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1 | INTRODUCTION

For a typical clinical study comparing two therapies, the investigators identify a target 

patient population, precisely define the treatments interventions and primary endpoint, then 

specify a population-level summary to quantify the treatment difference. Collectively, these 

choices are components of the estimand framework recently set forth by the International 

Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human 

Use (ICH).1 In this guideline and various related research publications,2–4 the issue of 

choosing the study estimand is discussed. Special attention is needed when the study’s 

primary outcome could foreseeably be affected by intercurrent events, such as treatment 

discontinuation, which occur after treatment initiation and interfere with the observation 

or interpretation of the outcome. As an example, in a recent diabetes trial to assess the 

efficacy of oral semaglutide versus sitagliptin,5 the primary endpoint was the change in 

hemoglobin A1c from baseline to Week 26. The treatment difference was quantified using 

the difference in mean changes comparing the two therapies. However, the study treatments 

could be discontinued for various reasons and patients might be switched to other anti-
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diabetic regimens. When such unavoidable interruptions of the assigned study therapy are 

anticipated, it is important to consider at the study design stage how they will be handled 

when quantifying and interpreting the treatment difference. Here, the treatments of interest 

need to be precisely defined, and appropriate analytic procedure for handling incomplete 

observations prespecified.

In this article, we discuss a more fundamental issue of quantifying the treatment difference. 

In particular, an appropriate population-level summary of the treatment difference preferably 

has the following features:

1. The summary is clinically interpretable, ideally in layperson’s terms, and is 

accompanied by an appropriate summary of the endpoint in each treatment 

group.

2. The summary of the treatment difference does not have modeling constraints, 

and the corresponding inference procedures are robust and model-free.

For feature 1, an intuitive and clinically interpretable treatment summary is essential for 

allowing clinicians and patients to make better treatment selection decisions at the end 

of the study. For feature 2, if the treatment difference is defined via a model, but at the 

interim or final analysis the model does not fit the data well, then it is not clear how 

to draw conclusions from the study concerning treatment efficacy. Moreover, there are no 

satisfactory analytic procedures for assessing model appropriateness. The conventional lack-

of-fit tests, which use a P-value to evaluate model adequacy, are notoriously uninformative.6 

In a large dataset, the lack-of-fit test is likely to report a highly significant P-value, rejecting 

a fitted model that may provide an acceptable approximation to the truth. On the other hand, 

in a small to moderate dataset, a lack-of-fit test is typically underpowered for detecting an 

obvious departure from modeling assumptions, resulting in a large P-value, and leading to 

claims that a poorly fitted model is acceptable. If possible, one should avoid modeling at the 

design stage, especially for the primary analysis of the treatment difference, unless one is 

focused on prediction. For the same reasons, at the analysis stage, the inference procedures 

for the treatment difference should be model-free.

We present three examples from recent clinical studies for treating patients with COVID-19, 

cancer, and heart failure. These examples illustrate issues with model-based quantification of 

the treatment contrast, and present simple, model-free alternatives that are easier to interpret. 

In each case, the intent is not to draw any new conclusions about the particular study under 

consideration, but rather to showcase alternative methodology that may be used for the 

design and analysis of future studies. To the best of our knowledge, there are no publications 

addressing the issues presented here.

2 | COVID-19 STUDY WITH AN ORDINAL CATEGORICAL OUTCOME AS 

THE PRIMARY ENDPOINT

Consider a recent clinical trial evaluating the efficacy of 10-days versus 5-days remdesivir 

for treating patients hospitalized with confirmed SARS-CoV-2 infection.7 The primary 

endpoint was clinical status on day 14, assessed on a 7-point ordinal scale, ranging from 
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death at 1 to not hospitalized at 7. The higher the scale, the better a patient’s health status. 

The population-level summary for quantifying the treatment difference was the odds ratio 

from an ordinal proportional odds model.8 This model is popular in the statistical literature, 

and has been applied in other recent trials for COVID-19,9–11 but is not easy to interpret. 

The difficulty extends beyond interpreting the odds ratio for comparing two treatments. 

The ordinal proportional odds model additionally assumes that the odds ratio is constant 

across adjacent outcome categories. The study was designed to have 85% power to detect 

a common odds ratio of 1.75 and would conclude that 10-day treatment was superior to its 

5-day counterpart if the lower bound of the 95% confidence interval (CI) for the odds ratio 

was greater than 1.7 We use the observed data from the trial to illustrate the issues with this 

modeling approach.

The study randomized 197 and 200 patients to the 10-day and 5-day groups. On day 14, 

the observed numbers of patients classified to the seven ordinal categories are presented in 

Table 1A. For example, in Category 1, there were 21 and 16 deaths for 10-days and 5-days 

therapies. On the other hand, in Category 7, there were 103 and 120 patients out of hospital, 

respectively. Table 1B presents the six consecutive 2 × 2 tables. Each table was constructed 

by dichotomizing the ordinal outcome and combining adjacent categories. The new binary 

outcome is 1 if the endpoint is beyond a certain category, and 0 if not. For instance, the 

binary outcome for the third table is 1 when a patient’s health status is in a category higher 

than 3. The observed odds ratios of the consecutive tables vary from 0.54 to 0.73.

The proportional odds model utilized in the study assumed that, conditional on the patient’s 

baseline clinical status, the six underlying odds ratios were equal, and the empirical 

summary measure would be the common odds ratio. Even though it may not be a valid 

estimate, without stratification, the common odds ratio is 0.67 (95% CI, 0.45 to 0.98; P = 

0.036), favoring 5-days treatment. However, this pre-specified proposal was abandoned for 

the final analysis as the investigators determined that the proportional odds assumption was 

not met when stratifying by baseline clinical status. Instead, the Wilcoxon rank-sum test, 

stratified by baseline clinical status, was used for the primary analysis. The P-value from this 

test was 0.14. However, no corresponding estimate for the size of the treatment difference 

was reported. Note that without stratification, the two-sample Wilcoxon test results in a 

P-value of 0.036, significantly favoring the 5-days therapy.

The lesson learned from this study is that, even if the assumed model were acceptable, an 

odds ratio of 0.67 alone is difficult to interpret without a reference event rate from one of the 

treatment arms. The backup analytic procedure only provided a P-value for the comparison, 

which does not itself have clinical meaning.6 On the other hand, there is a conventional 

estimation procedure corresponding to the Wilcoxon test, which is the difference between 

the Pr(10-day treatment was better than 5-day) and the Pr(5-day treatment was better than 

10-day).12 Without stratification, this estimate was −11%, with a 95% CI from −21% to 

−1%, significantly favoring 5-day treatment. However, this estimate is not ideal because it 

still does not quantify the extent of clinical improvement. That is, we can conclude that 

patients in the 5-day arm had better responses on average, but we cannot quantify how much 

better. Furthermore, abandoning the primary analysis and adopting an alternative analytic 
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procedure may inflate the type I error rate, which highlights the importance of planning a 

statistical analysis that does not depend on stringent modeling assumptions in the first place.

Instead of using a model for summarizing the 7-point ordinal scale outcomes, we can 

consider a binary endpoint, “complete response,” defined as being in Category 7, live 

discharge from the hospital. For this endpoint, the response rates are 60% and 52% for 

5-days and 10-days. The difference (5-days minus 10-days) is 8% (95% CI, −1.9% to 17%). 

Another possible endpoint is to define “partial/complete response” as being in Categories 5, 

6, or 7, no longer requiring supplemental oxygen. This results in response rates of 70% and 

60%, respectively, and the difference is 10% (95% CI, 0.5% to 18%). These simple binary 

outcomes have straightforward clinical interpretations, and the analysis does not depend 

on any model. Ideally, analyses based on dichotomizing the ordinal outcome would be 

pre-specified, although post hoc analyses may still generate interesting hypotheses for future 

studies.

If information on the time spent in each disease state across follow-up is available, then 

an informative summary of the data is the proportion of patients in each state across 

the entire study period, often depicted by stacking the corresponding multinomial cell 

probabilities graphically.13 This visual illustrates how disease burden and progression 

change dynamically across the study period. Moreover, the area between these curves is 

the mean time spent in each state.13 For study design and analysis, it is important to have 

a single, clinically interpretable summary measure. One may use a weighted average of the 

above mean time spans or, specifically, the mean time spent in favorable or recovered states 

across follow-up.14

3 | AN IMMUNO-THERAPY CANCER STUDY WITH SURVIVAL TIME AS THE 

PRIMARY ENDPOINT

Consider the recent CheckMate 227 trial of immune checkpoint inhibitors as first-line 

treatment for advanced non-small-cell lung cancer (NSCLC).15 The primary endpoint 

was overall survival (OS), comparing nivolumab/ipilimumab with chemotherapy; 396 

patients were randomized to nivolumab/ipilimumab, and 397 patients to chemotherapy. The 

prespecified summary measure for assessing treatment efficacy was the hazard ratio (HR) 

from a stratified Cox proportional hazards model. The study was designed to have 90% 

power to detect a HR of 0.74 and would conclude nivolumab/ipilimumab was superior to 

chemotherapy, with respect to OS, if the upper bound of the 97.72% CI for the HR was less 

than 1.

Like the above proportional odds model, the proportional hazards model relies on a strong 

modeling assumption; namely, that the ratio of the hazard curves for the two study arms 

is constant across time. Figure 1A presents the reconstructed,16 individual-level survival 

data from figure 1A15 of the original paper. Since the Kaplan-Meier curves crossed around 

month 7, the proportional hazards assumption was clearly not met. The authors chose to 

nonetheless report the hazard ratio (HR) of 0.79 as a summary of treatment efficacy. For 

this case, the interpretation of the observed HR is unclear. Even if the modeling assumptions 

had held, the HR is not easy to interpret clinically, since hazard is not a probability measure 
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like “risk.” A 21% reduction in the hazard of death does not translate to a 21% reduction in 

the risk of death. Lastly, although the log-rank test remains valid for assessing the presence 

of a treatment difference statistically even when the proportional hazards assumption is not 

met, a test of significance alone does not convey information regarding the magnitude of the 

treatment difference or provide the relevant context for evaluating whether the difference is 

clinically meaningful.6

As secondary analyses in CheckMate 227, the median OS time and the OS rates at landmark 

time points were reported. Median OS was 17.1 months (95% CI, 15.0 to 20.1) for 

nivolumab/ipilimumab, and 14.9 months (95% CI, 12.7 to 16.7) for chemotherapy. Since the 

CIs for the medians overlap, it is unclear whether the difference is statistically significant. 

With reconstructed data, the median difference was 2.3 months (95% CI, −0.92 to 5.5, 

P = 0.18). Thus, there was insufficient evidence to conclude that nivolumab/ipilimumab 

improved median OS. Although interpretable and model-free, the median OS time difference 

is not an ideal summary. The median is a local measure and cannot capture either the short- 

or long-term OS profile. Moreover, if the Kaplan-Meier curve does not drop below 50%, 

then the median cannot be estimated empirically. The OS rate at, for example, 12 months, 

was 62.6% for nivolumab/ipilimumab, and 56.2% for chemotherapy. The CI for 12-month 

OS rate difference was not reported. Using reconstructed data, the difference in 12-month 

OS was 6.4% (95% CI, −0.3% to 13%, P = 0.06). However, like the median, OS at a 

specific time point only describes the survival curve locally and does not make full use of 

the time-to-event data.

Visually, in Figure 1A, the higher the Kaplan-Meier curve, the better the treatment. 

Therefore, the treatment with a larger area under the curve is more effective for that 

endpoint. This area turns out to be the mean survival time up to a specified time point, 

for example, 42 months in the figure, and is referred to as the restricted mean survival 

time (RMST).17–21 As shown graphically in Figure 1B,C, the 42-month RMSTs were 

21.2 months for nivolumab/ipilimumab and 18.7 months for chemotherapy. That is, a 

patient treated with nivolumab/ipilimumab and followed for 42 months survived for 21.2 

months on average. These summaries for the OS curves are interpretable, model-free, and 

make full use of the available data. The treatment difference can be quantified as the 

difference of two RMSTs.17–21 The difference of 2.5 months (95% CI, 0.3 to 4.6, P = 

0.02), across 42 months of follow-up, significantly favored nivolumab/ipilimumab. The 

difference in RMSTs, accompanied by the individual RMST in each arm, provides an 

intuitive, robust, and model-free measure for quantifying the time to a survival endpoint. 

Study design for time-to-event observations using RMST as the summary measure has also 

been discussed.20,21

4 | A HEART FAILURE STUDY WITH COUNT OBSERVATION AS A KEY 

ENDPOINT

Consider the PARADIGM-HF trial, a randomized, double-blind, comparative trial to 

evaluate the efficacy and safety of sacubitril/valsartan versus enalapril among patients with 

chronic symptomatic heart failure and reduced ejection fraction.22,23 The primary endpoint 
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was time-to the occurrence of cardiovascular death or first hospitalization due to heart 

failure; 4187 patients were randomized to sacubitril/valsartan and 4212 to enalapril. Since 

this primary endpoint may not fully reflect disease progression or burden, a key secondary 

endpoint was the total number of heart failure hospitalizations and cardiovascular death 

occurring during follow-up. For this analysis, there were 1409 and 1772 events in the 

sacubitril/valsartan and enalapril groups.

The negative binomial model is conventionally used for analyzing patient-level count data 

with corresponding exposure times.24,25 With this model, for each treatment arm, the 

summary measure is the mean incidence rate per unit time over the entire study period, and 

the two arms are compared via the ratio of the mean incidence rates.24 This model requires 

the strong assumption that each patient’s incidence rate is constant across time, even after 

the patient is informatively off-study. Essentially, the negative binomial assumes that each 

patient’s incidence rate is independent of their follow-up time. Even if these assumptions are 

plausible, the negative binomial model may not fit the data, and the capacity of standard lack 

of fit tests to assess its adequacy is limited. For PARADIGM-HF, in the intention-to-treat 

analysis, the incidence rate ratio comparing sacubitril/valsartan with enalapril based on the 

negative binomial model was 0.76 (95% CI, 0.67 to 0.85).24

The assumption that a patient’s exposure time is independent of their incidence rate is 

questionable for PARADIGM-HF because the exposure time was informatively censored 

by death. Consequently, the preceding analyses may not be valid. To address this issue, 

one may consider an assumption-free summary measure for each treatment group. For 

instance, in each treatment arm, the parameter of interest could be defined as the expectation 

of the ratio of the individual patient’s observed event counts divided by their exposure 

time. The relative merits of the two treatments are then assessed using the ratio of these 

expected rates. This criterion does not require any of the above modeling assumptions. 

Essentially, we are interested in the individual patient’s incidence rate while they are alive, 

and treat non-cardiovascular death as a competing risk. Now, the mean incidence rate in 

each treatment arm can be unbiasedly and nonparametrically estimated by the empirical 

average of the per-patient incidence rates. For PARADIGM-HF, these were 47.9 and 67.5 

events per 100-years for sacubitril/valsartan and enalapril, respectively. The ratio of 0.71 

favors sacubitril/valsartan. Using the standard bootstrap with 5000 bootstrap samples, the 

95% CI was 0.48 to 1.05. Although the point estimate for the incidence rate ratio is similar 

to that based on the negative binomial, the corresponding CIs are quite different, suggesting 

that the parametric CI may not have adequate coverage probability. On the other hand, the 

nonparametric procedure may not be efficient. For PARADIGM-HF, a number of patients 

with only short-term follow-up experienced one or more events. This tends to inflate the 

incidence rate and enlarge the nonparametric CI for the incidence rate ratio.

An alternative definition of the mean incidence rate, which is less sensitive to patients with 

short-term follow-up, is the mean number of events divided by the mean exposure time. 

Again, this criterion does not require any assumptions. Using the empirical counterpart of 

the estimator, this approach results in 15.1 and 19.2 events per 100-years for sacubitril/

valsartan and enalapril. The ratio of the mean incidence rates is 0.79 and with 5000 

bootstrap samples, the 95% CI is 0.71 to 0.87. Coincidently, the results from this 
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nonparametric analysis are very similar to those from the negative binomial analysis. Note 

that if the negative binomial model holds and the assumption that the incidence rate is 

independent of the follow-up time is valid, then two preceding model-free estimators are 

both unbiased for the same parameter.

The quantifications for recurrent events considered thus far may not be ideal if, for example, 

there is a definite survival advantage for one treatment arm over the other. A treatment that 

is effective for extending survival may increase the incidence rate by extending a patient’s 

exposure period. In other words, a direct comparison of the mean number of recurrent events 

per unit of exposure time between the treatment arms can be misleading. One approach to 

deal with this situation is to consider an endpoint that consists of the total event-free survival 

times summed across all recurrent events that a patient might experience. For example, in 

cardiovascular studies, this endpoint might include the total time spent free of heart failure 

hospitalization while the patient is alive. Model-free analytic methods with this endpoint 

have recently been developed by Claggett et al.26

5 | DISCUSSIONS

It is important to note that even if we choose a model-free quantification of the treatment 

difference, it should be accompanied by an appropriate summary of the endpoint in each 

treatment group. For instance, in the heart failure example, the ratio of the two mean 

incidence rates has no modeling constraints. However, without estimates of the mean 

incidence rate for each group, it would be difficult to interpret whether the difference 

between the groups is clinically meaningful. This parallels the difficulty of presenting a 

hazard ratio without an estimated hazard curve, as in the second example, or presenting an 

odds ratio without reference event rates, as in the first example.

One possible reason for choosing a model-based summary of treatment efficacy is to 

improve statistical power. For instance, in the COVID-19 example, if the proportional 

odds assumption had held, then an analysis based on the common odds ratio would have 

provided more power than an analysis based on a binary outcome. However, the improved 

power is offset by the lack of interpretability of the resulting summary measure. Moreover, 

when the ordinal proportional odds assumption does not hold, the common odds ratio is 

even more difficult to interpret, as it does not correspond to the odds ratio comparing any 

two particular groups. In contrast, the analysis based on the binary “partial response” or 

“complete response” outcomes is always valid and interpretable. Similarly, for analyzing 

overall survival in the second example, an analysis based on the hazard ratio is well powered 

if the hazards of the two treatment arms are in fact proportional across time. Unfortunately, 

relying on the hazard ratio, whose strong modeling assumption is often not met,27,28 entails 

an estimate of the treatment difference that may not be valid, and which is difficult to 

interpret clinically.17–19 Interestingly, by using the difference of restricted mean survival 

times to quantify treatment efficacy, we do not expect to lose much power relative to an 

analysis relying on the hazard ratio, even when the proportional hazards assumption is 

valid.29
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It is conventional to select the primary efficacy endpoint separately from the safety 

endpoints. At the analysis stage, the efficacy and safety analyses are again conducted 

separately. Clinicians and patients must then weigh the efficacy and safety analyses 

against one another when making treatment selection decisions. Unfortunately, with this 

approach, we do not know if the efficacy and risk events occur within the same patients or 

independently. To emulate clinical practice, in which both efficacy and safety information 

guide decision making, we may combine the efficacy and safety endpoints, at the individual 

patient-level, into a single, composite endpoint.30 A treatment that is superior with respect to 

this endpoint has clear clinical merit.

There are many cases beyond the three examples presented here in which model-based 

summary measures for the treatment difference are utilized in practice. For example, 

consider evaluating treatment efficacy longitudinally for an endpoint that consists of 

repeated measurement of a certain outcome over time, such as the change of hemoglobin 

A1c from baseline. The conventional parametric approach is to use a repeated measures 

mixed-effects model to quantify the treatment difference.31 The complexity of such 

modeling complicates parameter interpretation. Moreover, as for the models discussed 

previously, it is unclear how to interpret the parameter estimates when the model does not 

fit the data well. An alternative, model-free summary for this longitudinal endpoint could 

be the area under the curve constructed, for each group, from the means of the repeated 

measures. This area can be interpreted as an approximation to the average of the outcome 

across repeated measures. For the case where the outcome is a binary indicator of whether 

the patient is responding to treatment, the area under the curve represents the total time, on 

average, that patients spent responding.32

Finally, when unforeseeable intercurrent events (eg, a widespread, uncontrollable COVID-19 

pandemic) prevent us from observing the study endpoints completely during follow-up, the 

pre-specified statistical analysis may not be able to estimate the target treatment difference. 

A thorough discussion on unforeseen intercurrent events and their impact on the original 

trial objectives according to the estimand framework introduced by ICH (2019) is advisable, 

including the conduct of sensitivity analyses to evaluate the collective evidence on the 

relative merits between the two treatments.33–36
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FIGURE 1. 
Overall survival curves and restricted mean survival time for the immune checkpoint 

inhibitor trial among patients with NSCLC [Colour figure can be viewed at 

wileyonlinelibrary.com]
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TABLE 1

Data from the trial comparing 5-day versus 10-day remdesivir among patients with severe COVID-19

(A) Number of patients in each ordered category

Category

1 2 3 4 5 6 7

10-day (n = 197) 21 33 10 14 13 3 103

5-day (n = 200) 16 16 9 19 11 9 120

(B) Consecutive 2 × 2 tables and corresponding odds ratios

Category

≤1 >1 ≤2 >2 ≤3 >3 ≤4 >4 ≤5 >5 ≤6 >6

10-day 21 176 54 143 64 133 78 119 91 106 94 103

5-day 16 184 32 168 41 159 60 140 71 129 80 120

Odds Ratio 10-day v. 5-day 0.73 0.54 0.54 0.65 0.64 0.73
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