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Abstract: It has been proved and widely acknowledged that messenger RNAs can talk to each other by competing for a limited
pool of miRNAs. The competing endogenous RNAs are called as ceRNAs. Although some researchers have recently used
ceRNAs to do biological function annotations, few of them have investigated the ceRNA network on specific disease
systematically. In this work, using both miRNA expression data and mRNA expression data of breast cancer patient as well
as the miRNA target relations, the authors proposed a computational method to construct a breast-cancer-specific ceRNA
network by checking whether the shared miRNA sponges between the gene pairs are significant. The ceRNA network is
shown to be scale-free, thus the topological characters such as hub nodes and communities may provide important clues for
the biological mechanism. Through investigation on the communities (the dense clusters) in the network, it was found that
they are related to cancer hallmarks. In addition, through function annotation of the hub genes in the network, it was found
that they are related to breast cancer. Moreover, classifiers based on the discriminative hubs can significantly distinguish
breast cancer patients’ risks of distant metastasis in all the three independent data sets.
1 Introduction

miRNAs are small non-coding RNA molecules that are
involved in various biological processes via regulating a
large amount of target mRNAs [1–3]. These days, the
hypothesis of ceRNA (competing endogenous RNA) has
been proposed [4]. In the ceRNA hypothesis, as the number
of miRNAs is limited, the RNAs that share the similar
miRNA binding sites can influence each other by
competing for the same miRNAs. For example, when RNA
X and RNA Y share the similar miRNA binding sites (i.e.
RNA X and RNA Y can be regulated by the same
miRNAs), up-regulation of RNA Y would decrease cellular
concentrations of the miRNAs, resulting in the derepression
of RNA X, and vice versa. Ala et al. [5] reported that the
ceRNA interactions play an important role in gene
regulation. In addition, it has been illustrated that the
ceRNA activity plays an important role in cancer and other
pathological conditions [4, 6]. Therefore, it would be
helpful if we try to understand the biological mechanism of
diseases from the overall view of ceRNA network.
Knowing the RNA pairs may have the similar biological
functions with the other RNA pairs which compete for the
miRNA sponges with them [6, 7], some researchers have
recently used the ceRNA pairs to identify the functions of
new RNAs. However, as far as we know, there have been
no methods to identify the ceRNA network and reveal its
roles in the process of the disease. To simplify the process,
we only concentrate on the competing gene pairs. Based on
the miRNA and mRNA expression data of specific disease
as well as the regulating relations between miRNAs and
the targets, we propose a computational method to construct
the ceRNA network, which involves checking whether the
shared miRNA sponges between the gene pairs are
significant. It is noteworthy that our disease-specific ceRNA
network is different from previous works, which analyse the
roles of the miRNA gene interactions in the disease or
biological processes by a combination of the miRNA
expression data and mRNA expression data or protein
expression data [8, 9], because our work pay attention to
the roles of the ceRNA interactions (gene–gene
interactions) in the disease roles. In addition, our ceRNA
network is not the same as the gene–gene interactions such
as the co-expression network [10]. In our network, only the
competing gene pairs, whose shared miRNA sponges are
significant, would be obtained.
For breast cancer, it is essential to identify prognostic gene

markers if we want to study the metastasis mechanism in
breast cancer and find out the candidate targets for therapy.
Up to now, many methods have been proposed to identify
gene signatures that have discriminative capability in their
original data sets [11–13]. However, these gene markers are
not stable across different data sets [14]. Besides, their
discriminative capabilities are not even significantly better
than the random signatures with the same size [15].
Therefore, it is critical to detect gene signatures that have
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Table 1 Data sets used in this work

Accession
number

Samples Usage

GSE19783 101 pairs filtering miRNA-target pairs to
construct ceRNA network

GSE2034 286 selecting prognostic genes
GSE1456 159 independent test set
GSE4922 249 independent test set
GSE7390 198 independent test set
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robust discriminating abilities across different data sets. As
the ceRNA network may provide us with a new perspective
on studying the biological mechanism, we try to construct
the ceRNA network based on breast cancer data sets. In the
constructed network, the communities (dense clusters) are
shown to be functionally meaningful. Moreover, hub genes
in the network are found to be significantly related to breast
cancer. Based on the network, we can identify the
prognostic genes by selecting the discriminative hub genes
whose discriminative abilities are very stable across
different data sets. At last, in order to evaluate the stability
of our method, we also investigate the overlap of both the
hubs and the discriminative hubs in different ceRNA
networks which are constructed on different data sets or
parameters.

2 Methods

2.1 Data sets and preprocessing

The miRNA and mRNA expression data of 101 breast cancer
patients were downloaded from NCBI (National Center for
Biotechnology Information Gene Expression Omnibus) with
accession number of GSE19783 [16]. The former was
performed with the platform of Agilent Human miRNA
Microarray 2.0, and the latter was performed with
Agilent-014850 Whole Human Genome Microarray 4 ×
44 K G4112F. We also downloaded the mRNA expression
data and the corresponding clinic information (time to
distant metastasis and status of distant metastasis) of four
breast cancer data sets with accession numbers of GSE2034
[11], GSE1456 [17], GSE4922 [18] and GSE7390 [19]. All
these data sets were performed using Affymetrix
HG-U133A gene-chips, and normalised with the algorithm
MAS5. All the probes in the mRNA expression data were
mapped to Entrez Gene ID and the values of these probes
to each gene were averaged. The details of all these
expression data are shown in Table 1. We downloaded the
miRNA-target relations from the targetScan version 6.0 [20].
In order to evaluate the stability of our method, we also

used different miRNA target relations and breast cancer
data sets to construct the ceRNA network. In this situation,
we not only used the miRNA target relations predicted by
miRanda [21] but also used 284 matched miRNA
expression profiles and mRNA expression profiles of breast
cancer patients from TCGA (The Cancer Genome Atlas).

2.2 Main framework to construct ceRNA network

According to the ceRNA hypothesis, RNAs sharing the same
miRNA regulators can influence each other by competing for
the limited number of miRNA sponges. These RNAs
competing with each other consist of the ceRNA pairs. In
terms of genes, we can find out whether two genes interact
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with each other through checking the same miRNA sponges
competed by these genes. All such significant gene pairs
constitute the ceRNA network. The main frame of the
method is shown as Fig. 1.

(1) First, for each gene, all its miRNAs regulators were
collected as miRNA-gene pairs from the database targetScan.
(2) Secondly, a Pearson correlation coefficient was
calculated for each miRNA-gene pair by using the miRNA
and gene expression data of 101 patients in GSE19783, and
all negatively correlated pairs with p-values less than 0.05
were retained.
(3) Thirdly, based on the filtered miRNA-target pairs, we
put all the miRNAs targeting to each gene into a miRNA set.
(4) Fourth, given each gene pair (A,B), we denoted all their
regulator miRNAs as miRNA set C (regulating gene A) and D
(regulating gene B), respectively, and then used
hypergeometric cumulative distribution function test to test
whether the common miRNA sponges between the two
genes were significant.

p− value = 1− F(x/U , M , N )

= 1−
∑x−1

i=0

M
i

( )
U −M
N − i

( )

U
N

( )

where x stands for the number of common miRNAs that
regulate both of the two genes, U is the number of all the
miRNAs in this work, M is the size of miRNA set C and N
is the size of miRNA set D. As a result, only the gene pairs
with a p-value less than 0.05 and number of common
miRNAs of no less than a threshold (set as 3 by experience
in this work) were kept as the candidate ceRNA pairs.
(5) It has been reported that if two genes compete with each
other, their expression levels would show the similar
tendency [4]. Thus, for each candidate ceRNA pair, we
calculated their Pearson correlation coefficient based on
gene expression data in GSE19783, and only positively
correlated pairs with a p-value less than 0.05 would be set
as the final ceRNA pairs.
(6) Finally, we combined all the ceRNA pairs together to
construct the ceRNA network.

2.3 Network visualisation and communities
detection

The ceRNA network was visualised by Cytoscape 3.0.2 and
topology analysis was performed by the network analyser
plugin for Cytoscape [22]. In addition, we used the
MCODE plugin [23] (with its default parameters) for
Cytoscape to find the communities (dense clusters) in the
network.
2.4 Selection of hub genes

On the one hand, it is reported that the hub genes with higher
degrees in biological networks are more likely to be essential
[24–27]. On the other hand, experimental studies have
demonstrated that nearly 20% of the nodes in a network are
essential [25, 26]. Thus in this work, we select the top 20%
97
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Fig. 1 Main framework of constructing the ceRNA network
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of genes with the highest degrees in the ceRNA network as
the hub genes.
2.5 Functional analysis

In this work, we used DAVID [28] to find out the functional
gene sets (KEGG pathways and Go Term biological
processes) which were enriched by the hub genes or the
communities in the ceRNA network. The ones with
p-values of less than 0.05 were set as enriched gene sets.
2.6 Evaluation of the gene’s distinguishing ability

We used resampling method to evaluate the distinguishing
abilities of the candidate (hub) genes. First, we selected
75% of all 286 samples in GSE2034 randomly, and then
we estimated the coefficient between each gene’s expression
levels and the distant metastasis risks across the chosen
patients by Cox proportional hazards regression. We
repeated the resample procedures for 400 times. Only the
genes with Cox p-value < = 0.05 in more than 90% of 400
runs were regarded as the discriminative genes. The
parameters (Cox coefficient, Cox p-value) of each gene in
the 400 repeats were averaged as the final parameters.
98
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2.7 Distinguishing metastasis risks of breast
cancer patients

We applied similar strategy as the gene expression grade
index [29] to calculate the risk scores of the patients based
on the discriminative hub genes, which is shown as the
following formula

Risk Score =
∑

xi − xj

xi(xj) represents the expression levels of the gene i (gene j)
which is with positive (negative) Cox coefficient. All the
patients were divided into the high risk group and the low
group equally according to their risk scores. The log rank
test as well as the Kaplan Meier curves was performed
using a MATLAB tool [30].

3 Results

3.1 Breast-cancer-specific ceRNA network

Based on the matched gene expression and miRNA
expression data of breast cancer patients, we got a total
number of 43232 significant ceRNA pairs, all of which
IET Syst. Biol., 2014, Vol. 8, Iss. 3, pp. 96–103
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Fig. 2 Breast-cancer-specific ceRNA network
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made up the breast-cancer-specific ceRNA network that
contains 1751 nodes (Fig. 2). The average degree of the
nodes in the network is 49.38, which indicates that our
ceRNA network is very dense and such competitions
among RNAs are common in biological processes. By
investigating the network, we found that the degrees of the
nodes fit power law distribution very well, with the
correlation of 0.98 and the R-square of 0.80 (data not
shown). This result indicates that our ceRNA network is
scale-free and the topological components such as the hub
nodes and communities may be biologically significant.
3.2 Top communities in the network are related to
cancer hallmarks

Communities in biological networks may work as a
functional unit, for example, the community in protein–
protein interaction network may be a protein complex. Thus
we checked whether the genes in a community of the
ceRNA network could play an important role in cancer by
competing with each other. For each of the detected 32
communities, we annotated its function as the most
significant functional gene set of it (Method). The function
annotations of the top five communities are shown in
Table 2, from which we can see that most of the
IET Syst. Biol., 2014, Vol. 8, Iss. 3, pp. 96–103
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communities are actually cancer-related, such as vasculature
development (cluster 1), enzyme linked receptor protein
signalling pathway (cluster 2) and negative regulation of
macromolecule metabolic process (cluster 5). Since
vasculature is the target for cancer therapy [31], vasculature
development may be associated with cancer. As to enzyme
linked receptor protein signalling pathway, enzymes are
common therapy for cancer [32, 33]. Moreover, metabolic
reprogramming is reported to be a cancer hallmark [34]. As
to cluster 4 (Fig. 3), three out of 12 genes in the cluster are
involved in the Go Term ‘cell division’ (with a p-value of
0.002). It indicates that the genes in cluster 4 may compete
with each other to regulate cell division, while the increase
of cell division is a cause of human cancer [35].
3.3 Hub genes in the network are biologically
meaningful

In our ceRNA network, with the hypothesis that the genes
competing with more genes may be more essential, we
selected 20% of all the genes in the ceRNA network (350
genes) as hubs and used it to do functional analysis to
check whether it can uncover some biological mechanism
in breast cancer. The enriched functional gene sets of the
top five are shown in Table 3.
99
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Table 2 Function annotation of the top five clusters

Cluster Number
of genes

Annotation p-value

cluster 1 192 Go Term: vasculature
development

9.82 × 10−5

cluster 2 228 Go Term: enzyme linked
receptor protein signalling
pathway

3.64 × 10−4

cluster 3 143 Go Term: skin
development

7.54 × 10−5

cluster 4 12 Go Term: cell division 0.019
cluster 5 72 Go Term: negative

regulation of
macromolecule metabolic
process

8.82 × 10−4

Fig. 3 Cluster ‘cell division’
The light grey nodes are the genes involved in the Go Term

Table 3 Top five enriched gene sets

Gene set The number
of overlap

p-value

Go Term: vasculature
development

20 7.22 × 10−7

Go Term: blood vessel
development

19 2.18 × 10−6

Go Term: positive regulation of
cell motion

11 2.62 × 10−5

pathway: Glioma 9 3.10 × 10−5

GO: regulation of cell motion 15 3.45 × 10−5 Table 4 Twelve-gene signature

Gene
ID

Gene
symbol

Cox
coefficient

Cox
p-value

Stability

2146 EZH2 0.33 0.011 0.9675
2152 F3 −0.18 0.017 0.925
3572 IL6ST −0.46 0.0069 0.975
6241 RRM2 0.37 0.0038 0.9975
7041 TGFB1I1 0.53 0.0051 0.99
7133 TNFRSF1B −0.41 0.014 0.9525
8445 DYRK2 0.75 0.0021 0.9975
9891 NUAK1 0.33 0.012 0.97
10628 TXNIP −0.50 0.0011 1
23213 SULF1 0.33 0.017 0.9075
26959 HBP1 −0.40 0.011 0.9625
51339 DACT1 0.52 0.0064 0.99

The stability of a gene is the ratio of the gene which is significant
in the 400 resampling runs. And the five genes (Gene ID: 2146,
2152, 10628, 23213, 26959) are the reported breast cancer genes
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From this table, it is clear that most of these enriched gene
sets are cancer related. The pathway ‘Glioma’ is enriched with
a p-value of 3.10 × 10−5, while brain is reported to be a
common metastasis organ of breast cancer [36]. In addition,
lymphatic vasculature development is associated with the
metastasis of cancer patients [37], and the Go Term
‘vasculature development’ is also on the top. Moreover,
blood vessel development is enriched with a very small
p-value, and tumour blood vessels are reported to have
many abnormalities [38]. The other two significant Go
Term biological processes are about cell motion, while the
cell motion of tumour are related to cancer metastasis [39].
In a word, hub genes in the ceRNA network are
biologically meaningful, which may indicate that our
100
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ceRNA network based on data sets of specific disease can
indeed uncover the biological mechanism in the disease.
3.4 Discriminative hub genes can distinguish
metastasis risks of breast cancer patients

As described above, the hub genes in our ceRNA network are
breast cancer related; thus the discriminative genes among the
hubs may be good biomarkers. We used resampling method
to select the prognostic genes that may be related to cancer
prognosis on GSE2034 and found 12 hubs are
discriminative (Table 4). In addition, five out of the 12 are
reported to be breast cancer related [40].
Then we used the 12 prognostic genes to predict the

metastasis risk for breast cancer patients in GSE2034 as
well as three independent data sets. In GSE2034, the hazard
ratio between the two groups divided by the risk scores
based on the 12 genes is 4.80 (95% CI 3.04–7.57), and the
log rank p-value is 8.66 × 10−14 (Fig. 4a), which shows our
signature can discriminate the metastasis risks of breast
cancer patients in the train data set significantly. In
addition, the performances of the 12 genes are also good in
the other three independent data sets. The hazard ratio is
3.43 (95% CI 1.68–7.02) and the p-value is 0.00015 in
GSE1456 (Fig. 4b). As to GSE4922, the hazard ratio is
1.69 (95% CI 1.09–2.62) and the p-value is 0.012 (Fig. 4c).
In GSE7390, the hazard ratio is 2.02 (95% CI 1.20–3.38)
and the p-value is 0.0037 (Fig. 4d ). For the purposes of
comparing, we also used the 12 genes (Supplementary
table 1), which are the most significantly correlative with
the metastasis risks of breast cancer by resampling method,
to predict the prognosis of breast cancer patients with the
same strategy. The p-values of its partitions on the four data
sets are 1.31 × 10−12, 0.336, 0.150 and 0.0005 separately
(Supplementary table 2), which show that the discriminative
genes without being filtered by the degree perform badly. In
addition, it is reported that the most published gene
signature are not discriminative across different data sets,
and even not better than the random gene signatures with
the same size [15]; the good and stable discriminative
capability of our gene signature shows that these genes are
good biomarker candidates. As we know, the main
difference between our signature and the published
signatures is that our signatures are the hubs in the ceRNA
network, which may indicate our ceRNA network can
reveal the biological mechanism in breast cancer.
IET Syst. Biol., 2014, Vol. 8, Iss. 3, pp. 96–103
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3.5 Discriminative hub genes are stable in ceRNA
networks constructed using different data sets or
parameters

As described above, our discriminative hubs can distinguish
the metastasis risks of cancer patients across different data
sets, which may indicate that the discriminative hubs in our
ceRNA network are good biomarker candidates. In order to
validate our method, we test whether both the
discriminative hubs and the hubs are stable when the
ceRNA networks are constructed in different situations.
In this work, we used the miRNA targets predicted by

targetScan to construct the original ceRNA network. For
the purpose of comparison, we also used the mRNA-target
relations predicted by miRanda [21], another famous
miRNA target prediction tool, to construct a new ceRNA
network by the same strategy. As a result, the new ceRNA
network contains 6800 genes and 458873 edges. As known,
the targets of a miRNA predicted by different tools vary
greatly, thus it may be not odd that the scales of the ceRNA
networks constructed using different miRNA target relations
vary too. However, most of the hubs are overlapped.
Among the 350 hubs in the ceRNA network constructed
using data of targetScan, 286 genes are also the hubs of the
ceRNA network constructed using the miRNA-target
relations predicted by miRanda (Fig. 5a). We also
investigated whether the discriminative hubs are stable
across the two ceRNA networks and then found that 9 out
of 12 discriminative hubs of our original ceRNA network
Fig. 4 Survival analysis

GSE2034 is the train data set and the other three are independent data sets
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are also the discriminative hubs in the ceRNA network
constructed using the miRNA-target relations predicted by
miRanda (Fig. 5b). The high degree of overlap between the
two ceRNA networks’ hubs (discriminative hubs) shows
that the hubs (discriminative hubs) are stable across
different miRNA-target prediction tools.
We used a threshold of p-value as 0.05 to construct the

ceRNA network in this work. To check whether the hubs
(discriminative hubs) will vary sharply when the networks
were constructed with different thresholds of the p-values,
we used the threshold of false discovery rate for multiple
hypothesis testing [41] as 0.05 to construct the ceRNA
network. As a result, the new ceRNA network contains 771
nodes and 11902 edges. Then 158 genes were selected as
hubs, compared with the 350 hubs in the ceRNA network
constructed with the threshold of p-value as 0.05, we found
that 156 genes are overlapped between the two hub sets
(Fig. 5c). As to the discriminative hubs, five are overlapped
between the two discriminative hub sets (Fig. 5d ). From
this result, it is clear that the multiple hypothesis testing
can reduce the scale of the ceRNA network. However,
most of the linked genes are still retained. Furthermore, we
took the same number of genes with the hubs of original
ceRNA network as the hub sets, and found that 272 genes
are common (Fig. S1.a). As to the discriminative hubs,
nine genes are the same in the two discriminative hub sets
(Fig. S1.b). In a word, the hubs as well as the
discriminative hubs are stable with different thresholds of
p-values.
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Fig. 5 Intersections of the hubs (discriminative hubs) from the
ceRNA networks constructed using different data sets or parameters

Fig. 5a (Fig. 5b) are the intersections of the hubs (discriminative hubs) from
the ceRNA networks constructed using different miRNA-target prediction
tools; Fig. 5c (Fig. 5d) are the intersections of the hubs (discriminative
hubs) from the ceRNA networks constructed using different thresholds of
p-values; Fig. 5e (Fig. 5f ) are the intersections of the hubs (discriminative
hubs) from the ceRNA networks constructed using different breast cancer
data sets

www.ietdl.org
In this work, we constructed the ceRNA network by using
GSE19783, which contains mRNA expression profiles and
corresponding expression profiles of 101 breast cancer
patients. In order to test whether the hubs as well as
discriminative hubs of the ceRNA network are stable across
the ceRNA networks constructed using different data sets,
we also used 284 matched miRNA expression profiles and
mRNA expression profiles of breast cancer patients from
TCGA (The Cancer Genome Atlas) to construct a new
ceRNA network, which contains 2177 nodes and 102754
edges. As a result, 436 genes were selected as hubs, in
which 16 genes are discriminative. In the original ceRNA
network, 350 are hubs and 12 of the hubs are
discriminative. Of the two hub sets, 117 genes are the
same. As to the discriminative hub sets (Fig. 5e), 8 genes
are overlapped (Fig. 5f ). From this result, it is clear that the
hub genes as well as discriminative hubs between the two
ceRNA networks are highly overlapped, especially the
discriminative hubs, most of which are the same. Thus, a
conclusion can be drawn that the hubs and discriminative
hubs are stable across the ceRNA network constructed
using different breast cancer data sets.
As described above, the hub genes and discriminative hubs

are stable when the ceRNA network is constructed with
different miRNA-target prediction tools, thresholds of
p-values and breast cancer data sets. The stability of the
discriminative hubs may explain the stable distinguishing
capability of the discriminative hubs across all the
independent data sets. All this results validate the stability
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of our method and prove it can be used to understand the
biological mechanism of disease.

4 Discussion and conclusion

In this work, based on the ceRNA hypothesis, we proposed a
computational method to construct the ceRNA network
according to breast cancer data. In the network, the
connective nodes are the gene pairs that are competing with
each other for the limited pool of miRNAs. The
breast-cancer-specific ceRNA network is shown to be
scale-free, and communities (dense clusters) in the network
are related to cancer hallmarks. In addition, the hub genes
in the network are annotated with functional gene sets
related to breast cancer. Moreover, 12 discriminative genes
among the hubs have been shown to be able to distinguish
the metastasis risks of patients not only in the train data set,
but also in other three independent data sets. The hubs and
discriminative hubs are also stable in the ceRNA networks
constructed on different data sets or parameters. The
promising results suggest that the constructed ceRNA
network can indeed reveal the biological mechanism in the
disease.
Our work provides a simple frame to construct the ceRNA

network that can be applied in various biological areas, such
as the study of disease and the study of biological processes.
Of course, there are also some limits in our work. First,
because of inadequate knowledge about ceRNA pairs, the
ceRNA pairs inferred by our method have not been
validated directly. Secondly, in this work, we only consider
the competing mRNA pairs. In fact, transcribed pseudo
genes and long coding RNAs can also get involved in the
process of competing for the miRNA sponges.
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