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Abstract: With rapid accumulation of functional relationships between biological molecules, knowledge-based networks have
been constructed and stocked in many databases. These networks provide curated and comprehensive information for
functional linkages among genes and proteins, whereas their activities are highly related with specific phenotypes and
conditions. To evaluate a knowledge-based network in a specific condition, the consistency between its structure and
conditionally specific gene expression profiling data are an important criterion. In this study, the authors propose a Gaussian
graphical model to evaluate the documented regulatory networks by the consistency between network architectures and time
course gene expression profiles. They derive a dynamic Bayesian network model to evaluate gene regulatory networks in
both simulated and true time course microarray data. The regulatory networks are evaluated by matching network structure
with gene expression to achieve consistency measurement. To demonstrate the effectiveness of the authors method, they
identify significant regulatory networks in response to the time course of circadian rhythm. The knowledge-based networks
are screened and ranked by their structural consistencies with dynamic gene expression profiling.
1 Introduction

The gene regulatory network provides a basic framework for
the regulation relationship between transcription factors and
their target genes [1, 2]. The network architecture indicates
the regulatory relationships. It is a promising way to
reconstruct gene regulatory network by reverse engineering
[3–5]. The DREAM (Dialogue for Reverse Engineering
Assessment and Methods) challenge provides evidence for
the effectiveness of network reconstruction algorithms [6],
but there are still many difficulties in these inferences
because of the curse of dimensionality. It is also difficult to
assess the inference results. Simultaneously, there is more
and more available information about gene regulations.
Evaluating a knowledge-based network with gene
expression data will provide a valuable alternative to study
gene regulatory networks [3, 7]. The documented networks
or pathways are often based on literature-retrieved
information about the relationships among genes and
proteins [8]. The match between reference networks and
expression profiles will indicate the enrichment information
of these functional linkages.
The existing approaches of analysing gene expression data

generally start from the identification of differentially
expressed genes by comparing the expressions in different
conditions or phenotypes. They often include statistical
tests, such as t-test and significance analysis of microarrays
(SAM) [9]. However, genes perform their functions by
interacting with each other in the form of network or
pathway. Then, there are some methods which have been
proposed for pathway analysis [10, 11]. Gene set
enrichment analysis (GSEA) [12] and gene set analysis
(GSA) [13] provide the significance test for the predefined
gene sets in certain gene expression profiling. The geneset
will provide more information for the interrelationship of
genes and imply their regulations from a system level [14].
However, network structures or topologies have not been
considered in most of the existing methods [15]. Moreover,
the analysis has not been conducted to consider the true
gene expressions efficiently and there are lots of constraints
for network structures in the assessment [16, 17]. The
relationship of gene regulation defines the core network
architecture underlying these genes during biological
processes [2, 18]. In response to certain conditions, these
gene regulatory networks will perform very different
biological functions and show obvious structure dynamics
[19]. Here, we aim to provide an evaluation method for the
documented gene regulatory networks based on the
consistency between network structure and time course
gene expression data. The consistency between network
structures and measured data are well known in statistical
casual hypothesis [3]. The architecture of topological
143
© The Institution of Engineering and Technology 2013

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


www.ietdl.org

linkages will provide regulatory implications which will
underlie gene expression. If we identify the functional
linkages and their responses matching with the gene
expression, network activity and importance will be
identified. There are some methods which have been
developed to reconcile network structure and gene
expression. Herrgard et al. [7] provided a linear regression
method to measure consistency, but it cannot handle the
amount of large networks in parallel. Draghici et al. [16]
proposed a scoring scheme for assessing the significance of
pathways by their ranks corresponding to gene expressions.
However, it ignores the regulatory interactions between
genes as well as fails to detect the correspondence between
gene expression and network structure. We have provided a
method to screen the consistency between network structure
and gene expression, whereas the method cannot handle the
network with cycles and loops [3, 20]. To evaluate
biological networks with consideration of general network
structures including dynamic networks, it is necessary to
develop a new method to identify the consistency between
regulatory network structures and gene expression profiles.
In this work, we proposed a dynamic Bayesian network

model to identify significant regulatory networks from
knowledge-based reference networks in response to
conditional gene expression. Instead of reconstructing gene
regulatory networks from high-throughput data, significant
regulatory networks are identified from the reference
network library. We validated our method in both simulated
data and circadian rhythm time course data. The documented
network structures of transcription factors and targets are
evaluated from random samplings. The possibility of graph
architectures existing in certain conditions was measured by
the consistency between network structure and gene
expression profile. In particular, we ranked the referred
regulatory networks by structural consistency in response to
specific time course gene expression data. As shown in the
results, the statistical significance as well as the potential
regulation architecture provide detailed information for
alternative regulatory networks responding to gene
expression in specific conditions.

2 Materials and methods

2.1 Framework

Fig. 1 shows the framework of our method to identify
significantly responsive regulatory networks by evaluating
Fig. 1 Framework to identify significant regulatory networks in respon
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the consistency between network structure and gene
expression. For the reference regulatory networks
documented in databases shown in Fig. 1a, we mapped the
time course gene expression information to these regulatory
networks shown in Fig. 1b. By employing a dynamic
Bayesian network model, we generated a likelihood value
to measure the consistency between the regulatory network
structure and the gene expression data (shown in Fig. 1c).
In Fig. 1d, each of the reference regulatory networks is
assigned a statistical significance of consistency with time
course gene expression profiling. The significant networks
are the outputs as the identified responsive gene regulatory
networks.

2.2 Datasets

We implemented our method in both simulated data and real
time course gene expression data of circadian rhythm.
In the simulation study, we firstly generated the simulation

data by the following equations representing a self-defined
regulatory architecture shown in Fig. 2a where εit∼ N(0,
σ2), i = 1, …, 10. After setting xi,1∼ N(0, 1), i = 1, …, 10,
σ2 = 0.1, we produced the corresponding time course gene
expression data in six time points of the defined regulatory
system

x1,t = −0.5x3,t−1 + 0.5x5,t−1 + 0.5x8,t−1 + 11t
x2,t = −0.5x1,t−1 + 0.5x2,t−1 + 0.5x10,t−1 + 12t
x3,t = −0.5x2,t−1 − 0.5x7,t−1 + 13t
x4,t = 0.5x1,t−1 + 0.5x3,t−1 + 14t
x5,t = −0.5x3,t−1 + 0.5x4,t−1 + 15t
x6,t = 0.5x5,t−1 + 16t
x7,t = −0.5x6,t−1 + 17t
x8,t = −0.5x5,t−1 + 18t
x9,t = 0.5x7,t−1 + 0.5x8,t−1 + 0.5x10,t−1 + 19t
x10,t = 110t

Secondly, for availability of the standard regulatory network
and its corresponding time course gene expression, we
employed a benchmark regulatory network and its
expression from DREAM ‘In Silico’ network challenge [6,
21], which is a competition of reverse engineering to infer
the simulated regulatory network from its generated gene
expression data [21]. We selected one gene regulatory
se to condition-specific gene expression data
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Fig. 2 Self-defined regulatory architectures

a Simulated gene regulatory network refers to the ordinary differential equation systems
b Llikelihood distribution of the consistency between network structure and gene expression in the permutation study

Fig. 3 Box plots of robustness in the identification of consistency
p-values

www.ietdl.org
network and its generated gene expression data for evaluation,
which contains 10 genes and 12 regulations as shown in
Fig. 4a. We evaluated the consistency between the network
structure and its gene expression. The gene expression
profiling of time course data contains 21 time points in two
conditions, that is, perturbation and normal [21].
Fig. 4 Simulated gene expression data were generated by designed reg

a Network architecture of a gene regulatory network in DREAM challenge
b Distribution of the log-likelihood values between network structures and gene ex
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In the real high-throughput data, the true time course gene
expression data are about circadian regulation in rat lung
and white adipose which was downloaded from NCBI GEO
database [22] (ID:GSE25612 and ID:GSE20635 for lung
and adipose, respectively). The gene expression profiles
were generated from the tissues of Wistar rats by Affymetrix
microarray (Rat Genome 230 2.0), which was designed for
examining fluctuations in gene expression in lungs and
adiposes within the 24 h circadian cycle in normal animals
[23, 24]. The experiments are performed in a controlled
stress free environment with light:dark cycles of 12 h:12 h
within 24 h. Both datasets contain 18 selected time points in
the 12:12 (light:dark) cycle. Their objectives are to identify
and analyse circadian oscillations in gene expression of lung
and white adipose tissue, respectively.
To build the reference gene regulatory networks for

evaluation, we downloaded the KEGG pathways in rat [8].
We built the regulatory networks by extracted information
for every interaction between two genes. The linkages of
‘GErel’ relationship with activation and repression
information are used to construct the regulatory relationships
between transcription factors and target genes [8]. In total,
there are 207 KEGG pathways which can identify their gene
expression information in the rat time course gene expression
ulatory network structures

pressions in the perturbation condition
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data and resulted in 37 gene regulatory networks which contain
more than 5 genes. These networks formed the reference
regulatory networks which are used to identify the
consistency between network structure and gene expression.
Compared with inferring gene regulatory networks in reverse
engineering from high-throughput data, we identify these
significantly responsive regulatory networks in the gene
expression profiles of circadian rhythm in a forward manner
from the high-throughput data and the reference networks.

2.3 Significance of networks

In a graphical model, joint distribution probability of a certain
directed network architecture can be represented as a product
of the individual density functions with conditions on their
parent variables by recursive factorisation [3, 25], that is,
f (G) = f X1, X2, . . . , Xn

( ) = ∏n
i=1 f Xi|parent Xi

{ }( )
in graph

G. Let X t = X t
1, . . . , , X

t
n

( )T
be the gene expression vector

of n genes at time t. Thus, for the time points {1, …, t, t,
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f X 1, . . . , X t, . . . , XT( ) = f X1( )∏T
t=2

∏n
i=1

f X t
i |parent X t

i

( )( )

in the time course data. Assume

X t+1 = AX t + E

where

A =
a1,1 · · · a1,n

..

. . .
. ..

.

an,1 · · · an,n

⎛
⎜⎜⎝

⎞
⎟⎟⎠ =

a1

..

.

an

⎛
⎜⎜⎝

⎞
⎟⎟⎠, ai,j

is the regulatory coefficient of X t
j � X t+1

i ; E∼N(0, Σ), and
S = diag s2

1, . . . , s
2
n

( )
. According to the linear Gaussian

model [26, 27] and

f X t+1
i |X t( ) = 1������

2ps2
i

√ exp − 1

2s2
i

X t+1
i − aiX

t( )[ ]

we have (see equation at the bottom of the page)

Then, the log-likelihood function

ln f X1, . . . , X t, . . . , XT( )/
− 1

2

∑T−1

t=1

∑n
i=1

1

s2
i

X t+1
i −

∑n
j=1

ai,jX
t
j

( )2

+ ln 2ps2
i

( )⎡
⎣

⎤
⎦

Although the binary regulatory relationship between i and j is
available, however, the details of upregulation (→),
downregulation (s), no regulation (↮) as well as the
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regulation strength are often unknown, especially for
specific conditions. Hence, we employed a quadratic
programming method to calculate the likelihood value by
optimising the coefficients ai,j, (i, j = 1, …, n) (Shown in
Fig. 1), that is,

Max− 1

2

∑T−1

t=1

∑n
i=1

1

s2
i

X t+1
i −

∑n
j=1

ai,jX
t
j

( )2

+ ln 2ps2
i

( )⎡
⎣

⎤
⎦

s.t. ai,j ≥ 0 if i � j
ai,j ≤ 0 if i s j
ai,j = 0 if i↮j
2ci, j = 1, . . . , n

The constraints of ai,j≥ 0 if i→ j, ai,j≤ 0, ai,j ≤ 0 if i s j
and ai,j = 0 if i↮j represent the regulatory strength
between i and j. Thus, the likelihood value was determined
by the time course gene expression data. Based on the
log-likelihood value, the significance of a network
architecture was evaluated by a random sampling process
[3]. As shown in Fig. 1, for each regulatory network, we
randomly generated N networks by rewiring the same
number of regulations between the nodes of the evaluating
network. After fitting the log-likelihood values of the
random network structures by a normal distribution, we
calculated the consistency probability between the
evaluating regulatory architecture and gene expression
profiling for each network individually. The statistical
significance P-value of one regulatory network
G(i)

0 (i = 1, . . . , M ) was calculated by a two-tailed test. The

null hypothesis is that the log-likelihood of G(i)
0 is equal to

the mean of that of the N randomly generated networks in
the same genes. We set N = 2000 in this work and the
significant threshold of P-value was set as 0.05. All
regulatory networks were implemented in the same process
to obtain their effects of consistency with gene expression
profiles individually. The ranking by the significant P-value
is clearly able to provide the enrichment measure of these
regulatory structures in response to the time-series gene
expression profiles.

3 Results

3.1 Simulation studies

Firstly, we generated the simulated gene expression data for
the network shown in Fig. 2a. Thus, we obtained a gene
regulatory network and its time course gene expression
data. The consistency between the regulatory architecture
and the corresponding expression data can then be
evaluated by our proposed method. After achieving the
log-likelihood value of the evaluating gene regulatory
network, each randomly rewired regulatory structure was
also calculated for its likelihood value of measuring the
consistency with gene expression profiling in the
permutation study. The log-likelihood value between
1|X t)

��
2
i

exp − 1

2s2
i

X t+1
i −

∑n
j=1

ai,jX
t
j
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Fig. 5 Documented gene regulatory network of circadian rhythm
in KEGG
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network structure and gene expression data was obtained as
−1.64 with the significance P-value 4.22 × 10–7. Fig. 2b
shows the distribution of the frequency of likelihood values.
We can find that the regulatory network structure is
significant responding to the gene expression data generated
by its architecture. The simulation proves the effectiveness
and efficiency of our proposed method of identifying the
significant network structures in condition-specific time
course gene expression profiles.
We tested the robustness of our proposed method for

detecting the strength of regulations by generating large
amount of expression datasets, and calculating the
significance of the consistency between network structure
and expression data. Specifically, we generated 100 gene
expression datasets using the former regulatory architecture
fluctuated with different noise by gradually increasing the
standard deviation σ from 0.1, 0.2, …, to 1 individually.
We implemented our method to identify the significance
P-values of the consistency between the network structure
and these generated datasets. Fig. 3 shows the box-plots of
these P-values in each simulated 100 datasets for each
standard deviation. We found that the P-values are more
stable in the datasets generated with smaller deviation. The
results show the robustness of our method on noise with
ten-stepwise increasing σ from 0.1 to 1 in the ten-node
network architecture. In calculation of the likelihood
function, we built quadratic mathematical programming to
optimise the regulatory coefficients between these genes.
The robustness to noise also indicates the efficiency of our
method in identifying the regulatory coefficients of the
network.
For the benchmark gene regulatory network in the

DREAM challenge [5, 21], we presented the results to
demonstrate our proposed method as follows. The simulated
gene expression data were generated by designed regulatory
network structures shown in Fig. 4a, which contains a cycle
of ‘gene5→ gene6→ gene8→ gene7’. We implemented our
method to access the consistency between the time course
expression data and the gene regulatory network. For two
conditions of perturbation and normal, the standard network
structure achieved its significance P-values of 0.0072 and
0.0034, respectively. In the perturbation data, the
distribution of likelihood value in these random samplings
of network structures is shown in Fig. 4b. The results
provided evidence of the high consistency between network
structures and its corresponding gene expression data.
Compared with the original goal in the ‘in silico’ network
challenge of inferring gene regulatory network from
simulated expression data, we evaluated the significance of
the consistency between regulatory structures and gene
expressions. From the results, we identified the consistency
underlying the structure of regulations with the gene
expression data. The significant gene regulatory network
structure responsive to specific gene expression was
identified effectively. The results also indicate the rationale
of inferring gene regulatory networks from expression data.

3.2 Significant regulatory networks in real gene
expression data

To test the effectiveness of our method in real time course
gene expression data of circadian rhythm, we implemented
the proposed method to identify the significantly responsive
regulatory networks enroled from KEGG [8]. Fig. 5 shows
the documented regulatory network of circadian rhythm.
Obviously, it contains cycles and loops. The gene
IET Syst. Biol., 2013, Vol. 7, Iss. 5, pp. 143–152
doi: 10.1049/iet-syb.2012.0062
expression data of circadian rhythm in rat lungs can be
divided into two segments, that is, light and dark, in the
rhythm of 24 h. Each knowledge-based gene regulatory
network was evaluated by calculating its consistency value
with gene expression profiling data in light and black
segments, respectively.
Table 1 lists the significance P-values of these reference

gene regulatory networks in response to the circadian
rhythm gene expression profiles in lungs. They are simply
ranked by the significance P-values in light. False discovery
rate (FDR) (Benjamini and Hochberg’s procedure) is also
listed. In the evaluation, these documented regulatory
networks were screened to be significant or not by their
consistency with the gene expression data. The enriched
regulatory networks in response to gene expression were
identified simultaneously. We found that the regulatory
network of ‘circadian rhythm – mammal’ has been
identified as one of the most significant networks in both
the segments of light and dark. The significant regulatory
network of ‘tuberculosis’ indicates the active regulations in
this pathway under rhythm transition of day and night in
lung cells. It is consistent with the knowledge of circadian
oscillation in gene expression in lungs [23]. The significant
‘pathways of cancer’ illustrate active regulation associations
between genes in cancer pathways in response to the
circadian rhythm, which also indicates the importance of
circadian rhythm for cancer [28]. These significant
networks as well as the ‘wnt signal pathway’ also imply the
interplay among these regulatory networks. The crosstalk
between pathways is often crucial to generate complex
responses to allow global regulations for specific
mechanisms [29]. The enriched regulatory architectures
might be highly related to the circadian rhythm of rat lung
cells in light and dark conditions. Interestingly, we found
that ‘peroxisome proliferator-activated receptors (PPAR)
signalling pathway’ is significant in the dark, whereas it is
not significant in light. The pathway is known to be
important in clearance of circulating or cellular lipids [8].
This indicates that specific regulations are related to lipid
metabolism during night in the rhythm. In contrast,
‘Jak-STAT signalling pathway’ was identified as significant
in light, whereas not in the dark. Their different significance
in two segments hints at different active modulation of
regulations in response to the rhythm of different conditions
[28].
Similarly, we identified the significance of these gene

regulatory networks responding to circadian rhythm in rat
white adipose tissues. The results are shown in Table 2. We
found that ‘circadian rhythm’ regulations are also identified
147
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Table 1 Evaluation of gene regulatory networks in response to the GSE25612 lung gene expression data

KEGG ID Descriptor Node Edge Light Dark

P-value FDR P-value FDR

rno05152 tuberculosis 42 163 7.59 × 10–8 3.11 × 10–6 1.04 × 10–3 9.40 × 10–3

rno04710 circadian rhythm – mammal 13 58 1.00 × 10–5 1.37 × 10–4 5.34 × 10–5 1.09 × 10–3

rno05200 pathways in cancer 82 170 6.99 × 10–5 4.29 × 10–4 9.84 × 10–3 0.0576
rno04630 Jak-STAT signalling pathway 25 90 7.33 × 10–5 4.29 × 10–4 0.9450 0.9587
rno04310 wnt signalling pathway 13 40 2.52 × 10–3 0.0115 6.61 × 10–3 0.0451
rno05216 thyroid cancer 7 10 0.0210 0.0860 0.1150 0.2946
rno05213 endometrial cancer 7 10 0.0252 0.0938 0.1101 0.2946
rno05211 renal cell carcinoma 13 22 0.0463 0.1582 0.0981 0.2871
rno05212 pancreatic cancer 9 20 0.0527 0.1661 0.1942 0.3520
rno05143 African trypanosomiasis 6 5 0.0874 0.2561 0.1875 0.3520
rno05215 prostate cancer 9 7 0.1147 0.2985 0.2408 0.3901
rno04350 TGF-beta signalling pathway 20 26 0.1219 0.2985 0.1865 0.3520
rno04510 focal adhesion 5 6 0.1238 0.2985 0.0319 0.1191
rno04978 mineral absorption 6 5 0.1547 0.3375 0.2185 0.3732
rno05217 basal cell carcinoma 19 38 0.1564 0.3375 0.7837 0.8902
rno04916 melanogenesis 15 14 0.2001 0.3935 0.3057 0.4643
rno04976 bile secretion 13 12 0.2102 0.3935 0.4905 0.6487
rno05134 legionellosis 14 12 0.2244 0.3935 0.4397 0.6217
rno05218 melanoma 6 5 0.2257 0.3935 0.9124 0.9587
rno04210 apoptosis 8 12 0.2436 0.3935 0.1367 0.3297
rno04150 mTOR signalling pathway 6 5 0.2560 0.3935 0.7494 0.8778
rno04961 endocrine and other factor-regulated calcium

reabsorption
6 7 0.2614 0.3935 0.8818 0.9514

rno04960 aldosterone-regulated sodium reabsorption 16 15 0.2645 0.3935 0.1703 0.3520
rno04340 hedgehog signalling pathway 22 40 0.2773 0.3935 0.7093 0.8778
rno04962 vasopressin-regulated water reabsorption 7 6 0.2783 0.3935 0.7470 0.8778
rno05031 amphetamine addiction 13 28 0.2883 0.3941 0.1974 0.3520
rno05222 small cell lung cancer 25 38 0.2997 0.3964 0.0270 0.1107
rno04910 insulin signalling pathway 6 5 0.3211 0.4114 0.0200 0.0913
rno04950 maturity onset diabetes of the young 20 28 0.5106 0.6214 0.9587 0.9587
rno04115 p53 signalling pathway 32 31 0.5153 0.6214 0.4777 0.6487
rno04620 toll-like receptor signalling pathway 12 11 0.6041 0.7077 0.6175 0.7912
rno05220 chronic myeloid leukaemia 5 3 0.7017 0.7992 0.3982 0.5830
rno04110 cell cycle 20 26 0.7254 0.8038 0.0495 0.1690
rno04920 adipocytokine signalling pathway 9 10 0.8524 0.8997 0.8034 0.8902
rno05030 cocaine addiction 16 22 0.8558 0.8997 0.1461 0.3328
rno03320 PPAR signalling pathway 64 258 0.9756 0.9956 5.26 × 10–13 2.16 × 10–11

rno05221 acute myeloid leukaemia 12 10 0.9956 0.9956 0.2473 0.3901

www.ietdl.org
as one of the most significant pathways in both light and dark
cycles. Compare with that in lungs, ‘tuberculosis’ is not
significant any more. Although some signalling pathways
are highlighted in white adiposes, such as ‘Hedgehog
signalling pathway’. We also found that the diabetic
pathways of ‘Maturity onset diabetes of the young’ and
‘Insulin signalling pathway’ are highly ranked, which are
known to be closely related to metabolism. White adipose
tissue is an important metabolic place of performing energy
transformation [24]. The regulatory network structures are
evaluated by the consistency value in our model which
shows that significant regulatory networks are prioritised
from the network library. The results in adipose provided
more evidence for the effectiveness of the proposed method
for identifying responsive regulatory networks from time
course gene expression data. The enriched pathways
indicates the roles of circadian regulation in coordinating
the physiological functions of two dynamic tissues.
The structure of regulations was measured by their

consistency with the time course gene expression data in
lung and adipose, respectively. Each knowledge-based
regulatory network achieved its significance evaluated by
the P-values of measuring the match between network
structures and expression profiles. In our scheme, we
randomly rewired the regulatory linkages among these
genes by keeping the number of regulations. The
significance has been identified in a statistical test
148
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framework. Fig. 6 shows the log-likelihood density plots for
the regulatory network of circadian rhythm in permutation
studies, where Figs. 6a and b refer to the results of light
and dark in lung, and Figs. 6c and d are the results of light
and dark in adipose, respectively. Compared with random
samples, we found that the likelihood values of the known
regulatory structure are located at the tail parts of these
bell-shape-like normal distributions. The statistical
significance of rejecting the null hypothesis was calculated
for the known regulation structure. Note that we
implemented two-tailed tests to prioritise these networks
with many distinguished likelihoods. In the two tissues, the
circadian rhythm regulation relationships are significant in
both segments of light and black. This clearly proved the
effectiveness of our method for identifying the consistency
between network architecture and gene expression. The
results show the importance of these gene regulations
during the temporal stages of rhythm. Simultaneously, the
stability of gene regulation networks has been evaluated in
the permutation processes because there are few structures
which can achieve higher likelihood values in response to
specific gene expression data.

3.3 Comparison study

There are some methods which have been developed to
identify the statistical significance of gene sets, such as
IET Syst. Biol., 2013, Vol. 7, Iss. 5, pp. 143–152
doi: 10.1049/iet-syb.2012.0062



Table 2 Evaluation of gene regulatory networks in response to the GSE20635 adipose gene expression data.

KEGG ID Descriptor Node Edge Light Dark

P-value FDR P-value FDR

rno04340 hedgehog signalling pathway 22 40 2.89 × 10–6 0.0001 0.2773 0.8443
rno05217 basal cell carcinoma 19 38 2.87 × 10–5 0.0007 0.2734 0.8443
rno04710 circadian rhythm – mammal 13 58 0.0008 0.0072 0.0390 0.4951
rno04950 maturity onset diabetes of the young 20 28 0.0369 0.2355 0.3360 0.8443
rno04976 nile secretion 13 12 0.0446 0.2528 0.3514 0.8443
rno05031 amphetamine addiction 13 28 0.0662 0.3188 0.0362 0.4951
rno04115 p53 signalling pathway 32 31 0.0687 0.3187 0.0717 0.6097
rno04960 aldosterone-regulated sodium reabsorption 16 15 0.0981 0.4171 0.1387 0.7860
rno04910 insulin signalling pathway 6 5 0.1233 0.4836 0.1959 0.8443
rno05134 legionellosis 14 12 0.1988 0.6521 0.1951 0.8443
rno05143 African trypanosomiasis 6 5 0.2133 0.6521 0.2385 0.8443
rno04150 mTOR signalling pathway 6 5 0.2174 0.6521 0.3564 0.8443
rno04961 endocrine and other factor-regulated calcium reabsorption 6 7 0.2729 0.7212 0.8806 0.9166
rno04350 TGF-beta signalling pathway 20 26 0.2744 0.7212 0.3830 0.8443
rno05030 cocaine addiction 16 22 0.2828 0.7212 0.2840 0.8443
rno05218 melanoma 6 5 0.3131 0.7380 0.4150 0.8443
rno04978 mineral absorption 6 5 0.3184 0.7380 0.9756 0.9756
rno04920 adipocytokine signalling pathway 9 10 0.3618 0.7687 0.5896 0.8943
rno05215 prostate cancer 9 7 0.3879 0.7908 0.5105 0.8443
rno04962 vasopressin-regulated water reabsorption 7 6 0.4031 0.7908 0.2313 0.8443
rno05211 renal cell carcinoma 13 22 0.4369 0.8252 0.4897 0.8443
rno05213 endometrial cancer 7 10 0.4564 0.8312 0.8180 0.9166
rno05216 thyroid cancer 7 10 0.4754 0.8361 0.8243 0.9166
rno04110 cell cycle 20 26 0.5110 0.8386 0.4408 0.8443
rno05222 small cell lung cancer 25 38 0.5599 0.8386 0.8768 0.9166
rno05221 acute myeloid leukaemia 12 10 0.5768 0.8386 0.4365 0.8443
rno05212 pancreatic cancer 9 20 0.5774 0.8386 0.7734 0.9166
rno05220 chronic myeloid leukaemia 5 3 0.5830 0.8386 0.9307 0.9493
rno04620 toll-like receptor signalling pathway 12 11 0.6032 0.8386 0.6339 0.9166
rno05200 pathways in cancer 82 170 0.6136 0.8386 0.8633 0.9167
rno05152 tuberculosis 42 163 0.6314 0.8386 0.7440 0.9166
rno04310 wnt signalling pathway 13 40 0.6413 0.8386 0.7301 0.9166
rno03320 PPAR signalling pathway 64 258 0.6763 0.8412 0.6592 0.9166
rno04630 Jak-STAT signalling pathway 25 90 0.7192 0.8506 0.7465 0.9166
rno04210 apoptosis 8 12 0.7266 0.8506 0.7406 0.9166
rno04510 focal adhesion 5 6 0.8867 0.9504 0.5178 0.8443
rno04916 melanogenesis 15 14 0.9362 0.9504 0.5246 0.8443
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GSEA [12] and GSA [13], but the importance of network
architecture has not been embedded in the analysis. There
are also some methods which have been proposed to detect
the significance by the relationship between gene expression
and network structure, whereas there are no specific
methods available for time course gene expression data. For
instance, Herrgard et al. [7] developed a method based on
linear regression to assess the agreement between gene
regulatory network structure and expression profiling by
decomposing the network into blocks. We also proposed a
Bayesian network method to identify the consistency
between network structure and expression [3]. In this work,
we developed a dynamic Bayesian network model to assess
the consistency between network structure and time course
gene expression data. Our method can handle gene
regulatory networks without any constraints of acyclic,
which will be applicable in many general conditions.
In our method, we calculated the network likelihoods and

evaluated their statistical significance. For comparison, we
also tested the effectiveness of a simple correlation based
method. In the real gene expression datasets, we evaluated
the significance of network structure by the consistency
between the correlation and the edge for each regulatory
network. Specifically, we calculated the ratios of positive
and negative correlations which are consistent with the
existing regulations in each pathway, that is, positive
correlation coincides with active regulation, and negative
correlation coincides with repression. Then, we generated
IET Syst. Biol., 2013, Vol. 7, Iss. 5, pp. 143–152
doi: 10.1049/iet-syb.2012.0062
N = 2000 random networks by rewiring the linkages in each
gene set. For each generated network, we also calculated
the consistency ratio between correlations and regulatory
relationships in these rewired linkages. After fitting the ratio
with a Gaussian distribution, we got the significance
P-value by the two-side test which we had implemented
before. Table 3 lists the top 5 ranked regulatory networks in
the real datasets. We found that there are no specificities of
these most significant regulatory networks in the two
datasets of lung and adipose. For instance, the lung related
pathways are also enriched in adipose. The results provided
by the proposed dynamic Bayesian network model show
that the known circadian rhythm regulatory networks will
be enriched, whereas the results in the correlation method
cannot give this implication. The comparison study
indicates the effectiveness and advantage of our proposed
method.

4 Discussions

In this paper, we proposed a dynamic Bayesian network
model to identify the consistency between regulatory
structure and time course gene expression data. The results
show that our method can effectively identify significant
regulatory networks both in simulated and real gene
expression data. The simulation studies indicate the
feasibility and efficiency of our method in both the defined
and benchmark datasets. The results in real datasets
149
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Fig. 6 Density distribution of log-likelihood values in the permutation study for circadian rhythm regulatory network

a In the light
b In the dark in lung
c In the light
d In the dark in white adipose
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prioritised regulatory networks which are consistent with the
knowledge about circadian rhythm and were also validated by
the original experiments. Our method can be used to identify
large-scale regulatory networks without any constraints of
acyclic and loop-less regulations. Note that regulatory
cycles and loops usually exist in biological systems.

4.1 From reconstruction to evaluation

Owing to the complexity of gene expression, the methods
for reconstructing a gene regulatory network encounter
Table 3 Top ranked 5 significant regulatory networks of lung and
expression datasets

Tissue KEGG ID Descriptor Node Ed

lung rno05200 pathways in cancer 82 17
rno04630 Jak-STAT signalling pathway 25 9
rno05152 tuberculosis 42 16
rno03320 PPAR signalling pathway 64 25
rno05222 small cell lung cancer 25 3

adipose rno03320 PPAR signalling pathway 64 25
rno04630 Jak-STAT signalling pathway 25 9
rno05200 pathways in cancer 82 17
rno05152 tuberculosis 42 16
rno05222 small cell lung cancer 25 3
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difficulties not only from the dimensional curse of
high-throughput data, but also from various assumptions
of gene regulations [6]. Based on the knowledge-based
regulatory networks or documented reference networks,
we measured the consistency between their architectures
and expressions, which provided a powerful alternative
to investigate the regulatory relationship from gene
expression data. We assessed the significance of these
reference networks by their structures. The identified
significance provides the implication of responsive
regulations in certain conditions. In our method, the
adipose identified by correlation-based method in the real gene

ge Light Dark

P-value FDR P-value FDR

0 3.59 × 10–6 1.83 × 10–4 3.56 × 10–12 1.82 × 10–10

0 1.22 × 10–5 3.11 × 10–4 1.56 × 10–6 1.99 × 10–5

3 7.54 × 10–5 1.28 × 10–3 1.48 × 10–7 3.77 × 10–6

8 0.0014 0.0173 0.0001 0.0009
8 0.0033 0.0321 3.04 × 10–5 0.0003
8 <1.0 × 10–16 <1.0 × 10–15 <1.0 × 10–15 <1.0 × 10–13

0 2.22 × 10–16 3.77 × 10–15 <1.0 × 10–15 <1.0 × 10–13

0 2.22 × 10–16 3.77 × 10–15 <1.0 × 10–15 <1.0 × 10–13

3 2.92 × 10–12 3.73 × 10–11 8.44 × 10–15 1.08 × 10–13

8 2.56 × 10–5 1.87 × 10–4 4.93 × 10–8 5.02 × 10–7
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likelihood of network structures meeting time course gene
expression provides sequential checks on the architecture
of gene regulations. However, network reconstruction is
to infer the network structure from the gene expression
data, which often have inherent barrier of environmental
and phenotype flexibility. On the other hand, as shown
in the paper, based on the knowledge-based regulatory
networks, we can identify significantly regulatory
relationships in specific conditions. Clearly, the
forward-like process provides a novel approach to bridge
the relationship with phenotypes and molecular data. In
the future, we can efficiently identify network
biomarkers [30] or dynamic network biomarkers [31] for
complex diseases, for example, diabetes and cancers, by
further combining the proposed technique with
module-based approaches [32].
4.2 Effect of network structure

We measured the consistency between network structure
and time course gene expression in a dynamic Bayesian
network formulation. In particular, we calculated the
consistency possibility between network structure and
gene expression data by a random sampling process. The
random samples are based on the same geneset by
rewiring of linkages between these genes, that is, the
same number of regulations will be assigned in the same
geneset. Each generated network was also evaluated for
its likelihood of the connection architecture in response to
gene expression profiling data. From the likelihood values,
we obtained the assessment between network structures
and expressions, and the documented regulatory networks
achieved their consistency significance with data.
However, in certain gene expression, a few random
networks with rewiring linkages also achieved their
significance of high consistency with gene expressions.
The other alternative structures in these random samples
also imply the difficulty of inferring gene regulatory
networks only from gene expression data.
4.3 Improvement of directed network

The proposed method of dynamic Bayesian network model in
this paper improves our former methods for network
screening on acyclic and loop-free networks of gene
regulations [3, 20], and it certainly can cover more types of
networks for evaluation. The proposed graphical model is
designed for directed networks. However, there are many
undirected biomolecular interactions, for example, protein–
protein interactions, which form undirected networks.
Therefore it is necessary in the future to develop a new
theoretical model to consider undirected networks and
hybrid networks with both directed and undirected edges,
which would cover all forms of regulations, interactions and
cooperations between biological molecules. As another
topic, in our algorithm, the random samples can also be
extended to identify more reasonable network structures and
potential regulatory relationships by assessing the generated
networks with higher significance given the available gene
expression. The network structure coherent with the
expression indicates possibly crucial meanings, which will
provide valuable information for disease mechanism and
drug target design.
IET Syst. Biol., 2013, Vol. 7, Iss. 5, pp. 143–152
doi: 10.1049/iet-syb.2012.0062
5 Conclusion

In this work, we developed a novel dynamic Bayesian
network model to measure the consistency between network
structure and gene expression. We identified the significant
regulatory networks from the documented reference
networks in response to circadian rhythm conditions. The
directed regulatory networks achieved their significance
measured by the consistency possibility between network
regulatory architectures and gene expression profiles.
Clearly, our method provides an alternative way to detect
responsive biomolecular networks responding to certain
conditions and phenotypes. Our model can handle
large-scale regulations as well as general directed networks.
Moreover, our method can provide potential regulations in
the networking genes. The analysis of the dynamics in the
regulatory networks of circadian rhythm related data
provides evidence for the effectiveness of our method as
well as biological insights for rhythm mechanism.
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