 27.1 26.5 � 27.2 <0.001c

Current smokers, N (%) 8 (24) 7 (20) 0.26b

FEV1, L
a 1.74 � 0.50 2.22 � 0.71 0.001c

FEV1, % predicteda 62.9 � 16.2 86.0 � 15.2 <0.001c

FEV1/FVC, %
a 51.1 � 11.6 63.7 � 12.1 <0.001c

DLco, % predicted 78.0 � 21.1 102.1 � 20.1 <0.001c

Kco, % predicted 66.1 � 20.7 104.8 � 25.6 <0.001c

Blood neutrophil count, cells/mm3 3560 (2504–4559) 4788 (3657–6182) <0.001d

Blood eosinophil count, cells/mm3 218 (63–388) 405 (83–659) 0.03d

Serum total IgE, IU/ml 91 (30–138) 253 (100–472) <0.001d

Comorbidities

Any cardiovascular disease, N (%) 12 (35) NA

Ischemic heart disease, N (%) 4 (12) NA

Diabetes, N (%) 1 (3) NA

Allergic rhinitis, N (%) NA 26 (51)

Atopic dermatitis, N (%) NA 8 (16)

Note: Data are shown as mean � SD, median (interquartile range), or number (%).

Abbreviations: BMI, body mass index; DLco, carbon monoxide diffusion capacity; Kco, carbon

monoxide transfer coefficient; NA, not assessed.
aCOPD: post‐bronchodilator (salbutamol) value; Severe asthma: maximum value of FEV1 among four

procedures (see Section 2) and corresponding FEV1/FVC.
bFisher's exact test.
cStudent's t test.
dMann–Whitney U test.
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F I GUR E 1 The plasma proteome differs between chronic obstructive pulmonary disease (COPD) and asthma. The plasma proteome was
compared between all COPD and all asthma subjects. (A) A principal component analysis (PCA) scatterplot across all COPD and asthma
subjects showing PC1 versus PC2. In the PCA scatterplots, the percent variation explained by each component is given on the axis label. COPD

subjects with ( ) or without ( ) low blood eosinophils and bronchodilator reversibility. Asthma subjects with a smoking history and with high
( ) or low ( ) blood eosinophils, and asthma with no smoking history and high blood eosinophils ( ). (B, upper) Heatmap of abundances for 365
significantly (p ≤ 0.05) different SOMAscan® probes between COPD (red bar) and asthma (blue bar) subjects. The color intensity represents

row scaled (z‐score) protein abundance, with magenta as low and yellow as high abundance. The heatmap has been hierarchically clustered by
row. (B, lower) For each subject, selected clinical features are given in a paired heatmap showing: smoking index (pack‐years), blood eosinophil
counts (bld eos), Kco, % predicted (Kco), body mass index (BMI), and sex. Values for each feature are represented as a grayscale, with white as

low and black as high except sex where females are white, and males are black. (C) Violin plots of protein abundances for selected proteins of
COPD (red) and asthma (blue) subjects. Individual subjects are shown as black dots, and disease means as larger red dots. Protein abundance is
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when uncorrected, and 383 when corrected, with 349 in common

(data not shown).

We also evaluated these covariances further using the whole

proteome, also including assessment of inhaled corticosteroid (ICS)

dose, or oral corticosteroid (OCS) dose (asthma only). Only a few

proteins correlated with these covariances, including blood eosino-

phils (Figure S4). Furthermore, we found that in all cases they did not

drive any clustering of the subjects, as visualized by overlaying values

of the co‐variants onto a PCA of the proteome (Figure S5). Smoking

history (pack‐years), a known risk factor for COPD, was also explored

as a potential confounder. No protein was found to correlate with

pack‐years either in asthma or COPD (Figure S4D) nor drive the PCA

of the proteome (Figure S5I and J). A plot of the five most highly

significant asthma versus COPD proteins against pack‐years clearly

showed the separation between the diseases but no pattern with

pack‐years (Figure S6C). Comorbidities were unlikely to drive the

differences as very few individuals had co‐existing cardiovascular or

ischemic heart disease or diabetes. These analyses suggest that any

difference observed between or within the diseases should be driven

mainly by the disease pathology.

We identified 143 networks of enriched/altered protein‐sets
between COPD and asthma (p ≤ 0.001). These were grouped and

labeled based on the main pathway observed in the network

(Figure 1D). Networks that had higher protein abundances in asthma

included complement & coagulation (representative protein PLAU)

and pro‐inflammatory response (CD97). While those higher in COPD

included growth factor signaling (VEGFC, FGF7); stress response

(STIP1); regulation of cell cycle (RAN, PTPN6); mitochondrial orga-

nization (ATP50); kinase signaling (RAC3); and protein localization

(GPI) (Figure 1C and D). These networks were reflected in the In-

genuity Pathway Analysis (IPA) functions analysis (Figure S7A). While

IPA upstream modulators analysis found the main drivers of the

response for COPD were IFNγ and TGFβ1, and involvement of the

oxidative stress transcriptional regulators (BCL2L1, NFE2L2/Nrf2),

and extracellular matrix regulators (BMP6, ITGB6) (Figure S7B), main

drivers of response for asthma were pro‐inflammatory mediators

(TNF, IL‐1β, IL‐6) and the transcriptional regulators (HDAC, CAV1,

MAP4k4, Wnt, and SOX2).

3.3 | The plasma proteome defines four distinct
endotypes within severe asthma

The heatmap of the COPD‐asthma differentially expressed proteins

showed some clustering with smoking index and blood eosinophil

levels. This suggested that there may be within‐disease endotypes.

This was investigated using k‐means clustering of the whole

proteome. Four distinct groups were observed by PCA analysis in

asthma (Asthma‐1 to ‐4) (Figure S8A). These were defined by 230

proteins. These split into six blocks (Proteins‐A to ‐F) that differed
between any combinations within the asthma groups (p ≤ 0.05 BH‐
adjusted). The distributions of the proteins are shown in the heatmap

(Figure 2A, for full list see Dataset‐8) and examples in violin plots

(Figure 2B). The individual subject's characteristics indicates smoking

index, sputum eosinophil levels, baseline diffusion capacity (carbon

monoxide transfer coefficient [Kco]), BMI, and sex did not drive the

clustering. The overall clinical and demographic characteristics of

these subgroups are shown (Table 2). Functions and specific up-

stream modulator analysis are shown (Figures 2C and S8C, respec-

tively). Together these show the characteristics of the four

endotypes.

The largest endotype, Asthma‐1 (n = 21) had subjects who were

older, had a later age of asthma onset, and had increased diffusion

capacity than the other clusters. This group had low protein abun-

dancies except for Proteins‐E, which reflected an inflammatory

function with upstream modulators such as LPS, IL‐1β, TNF, IL‐27RA,
and IFNγ (Figure S8C).

Asthma‐2 (n = 19) combined a pro‐inflammatory signature, with

a Th2 and innate immune response with upstream modulators of IL‐
1β, TNF, IL‐13, IL‐15, and IFNγ. There were high protein abundancies

of Proteins‐A reflecting a stress response (such as HSP90AA1)

resulting in cell apoptosis with upstream modulators APP and MAPT;

Proteins‐B, related to connective tissue remodeling; Proteins‐C and ‐
E describing activation and homing of immune cells indicated an in-

flammatory response with LPS. These subjects' exacerbation‐free
rate appeared poorer, although not significant, than that for

Asthma‐1 (p = 0.13) (Figure S8B).

Asthma‐3 (n = 7) was characterized by low blood and sputum

eosinophils, and low FeNO levels. This group had high Asthma

Quality of Life Questionnaire (AQLQ) scores. It had low abundancies

of all proteins except Proteins‐F (growth and proliferation of

epithelial cells) and more variable amounts of Proteins‐D (allergic

inflammation). However, what was striking was the lower abundancy

of proteins involved in response to infection (ISG15, NME2, IFNγ,
and C3) (Figure 2B).

The smallest subpopulation Asthma‐4 (n = 4) was the youngest in

age and had the earliest age of asthma onset. They were defined by

high levels of blood neutrophils, blood and sputum eosinophils, FeNO

levels, and serum total IgE. A higher percentage of these subjects

were on OCS compared to the other groups. This cohort has

consistently high levels of Proteins‐D whose functions analysis

described allergic inflammation or allergic pulmonary eosinophilia

and Proteins‐C that describe an inflammatory response. Like

Asthma‐3, they had high AQLQ score and low levels of ISG15/IFNγ

given on the y‐axis. (D) Results from protein‐set enrichment analysis for COPD versus asthma. The results are summarized as a network, where

each enriched protein‐set (p ≤ 0.001) is given as a node (circles) and protein‐sets with >50% of genes in common are connected by edges (lines).
Representative names and arbitrary colors are given for each cluster. Node size represents the size of the difference between COPD and asthma
by observed/random earth mover's distance score. Those pathways underlined are elevated in asthma as compared to COPD
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F I GUR E 2 The plasma proteome defines four distinct endotypes within severe asthma subjects. (A, upper) Heatmap of the abundances for
the 230 significantly (p ≤ 0.05) different SOMAscan® probes between any combination of the four, asthma k‐means subject groups. Here and
in all panels, Asthma‐1 to ‐4 are colored red, green, blue, and pink, respectively. The color intensity represents row scaled (z‐score) protein
abundance, with magenta as low and yellow as high abundance. The heatmap has been hierarchically clustered by row and column. Six protein
groups (Proteins‐A to ‐F) with different profiles have been highlighted with gray side bars. (A, lower) For each subject, selected clinical features
are given in a paired heatmap. Showing: smoking index (pack‐years), sputum eosinophil counts (sputum eos), Kco, % predicted (Kco), body mass

index (BMI), and sex. Values for each feature are represented as a grayscale, with white as low and black as high except for sex where white
denotes females and black males. (B) Violin plots of protein abundances for selected probes of the four asthma clusters. Individual subjects are
shown as black dots, and group means as larger red dots. Protein abundance is given on the y‐axis. (C) Ingenuity Pathway Analysis (IPA)

diseases and functions analysis for each of the six protein groups (Proteins‐A to ‐F). The function of lowest p‐value, for each of the top three
categories is shown. The heatmaps (left) show the median abundance for all probes within each category. The bar charts (right) show the
associated IPA p‐value (–log10) for each category
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and C3. They also had lower Kco %‐predicted values which might be

related to Proteins‐A and ‐F that were high in the stress response

and extracellular remodeling proteins.

3.4 | The plasma proteome defines three COPD
endotypes reflective of annualized decline in lung
diffusion capacity (Kco)

In contrast to the asthma picture, COPD appeared less complex. K‐
means clustering using the whole proteome identified three groups

(COPD‐1 to ‐3) with limited overlap in the PCA analysis (Figure S9A).

121 proteins drove this clustering and these defined two protein

groups, Proteins‐G (n = 118) and ‐H (n = 3). The distributions of the

probe‐set abundancies in the various groups are shown in the heat-

map (Figure 3A) and for individual proteins in the violin plots

(Figure 3B). Neither smoking index, Kco, BMI, nor sex drove the

clustering. This was confirmed as baseline demographic and clinical

characteristics of these COPD groups were similar (Table 3).

Proteins‐G abundancies decreased from COPD‐1 to ‐3, while

Proteins‐H mainly increased. IPA functions analysis indicated

Proteins‐G involvement in necrosis, cell movement, organ inflam-

mation, growth and proliferation of connective tissue (Figure 3C)

which was reflected in the upstream modulator analysis (Figure 3D).

In addition, there was indication of innate/adaptive immunity drivers

(IL‐15, TCR, IL‐2). 44 proteins were found to be common between

TAB L E 2 Clinical characteristic of the four asthma k‐means clusters

Asthma‐1 Asthma‐2 Asthma‐3 Asthma‐4 p‐value

Number of subjects 21 19 7 4

Female sex, N (%) 9 (43) 8 (42) 2 (29) 2 (50) 0.89b

Age (years) 65.1 � 9.2 58.7 � 14.1 60.7 � 11.3 53.3 � 4.7 0.05c

Age at asthma onset (year) 47.0 � 15.3 40.5 � 14.3 39.3 � 16.1 35.8 � 16.3 0.09c

Smoking index, pack‐years 24.5 � 24.2 29.0 � 30.7 31.6 � 27.3 16.6 � 31.6 1.00c

BMI (kg/m2) 26.5 � 5.2 23.3 � 3.1 26.5 � 11.0 23.7 � 5.0 0.41c

Aspirin sensitivity, N (%) 4 (19) 4 (21) 0 (0) 1 (25) 0.61b

Daily ICS dose (μg) 1542 � 412 1463 � 146 1743 � 600 1525 � 50 0.60c

Maintenance OCS use, N (%) 10 (48) 8 (42) 1 (14) 4 (100) 0.16b

AQLQ score 5.4 � 0.9 5.5 � 0.8 6.0 � 1.0 4.0 � 1.3 0.35c

Blood neutrophil count, cells/mm3 4860 (3744–6574) 4533 (3489–5812) 4788 (3944–5558) 7143 (4371–10,089) 0.53d

Blood eosinophil count, cells/mm3 405 (57–763) 435 (113–740) 129 (83–433) 450 (347–548) 0.82d

Serum total IgE, IU/ml 177 (96–522) 295 (157–394) 179 (90–645) 409 (279–482) 0.93d

Atopy, N (%) 10 (48) 8 (42) 2 (29) 1 (25) 0.74b

Sputum eosinophils, % 12.2 (0.8–25.9) 31.1 (9.4–43.4) 0.8 (0.4–14.0) 29.4 (23.4–37.1) 0.08d

FeNO, ppb 28 (21–58) 35 (18–55) 19 (19–30) 71 (57–112) 0.12d

FEV1, L
a 2.06 � 0.66 2.36 � 0.74 2.35 � 0.66 2.21 � 1.00 0.38c

FEV1, % predicteda 84.4 � 13.8 88.3 � 14.1 86.4 � 12.5 82.7 � 31.6 0.92c

FEV1/FVC, %
a 63.3 � 11.1 64.8 � 14.4 63.8 � 7.9 60.2 � 14.2 0.80c

DLco, % predicted 105.5 � 19.4 103.4 � 21.2 93.6 � 15.2 93.3 � 26.1 0.13c

Kco, % predicted 115.0 � 29.5 99.7 � 15.3 92.46 � 27.3 97.5 � 30.9 0.03c

%Low attenuation volume on chest CT 0.49 (0.14–2.95) 0.58 (0.20–3.46) 0.78 (0.33–1.63) 0.52 (0.42–6.07) 0.82d

Allergic rhinitis, N (%) 7 (33) 14 (74) 3 (43) 2 (50) 0.07b

Atopic dermatitis, N (%) 3 (14) 4 (21) 1 (14) 0 (0) 0.94b

Note: Data are shown as mean � SD, median (interquartile range), or number (%).

Abbreviations: AQLQ, the Asthma Quality of Life Questionnaire; BMI, body mass index; DLco, carbon monoxide diffusion capacity; FeNO, fractional

exhaled nitric oxide; ICS, inhaled corticosteroid; Kco, carbon monoxide transfer coefficient; OCS, oral corticosteroid;
aMaximum value of FEV1 among four procedures (see Section 2). FEV1/FVC was applied as the value corresponding to the maximum FEV1.
bFisher's exact test.
cOne‐way analysis of variance.
dKruskal–Wallis test.
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F I GUR E 3 The plasma proteome defines three chronic obstructive pulmonary disease (COPD) endotypes reflective of annualized
decline in lung diffusion capacity (Kco). (A, upper) Heatmap of abundances for the 121 significantly (p ≤ 0.05) different SOMAscan®
probes between any combination of the three COPD k‐means clusters. Here and in all panels, COPD‐1 to ‐3 are colored olive green,

teal and purple respectively. The color intensity represents row scaled (z‐score) protein abundances, with magenta as low and yellow as
high abundance. The heatmap has been hierarchically clustered by row and column. Proteins‐G and Proteins‐H with different profiles
have been highlighted with gray side bars. (A, lower) For each subject, selected clinical features are given in a paired heatmap showing:

smoking index (pack‐years), Kco, % predicted (Kco), body mass index (BMI), and sex. Values for each feature are represented as a
grayscale, with white as low and black as high except for sex where white denotes females and black males. (B) Violin plots of protein
abundances for selected probes showing COPD‐1 to ‐3 on the x‐axis and protein abundance on the y‐axis. Individual samples are shown

as black dots, and group means as larger red dots. Note HSP90A refers to the SOMAscan probe HSP90AA1. (C) Ingenuity Pathway
Analysis (IPA) diseases and functions analysis for Proteins‐G. The function of lowest p‐value, for each of the top nine categories is
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shown. The bars show the associated IPA p‐value (−log10) for each function. (D) IPA upstream modulator analysis for Proteins‐H. The upstream

modulator of lowest p‐value, for each of the top nine categories is shown. The bars show the associated IPA p‐value (−log10) for each
modulator. (E) Box and whisker plots (mean and standard error) of annualized change in Kco, % predicted for COPD‐1 to ‐3 (*p < 0.05).
(F) Distributions of correlations between protein abundance and annualized decline Kco, % predicted in COPD Proteins‐G and H and all other

proteins (other). Correlations are given as linear regression absolute R‐values. (G) Scatterplot showing the correlation between annualized
change in Kco, % predicted and PAK6 protein abundance, for Asthma‐1 to ‐4 (red, green, blue, and pink squares, respectively) and COPD‐1 to ‐3
(olive green, teal, and purple circles, respectively). The R value for the correlation and its associated p‐value is given

TAB L E 3 Clinical characteristic of the three COPD k‐means clusters

COPD‐1 COPD‐2 COPD‐3 p‐value

Number of subjects 10 19 5

Female sex, N (%) 0 (0) 1 (5) 1 (20) 0.30a

Age (years) 65.7 � 6.8 68.8 � 6.1 63.8 � 10.4 0.94b

BMI (kg/m2) 21.6 � 3.1 23.3 � 3.0 23.7 � 5.0 0.18b

Smoking index at entry, pack‐years 56.3 � 28.4 66.7 � 22.8 75.1 � 39.5 0.19b

Post‐BD FEV1, L 1.63 � 0.54 1.85 � 0.51 1.59 � 0.37 0.84b

Post‐BD FEV1, % predicted 57.6 � 20.1 66.3 � 14.3 60.7 � 14.6 0.50b

Post‐BD FEV1/FVC, % 0.46 � 0.12 0.54 � 0.10 0.51 � 0.14 0.27b

Reversibility of FEV1, % 15.7 � 14.0 14.7 � 17.2 25.7 � 17.6 0.39b

Reversibility of FEV1, ml 196.0 � 158.8 179.7 � 166.47 298.7 � 152.0 0.39b

DLco, % predicted 74.3 � 29.6 80.1 � 13.6 77.9 � 28.6 0.65b

Kco, % predicted 60.6 � 26.9 68.5 � 16.8 67.7 � 23.0 0.43b

SGRQ total score 30.9 � 15.3 27.3 � 19.1 33.0 � 19.1 0.97b

Blood neutrophil count, cells/mm3 3796 (3097–4886) 3392 (2189–4424) 3544 (2972–4687) 0.42c

Blood eosinophil count, cells/mm3 218 (62–344) 86 (60–386) 390 (360–400) 0.29c

Serum total IgE, IU/ml 82 (39–96) 97 (27–134) 327 (217–365) 0.04c

CT emphysema score 2.08 (0.79–2.58) 1.00 (0.42–1.29) 1.17 (0.83–1.50) 0.25c

Any cardiovascular disease, N (%) 2 (20) 8 (42) 2 (40) 0.54a

Ischemic heart disease, N (%) 1 (10) 2 (11) 1 (20) 0.79a

Diabetes, N (%) 0 (0) 1 (5) 0 (0) 1.00a

0–5 years longitudinal variables

ICS Use, N (%) 3 (30) 1 (5) 2 (40) 0.09a

Exacerbation frequency, events/year 0.10 (0.00‐0.35) 0.00 (0.00–0.20) 0.40 (0.20‐0.40) 0.38c

Annual post‐BD FEV1 change, ml/year −30.8 � 36.9 −44.6 � 28.9 −11.8 � 23.4 0.56b

Annual DLco change, mmol/min/mmHg/year −0.38 � 0.34 −0.44 � 0.26 0.02 � 0.52 0.12b,*

Annual Kco change, mmol/min/mmHg/L/year −0.08 � 0.07 −0.08 � 0.05 −0.005 � 0.15 0.14b,**

Note: Data are shown as mean � SD, median (interquartile range), or number (%).

Abbreviations: BMI, body mass index; DLco, carbon monoxide diffusion capacity; Kco, carbon monoxide transfer coefficient; Post‐BD, post‐
bronchodilator; SGRQ, St. George's Respiratory Questionnaire.

*p = 0.007 for comparison between COPD‐1+2 versus COPD‐3.
**p = 0.04 for comparison between COPD‐1+2 versus COPD‐3.
aFisher's exact test.
bone‐way analysis of variance.
cKruskal–Wallis test.
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Proteins‐H (36.9%, 44/119 total proteins) and Proteins‐A (59.5%, 44/

74 total proteins) (Dataset‐8). COPD‐1 had the most annualized

decline in Kco whereas COPD‐3 the least (Figure 3E, Table 3). Dis-

tributions of linear regression‐values of Proteins‐G showed a stron-

ger association with annualized decline in Kco than for either

Proteins‐H or all other SOMAmer proteins (Figure 3F). Similar ob-

servations were observed for baseline Kco, % predicted (Figure S9B).

PAK6 had the strongest association with annualized decline in Kco

(r = −0.50, p = 3.08e−05) (Figure 3G), and GDI2 had the strongest

association with baseline Kco, % predicted (r = −0.59, p = 9.69e−08)
(Figure S9C).

3.5 | Role of immune and bronchial epithelial cells
involved in the plasma proteome and their association
with exosomal marker proteins

We wondered whether we could find out more about the cellular

origin of the proteins in each Proteins group. Evaluation of the

cellular localization, defined by IPA, revealed unique patterns be-

tween the groups (Figure 4A). Proteins‐C had a higher proportion of

secreted proteins than all SOMAscan® proteins (67% vs. 36%).

While Proteins‐A, ‐B, ‐D, and ‐G were enriched in nuclear or

cytoplasmic location (85%, 92%, 74%, and 66%, respectively)

compared to all SOMAmer proteins (34%). Furthermore, 80%

(20 out of 25) of Proteins‐G, that had a correlation with annualized

decline in Kco, were cytoplasmic/nuclear in origin. Since we are

assessing plasma proteins, this suggested an active process, possibly

extracellular vesicle/exosomal in nature. A significant enrichment of

overlap of 33 exosomal markers was observed with COPD

Proteins‐H (p = 1.2e−04), and asthma Proteins‐A (p = 1.0e−08) and
‐D (p = 1.4e−03) (Figure 4B). Furthermore, cluster analysis of all

the subgroups indicates that an exosomal process may contribute to

the endotypes observed in COPD‐1, and to a lesser extent in the

COPD‐2 and ‐3 and Asthma‐2 and ‐4 (Figure 4C). These exosomal

proteins have a strong correlation with each other which reflects

they are secreted from similar vesicles (Figure 4D).

Evaluation of the putative cellular origin of Proteins‐G that

associated with annualized decline in Kco showed a significantly

higher Z‐score (p ≤ 0.05 BH‐adjusted) for adaptive (B lymphoblasts,

CD19+ B cells) and innate (CD56+ NK cells and BDCA4+ dendritic

cells) immune cells (Figure 4E). A similar pattern of immune cell origin

was observed for Proteins‐G and also included bronchial epithelial

cells (Figure 4E).

4 | DISCUSSION

This study indicated that there are molecular pathways defined by

systemic proteomics that differ between COPD and severe asthma

even when they share clinical and demographic features such as

blood eosinophilia, bronchodilator reversibility, and smoking history.

This supports the concept that these diseases are fundamentally

different.28 More differentially regulated pathways were found to

be up‐regulated in COPD versus asthma subjects. These included

pathways involved in metabolic and biosynthetic processes, mito-

chondria organization, regulation of the cell cycle, and growth fac-

tor signaling. Along with other upregulated pathways observed the

data suggests that in COPD, subjects were mounting an immune

driven, reparative response to stress compared to the pro‐
inflammatory, complement/coagulation response seen in asth-

matics. We did not assess if there were shared pathways between

these diseases as we did not study the plasma proteome in a

matched group of healthy controls. However, our results are

consistent with a recent study that showed that plasma protein

expression patterns are indicative of multiple different disease

states.29

Like other high content ‘omics platforms, our results provide

insight into the underlying biology. Here a unique pattern of abun-

dance of Proteins‐A to ‐F defined the four asthma clusters and

suggests that multiple biological processes underlie a molecular

endotype. Furthermore, the results highlighted that there were both

up‐ and down‐regulated pathways in the clusters. Considering the

functions and upstream modulators in each Proteins group along

with the proteins identified one can identify one or more key proteins

that define the biology as follows:

� In Proteins‐A, themolecular chaperone heat shock proteins, such as

HSP90A, is key. These proteins, sometimes called “chaperokines”,

play an important role in chronic inflammation as theyenable cells to

survive under stress.30 Often overexpressed in disease, such as lung

cancer, they have an anti‐apoptotic role and work to enhance dis-

ease through their involvement in the folding, activation, and as-

sembly of key mediators of signal transduction and transcriptional

regulation. These mode of actions are supported by Proteins‐A
composition of a large and diverse set of enzymes involved in

signaling events related to cell death and survival.

� Proteins‐B involves a type I interferon response with the induction

of ISG15 (an interferon induced ubiquitin‐like protein) and NME,

which interacts with HERC5 (an interferon induced E3 ligase). In

humans these have been found to have a critical role in anti‐
mycobacterial, but not anti‐viral immunity, by promoting IFNγ
production and the post‐translational process, ISGylation, acti-

vating NK cells.31–34

� Proteins‐C involved in leukocyte migration with the presence of

the chemotactic cytokines CCL5 (RANTES) and CCL17 (TARC).

� Proteins‐D define allergic inflammation, with high abundance of

the Th2 cytokine IL‐4 and other proteins modulated by IL‐15
(another Th2 cytokine), such as IL‐2RG (interleukin‐2 receptor

gamma), an important signaling component for many cytokines

including IL‐4. Additionally, some of Proteins‐D, including IL‐4 and

STIP1 (stress‐induced phosphoprotein 1), reflect a response to

oxidative stress through the transcription factor Nrf2 (encoded by

NFE2L2 gene).35 Furthermore Asthma‐2 and ‐4 have high abun-

dance and also have the highest levels of markers of Th2‐high
asthma such as eosinophil counts, FeNO, and IgE.
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F I GUR E 4 Chronic obstructive pulmonary disease (COPD) Proteins‐H and asthma Proteins‐A and ‐D all associate with exosomal marker
proteins. (A) Cellular locations for all 1233 SOMAscan® probes (All Soma), COPD and asthma Proteins (Proteins‐A to ‐G) as a percentage of

the group total. Each COPD and asthma Proteins group differed significantly (chi‐squared test, p < 0.01) from the All Soma group. The data for
Proteins‐H are not shown but were composed of 1 protein from each of the following: nucleus, plasma membrane, and extracellular space.
(B) Table showing the overlap between each of the COPD and asthma Proteins group, and the 33 ExoCarta exosome marker proteins. The
number of overlapping proteins, log2 fold enrichment of the overlap and p‐value (hypergeometric test) is given. (C) Heatmap of the

abundances for the 33 ExoCarta exosome marker proteins for the three COPD k‐means clusters (COPD 1‐3 [olive green, teal, and purple bars,
respectively]) and the four asthma k‐means clusters (Asthma 1–4 [red, green, blue, and pink bars, respectively]). The color intensity represents
row scaled (z‐score) protein abundance, with magenta as low and yellow as high abundance. The heatmap has been hierarchically clustered by

row and the columns have been sorted left to right by decreasing median z‐score. (D) Density plot showing for all pairwise permutations of
probes the resultant distribution of the Spearman's rank correlation coefficients. Showing separate distributions for the 33 ExoCarta exosomal
marker proteins (dark gray) and all SOMAscan® probes (light gray). (E) Box and whisker plots (mean and standard deviation) for selected

BioGPS tissues (x‐axis), showing associated gene expression values (y‐axis) for Proteins‐G with a significant correlation (linear regression
p ≤ 0.001) with annualized decline Kco, % predicted (dark gray boxes) and all other SOMAscan® probes (light gray boxes). All tissues have
been selected as having significantly (p ≤ 0.05) different expression levels between the Proteins‐G with a significant with annualized decline

Kco, % predicted and non‐Proteins‐G
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� Proteins‐E are representative of chronic airway inflammation

conferred by the strong pro‐inflammatory upstream modulator

signature. Key protein markers include the chronic inflammation

marker, complement C3, that has a role in innate and adaptive

immunity and where human deficiency can lead to recurrent

bacterial infection.36 Additional markers include INFγ, a Th1

response cytokine, critical for innate and adaptive immunity

against viral infection.37

� Proteins‐F involved in the development and growth of epithelial

tissue. A key protein is FGF‐9 (fibroblast growth factor 9) involved

in lung development especially in regards retaining lung mesen-

chymal proliferation.38

Combining these data along with the clinical characteristics of

the cluster suggests potential biological processes to target. For

instance, Asthma‐2 had a poorer exacerbation‐free rate compared to

Asthma‐1 and had much higher HSP90 levels which can enhance

chronic inflammation. Asthma‐3 had high AQLQ score and lacked

control of bacterial infection by low levels of ISG15, IFNγ, and C3. In

addition to targeting Th2 cytokines in Asthma‐2 and ‐4 might be to

also target the Nrf2 pathway.

Contrary to what we observed for asthma, the three COPD

endotypes were defined by decreasing abundances of one large group

of proteins, consistent with COPD characterized by continuous dis-

ease traits co‐existing in varying degrees, rather than by mutually

exclusive subtypes.39 The pathway and upstream modulators analysis

showed the predominant feature was cell death/apoptosis. The

considerable overlap between Proteins‐G and Proteins‐A and the high

levels of signaling proteins (e.g. MAPK1 and SUMO3) suggest similar

importance of proteins including HSP90A. These observations align

with the increase in apoptotic alveolar epithelial and endothelial cells

observed in the lungs of COPD patients.40 Furthermore, the high

abundance of proteins involved in oxidative stress (e.g. STIP1) aligns

with oxidative stress proposed to be involved in the development of

COPD.41,42While these events could be initiated by cigarette smoking,

we did not see any clear association with smoking history.

We found that a subset of COPD Proteins‐G positively correlated

to annualized decline in Kco %‐predicted and appeared to originate

from B lymphoblasts and to a lesser extent mature CD19+ B cells,

which suggests that their origin is non‐lymphoid tissue.43 These results

reflect increased number of B cells previously observed in bronchial

biopsies and lung tissues.44–46 Our results support the previous sug-

gestion of an immune response role in COPD47 and that B cells are

strongly linked to the emphysema phenotype.48 Key proteins related

to this are the tyrosine kinase, BTK, that has a key role in B cell

development, TSLP, originally identified as key to support B cell lym-

phopoiesis, and its receptor CRLF2 which is expressed on B cells.49

The data suggest a role of innate/adaptive immunity in lung

function decline possibly related to infection as one correlate, PAK6,

a protein that associates with susceptibility to childhood pneu-

monia50 and reported to be an important factor in the early origins of

COPD.51 It is therefore possible that the B cell response in this group

may be related to the host response to the lung microbiome.52

Proteins‐H were mainly elevated in the small COPD‐3 cluster,

that also had the lowest levels of Proteins‐G. Proteins‐H were bio-

logically interesting: TNFRSF14 reported to control TSLP drives

pulmonary fibrosis.53 C3 linked to the control of bacterial infection36;

SIRT2, reported to be a candidate gene for COPD, associates with

FEV1.
54 While a preliminary finding in a small number of COPD

subjects, this latter observation supports the utility of applying large‐
scale proteomic data to genome‐wide association studies.55 Overall,

more subjects in this cluster are needed to understand the clinical

impact of this observation although they had the lowest annualized

Kco, % predicted of the three groups.

We observed that many plasma proteome proteins were cyto-

plasmic or nuclear in nature. Some of these proteins could have been

released due to apoptotic or necroptotic death as these events were

identified in our functions, pathways, and upstream modulator ana-

lyses. However, we observed only a few of the protein types reported

to be released from myeloid cells during cell death in vitro.56 Further

work is required to define proteins that may be released from non‐
myeloid cells undergoing apoptotic or necroptotic death and to un-

derstand if any of the plasma proteome is derived from them.

We did find an association of some of the plasma Proteins groups

and indeed unexpectedly nuclear proteins, with exosomal marker

proteins, suggesting the importance of extracellular vesicles

(apoptotic bodies, microvesicles, or exosomes) in COPD or asthma. A

mechanism by which nuclear proteins are loaded into exosomes has

recently been proposed57 although it remains to be determined if

such a mechanism does occur in non‐cancerous cells. There is

growing support for a role of these vesicles in asthma.58,59 Our re-

sults suggest that the exosomal proteins are representative of

allergic inflammation and higher sputum eosinophils, and supports

the role of exosome secretion by eosinophils in asthma pathogen-

esis.60 Elevated exosomes have been reported to be elevated in

stable COPD or COPD exacerbation and correlated with plasma

biomarkers of systemic inflammation.61 Overall, this study suggests

the importance of extracellular vesicles in COPD and asthma endo-

types, especially those derived from innate/adaptive immune cells.

Our results indicate that the SOMAscan abundance data compare

well to other protein analysis platforms. However, use of single pro-

tein assessment measures to validate the SOMAscan data has some

limitations as follows: a) not all proteins in the SOMAscan array have

suitable low throughput options to validate a result; b) the SOMAscan

platform has a large dynamic range which may not always be the case

for other platforms; c) in general single assessment measures have

larger coefficient of variability (CoV) than SOMAscan platform with a

3%–4% CoV62 which drives greater precision in any analysis; d) and

finally subtly different epitopes may be assessed between the two

methods which is common even between ELISAs to the same protein.

Although the average storage time of the samples before the

SOMAscan assay differed between asthma and COPD cohorts, the

data show that this does not contribute to the differences we detect.

Analysis showed that within either cohort less than 2.0% of the total

proteins assessed showed an apparent weak correlation with time in

storage before assay. Furthermore, because the samples from the
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two cohorts were collected over similar lengths of time (887 and

681 days respectively for asthma and COPD), one would have ex-

pected to see the same proteins correlate with time in storage in

both cohorts. However, it was different proteins in each cohort,

indicating that these few correlations could be spurious.

In summary, this analysis shows the utility of large‐scale plasma

proteome analysis combined with the integration of clinical, disease

and bioinformatic sciences. While a pilot study in nature, this non‐
invasive method that simultaneously evaluates levels of numerous

proteins has potential for: a) repository of plasma biomarkers for

discovery; b) the definition of molecular endotypes; c) providing new

insights into the complex biology of multiple molecular pathways and

the identification of potential therapeutic protein targets; d) the role

of different cells and or the cell processes that characterize the

molecular endotypes; and finally e) linking genetic traits and protein

expression. The potential that molecular understanding identified by

proteins, rather than mRNA‐driven, provides a basis for addressing

new ways to target the right pathobiology in the right patient cohort.
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