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Abstract: The big omics data are challenging translational bioinformatics in an unprecedented way for its complexities and

volumes. How to employ big omics data to achieve a rivalling-clinical, reproducible disease diagnosis from a systems

approach is an urgent problem to be solved in translational bioinformatics and machine learning. In this study, the

authors propose a novel transcriptome marker diagnosis to tackle this problem using big RNA-seq data by viewing

whole transcriptome as a profile marker systematically. The systems diagnosis not only avoids the reproducibility issue

of the existing gene-/network-marker-based diagnostic methods, but also achieves rivalling-clinical diagnostic results by

extracting true signals from big RNA-seq data. Their method demonstrates a better fit for personalised diagnostics by

attaining exceptional diagnostic performance via using systems information than its competitive methods and prepares

itself as a good candidate for clinical usage. To the best of their knowledge, it is the first study on this topic and will

inspire the more investigations in big omics data diagnostics.

1 Introduction

With the surge in translational bioinformatics and medical
informatics, the sheer enormity of omics data, i.e. big omics data,
are available to make complex disease diagnosis in a more data
drive way by providing comprehensive information from
transcriptomics, proteomics, genomics data, metabolomics, and
others [1–3]. Unlike electric health record data, the big omics data
are generated from high-throughput profiling technologies (e.g.
RNA-seq) and usually distributed in different publicly available
databases [e.g. The Cancer Genome Atlas (TCGA) data portal]
[1, 4]. However, how to diagnose complex disease phenotypes
using big omics data to achieve reproducible disease diagnosis
remains an urgent problem to be solved in translational
bioinformatics and computational systems biology.

It is noted that existing diagnostic methods are usually built on
finding a set of differentially expressed gene markers or network
markers to discriminate different pathological states [5]. The
methods have achieved a good success in finding statistically
significant genes or network modules. However, they have been
known for the lack of reproducibility in diagnosis, i.e. a specific
set of gene markers or network markers may work for one data
set, but usually cannot generalise its good performance to another
one, due to the complexities of diseases, artefacts of computing
models, or even less reproducible source data. For example,
TMPRESS2-ERG fusion transcripts are recognised as a good
biomarker candidate for prostate cancer detection, but it usually
cannot be found in as many as 50% prostate tumours [5, 6]. In
fact, different gene/network discovery methods may produce
totally different gene/network markers even for a same omics data
set [5, 6]. Furthermore, some omics data (e.g. serum proteomics
data) are even not reproducible themselves, not to mention the
reproducibility of those biomarkers discovered from the data [7].

However, the coming era of big omics data provides exciting
opportunities to leverage intensive data information to conduct
complex disease diagnosis, treatment, and prevention in a more
accurate and reproducible way. Big omics data usually has very
special characteristics compared with other large-volume data.
First, they are less-structured data that may even have millions of
variables. It could be overwhelming to understand the relationships

among variables and their possible associations. In fact, a large
amount of missing data can be found often in a big omics data set
because not all variable values can be collected or observed in
data acquisition. As such, a uniform preprocessing routine to
extract all informative entries seems to be too expensive or even
unrealistic from a data analytic viewpoint. Second, they are typical
heterogeneous data with multiple data types that are produced
from different high-throughput technologies, platforms,
quantification, analytes, and participants [4]. Third, they are not
noise-free data for analysis. Instead, they contain different types of
noise from different sources. For example, the noise may include
system noise from high-throughput technologies, artefacts in
experiment design, or even biological complexities of diseases
[4, 6]. The general normalisation procedures may not be able to
remove these noises [8]. Moreover, some redundant variables may
somewhat present themselves as ‘noise’ to overshadow the
expressions of true signals in big omics data. Thus, a de-noising or
its similar process will be needed to separate true signals from red
herrings the sake of robust disease diagnosis. It is noted that
de-noising in our context not only means removing noise, but also
refers to retrieve essential data characteristics, especially latent data
characteristics from input big RNA-seq data.

Though there are different types of omics data available in
TCGA data for some complex disease (e.g. breast cancer), there
is almost no data integration model available to integrate these
heterogeneous data for disease diagnosis. As such, using a whole
TCGA data set to seek reproducible disease diagnosis is not only
theoretically challenging, but also practically immature. Thus, we
investigate complex disease diagnosis in this paper by focusing
on big RNA-seq data, which is an important component in
TCGA data [1, 9]. We have the following two reasons for using
big RNA-seq data. First, it is a typical big omics data and any
results obtained from such data can be extended to others.
Second, deciphering transcriptome is essential for understanding
complex disease mechanism and RNA-seq technologies model
transcription in a more accurate and reproducible approach than
traditional technologies (e.g. microarray) [10]. In other words,
big RNA-seq data prepares itself as a good candidate for
diagnosing complex diseases by monitoring gene expression
differentiation in the whole transcriptome. In the following
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descriptions, big omics data refers to big RNA-seq data unless there
is a special notation.

It is noted that big RNA-seq data in our context means RNA-seq
quantification data rather than their original sequence data before
alignment and normalisation. Big RNA-seq data is still
high-dimensional data, where the number of variables is much
larger than the number of observations, i.e. n≫ p. However, the
ratio between the number of variables and the number of samples:
n/p may decrease remarkably compared with those of traditional
omics data. For example, the ratio for a big RNA-seq data set is in
the order of Θ (10), but the ratio for the traditional omics data
usually reaches Θ(102) or higher. Obviously, the availability of the
large number of samples in big RNA-seq data will enable more
prior knowledge in training for disease diagnosis than the other
omics data, which is believed to contribute to enhancing
diagnostic robustness.

However, how to achieve a reproducible rivalling-clinical disease
diagnostic in a systems approach by using big RNA-seq data? To
our knowledge, no previous work addressed this significant topic
yet. In this paper, we propose a transcriptome marker diagnosis by
viewing the whole transcription data as a profile marker to achieve
reproducible diagnosis. As a more personalised diagnostic approach,
it allows the diagnostic results to repeat themselves instead of
finding gene or network markers. As we pointed out before, as a big
omics data, big RNA-seq data needs a serious de-noising or similar
procedure to retrieve true signals from the whole transcriptome for
the sake of robust diagnosis. Traditional feature selection methods,
however, usually fail to separate true signals from red herrings due
to the limitations of their single-resolution data analysis [11, 12].

To tackle this problem, we employ a novel derivative component
analysis (DCA) that evolves from our previous work in proteomics
data analysis to retrieve true signals from transcriptome in this
paper [11]. Furthermore, a state-of-the-art learning machine [e.g.
support vector machine (SVM)] is employed to discriminate
phenotypes from true signals, which can be viewed as true
‘disease signatures’, to seek reproducible disease diagnosis.

The transcriptome marker diagnosis demonstrates a novel way to
investigate and solve the diagnostic reproducibility issue in a systems
approach. It has a built-in advantage to avoid the reproducibility
issue, because diagnosis of an unknown sample is totally based on
comparing its transcriptome expression with a set of known
transcriptome expressions (training data). In other words, the
whole transcription information is involved in the diagnostic
decision making. That is, reproducible diagnosis is no longer
sought from a set of gene markers or network markers, which
usually express themselves in one experiment, but not in another,
due to the complexity of diseases and tumour micro-environments,
and limitation of existing high-throughput technologies [5, 6, 13].
Instead, the reproducible diagnosis will totally rely on whether
such a transcriptome marker, i.e. a profile marker can achieve
rivalling-clinical diagnostic results computationally each time. For
the convenience of description, we interchangeably use
terminologies profile marker and transcriptome marker in our context.

2 Methods

It is noted that big RNA-seq data used in our experiment is publicly
available level-3 data in the National Institute of Health (NIH) TCGA
database [1]. The level-3 data are the aggregation of processed omics
data from single samples that usually include RNA-seq, array-based
expression, protein expression, DNA methylation, and single-
nucleotide polymorphism (SNP) data. A big RNA-seq data set

usually includes three transcript quantification data obtained after
the alignment for each sample: exon, gene, and splice junction
quantification, in addition to other associated information. Each
quantification data further have raw count, coverage, and Read per
Kilobase per Million mapped reads (RPKM) normalisation data,
where the coverage data are actually another normalisation data that
normalise the raw data by the gene median length [8].

2.1 Big data preprocessing

Each big RNA-seq data set usually counts about several to hundred
gigabytes storage. In this paper, we include three benchmark data
sets: Breast, Prostate, and Kidney data that count 20.7, 10.9, and
12.5 GB, respectively, all of which are from two major platforms:
IlluminaGA_RNASeq and IlluminaHiSeq_RNASeqV2.

We filter out all exon and splice junction quantification data in our
preprocessing and only keep gene quantification for its importance in
complex disease diagnosis. The Breast data consist of 20,352 genes
across 775 solid invasive breast cancer tumour and 100 normal
samples, which count about 280 MB and include the raw data and
its coverage and RPKM normalisation data [10]. Similarly, the
Kidney data consist of 20,352 genes across 475 solid kidney renal
cell carcinormal tumour and 68 normal samples that count about
115 MB. Unlike the Breast and Kidney data, the Prostate data,
which count 78 MB, uses a different algorithm RNA-Seq. by
expectation maximisation (RSEM) to determine the gene
expression levels [14]. It consists of 20,351 genes across 374 solid
prostate adenocarcinoma tumour and 52 normal samples. The raw
data are normalised by dividing a scale factor s =Q3/1000, where
Q3 is the 75-percentile of each sample. Table 1 illustrates the
detailed information about the three data sets.

2.1.1 True signals: As we have pointed out before, the essential
component for the transcriptome marker diagnosis relies on the
successful separation between true signals and red herrings for
input big RNA-seq data. True signals are not only clean data with
a system noise removal, but also those that capture both holistic
and subtle (local) data behaviours of the original data. It is noted
that subtle data behaviours reflect subtle or latent data
characteristics that interpret transient data changes in a short-time
interval or a small set of genes. In contrast, holistic data
behaviours reflect global data characteristics and interpret
long-time interval data changes or data changes over a large set of
genes, which happen more often than those subtle data behaviours.

However, traditional feature selection methods have their built-in
weaknesses in capturing subtle data behaviour and removing system
noise. We categorise them into input-space and subspace ones. The
former seeks a feature subset X ′

[ <
m×p

, m≪ n in the input data
space <

n×p
by conducting a hypothesis test, wrapping a classifier

to features recursively, or simply filtering features according to
some metrics [12]. The latter conducts a dimension reduction by
transforming data X into a subspace induced by a linear or
non-linear transformation before seeking meaningful linear
combinations of the features. In fact, principal component analysis
(PCA), independent component analysis (ICA), non-negative
matrix factorisation (NMF), and their extensions such as
non-negative PCA, and other related matrix decomposition
methods fall into this category [15–17].

The input-space methods usually lack serious de-noising schemes
because they assume input data are clean or nearly clean. However,
such an assumption is obviously inappropriate for big omics data.
Alternatively, the subspace methods face difficulties in capturing
subtle data characteristics because they transform data into a

Table 1 Big RNA-seq data

Data Number of genes Number of samples Raw data, Gb Platform

Breast 20,532 775 solid invasive breast cancer tumours 100 normal samples 20.7 IlluminaGA_RNASeq
Prostate 20,531 374 solid prostate adenocarcinoma tumour 52 normal samples 10.9 IlluminaHiSeq_RNASeqV2
Kidney 20,532 475 kidney renal cell carcinormal tumours 68 normal samples 12.5 IlluminaGA_RNASeq
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subspace to seek meaningful feature combinations. Since the original
spatial coordinates are lost in the transformation, it is almost
impossible to track mapping relationships between features and
subtle data characteristics they interpret or contribute to. In
contrast, global data characteristics are more likely to be extracted
than subtle data characteristics, because there are more features
contributing to holistic data behaviours [16, 18]. As such, global
data characteristics are usually overexpressed, and subtle data
characteristics are shadowed or even missed. However, subtle data
characteristics are essential to achieve high-accuracy diagnosis,
because different samples not only share similar holistic data
behaviour, but have their own subtle behaviours.

The major reasons for these methods’ weaknesses in true signal
extraction can be summarised as follows. First, they are
single-resolution data analysis methods that view each feature as
an indivisible information unit, which makes system noise removal
almost impossible; second, they treat all features uniformly despite
their frequencies in the input space, where much more features
contribute to holistic data behaviour than those to subtle data
behaviour, which makes subtle data behaviour detection quite
difficult. On the other hand, retrieving subtle data behaviours that
occur in a short-time interval means to seek the derivatives of the
original data theoretically. However, it is quite difficult to
accomplish it in a single-resolution data analysis mode for discrete
data such as big RNA-seq data.

2.2 Derivative component analysis

We propose a modified DCA to separate true signals from red
herrings for big RNA-seq data by capturing data derivatives and
removing system noise via multi-resolution analysis according to
our previous work [11, 12, 18]. Unlike traditional methods, it no
longer treats each feature as an indivisible information element.
Instead, all features are hierarchically decomposed into different
components, to capture subtle data characteristics, retrieve holistic
data characteristics, and remove system noise. The wavelet-based
hierarchical decomposition not only separates subtle and holistic
data behaviours, but also makes subtle data characteristics
extraction and system noise removal possible in disease signature
retrieval from transcriptome. Our modified DCA mainly consists
of the following three steps.

First, a discrete wavelet transform (DWT) is applied to each
feature to decompose it hierarchically as a set of detail coefficients
and an approximation coefficient by employing high-pass and
low-pass filters under a transformation level J by assuming each
sample is collected at a corresponding time point [19]. The low
(high)-pass filters only pass low (high)-frequency signals and
attenuates the signals higher (lower) than a cutoff. Since the low
(high)-frequency signals contribute to holistic (subtle) data
behaviours that sketch data tendency in a long (short) time
interval, holistic, and subtle data characteristics are separated under
such a DWT, where approximation coefficients and coarse level
detail coefficients represent holistic data characteristics, and
fine-level detail coefficients represent subtle data characteristics.
Collecting the detail coefficient and approximation coefficients
for all features, we have a set of detail coefficient matrices cD1,
cD2, …, cDJ and an approximation matrix cAJ, where the
approximation matrix and coarse level detail coefficient matrices
(e.g. cDJ) capture global data characteristics, and the fine-level
detail coefficient matrices (e.g. cD1, cD2) capture subtle data
characteristics. In fact, the fine-level detail matrices are the
components to reflect data derivatives in different short-time
windows and can be called derivative components for its
functionality in describing data behaviour. Furthermore, most
system noises are transformed to the derivative components for its
heterogeneity with respect to those features contributing to holistic
data behaviour. Clearly, the DWT separates global characteristics,
subtle data characteristics, and system noise in different resolutions.

Second, DCA retrieves the most important subtle data
characteristics and remove system noise by reconstructing the
fine-level detail coefficient matrices before or at a presetting cutoff

level t (e.g. t = 2). The reconstruction can be summarised as the
two steps: (i) conduct PCA for the detail matrices before or at
the cutoff. (ii) Reconstruct each detail coefficient matrix by using
the first m principal components (PCs) to reconstruct each detail
coefficient matrix to retrieve the most important subtle data
characteristics in the detail coefficient matrix reconstruction.
Usually, we set m = 1, i.e. we employ the first PC to reconstruct
each detail coefficient matrix to retrieve the most important subtle
data characteristics in the detail coefficient matrix reconstruction.
The first PC-based reconstruction also conducts de-noising
because the system noises are usually least likely to appear on the
first PC. Moreover, we have found that most big RNA-seq data
sets usually have >60% variability explanation ratio on its first PC
(see definition in the next paragraph) in our studies.

On the other hand, those coarse level detail coefficient matrices:
cDt + 1, cDt + 2, …, cDJ, which are after the cutoff t, and
approximation coefficient matrix cAJ are reconstructed using at
least variability explanation ratios 95% to retrieve global data
characteristics. The variability explanation ratio ρm is the ratio
between the variance explained by the first m PCs and the total
data variances

rm =
∑

m

i=1

si

/

∑

p

i=1

si

where σi is the variance explained by the ith PC.
Third, DCA conducts corresponding inverse DWT by using the

updated detail and approximation coefficient matrices to obtain
true signals X*, the corresponding meta-data (true signals) with
subtle data characteristics extraction, system noise removal, and
global data characteristics retrieval. The meta-data X* are sharing
the same dimensionality with the original data, but with less
memory storage because less important PCs are dropped in the
reconstruction. Algorithm 1 gives DCA’s details as follows, where
we use Xt instead of X to represent input RNA-seq data for the
convenience of description, i.e. each row is a sample and each
column is a feature in the current context.

Algorithm 1: DCA

1. Input: Xt = [x1, x2, …, xn], xi [ <
p
, DWT level J; cutoff t;

wavelet c; and threshold ρ

2. Output: true signals: X*
3. Step 1: Conduct J-level DWT with a wavelet c for Xt to obtain
[cD1, cD2, …, cDJ; cAJ], where cDj [ <

pj×n
, cAJ [ <

pJ×n
,

pj = p/2j
⌈ ⌉

4. Step 2: Extract subtle data characteristics, remove systems noise,
and retrieve global data characteristics
(a) Conduct PCA for cDj, 1≤ j≤ t to obtain its PC matrix U and
score matrix S:U = [u1, u2, . . . , u pj

], ui [ <
n

and score
matrix S = [s1, s2, . . . , s pj ], si [ <

pj , i = 1, 2, …, pj.
(b) Identify PCs ui, u2, …, um, such that its variability explanation
ratio ρm≥ ρ

(c) Reconstruct cDj � (1/ pj)cDj(1)(1)
T
+

∑m
i=1 ui × sTi , (1) [ <

pj

with all entries being ‘1’s
(d) Reconstruct cDj, t ≤ j≤ J and cAJ under the variability
explanation ratio at least 95%
5. Step 3: Approximate the original data by the corresponding
inverse DWT with the wavelet X*← inverseDWT([cD1, cD2, …,
cDJ; cAJ]).

2.2.1 Parameter tuning: Though an optimal DWT level can be
obtained theoretically by following the maximum entropy principle
[20], it is reasonable to adaptively select the DWT level J
according to the nature of input big RNA-seq data, where large
sample number corresponds to a relatively large J value, for the
convenience of computation. In fact, we have found that a
large transform level does not show advantages compared with a
small transform level in true signal extraction. However, a too
small transform level (e.g. J = 2) may bring some hard time in
separating subtle and global data characteristics because of the
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limited choice for the cutoff value. As such, we select the DWT level
as 3 ≤ J ≤ log2 p

⌈ ⌉

, where p is the number of samples of input big
RNA-seq data, p ≏ O(102). Correspondingly, we empirically set the
cutoff 1 < t ≤ J/2 as to separate the fine and coarse level detail
coefficient matrices for its robust performance.

Furthermore, we require the wavelet c to be orthogonal and have
compact supports such as Daubechies wavelets (e.g. ‘db8’), for the
sake of subtle data behaviour retrieval. A non-orthogonal wavelet
choice may lead to the failure of subtle data behaviour capturing in
data reconstruction. Since the first PC of each fine-level detail
coefficient matrix usually count quite a high variability explanation
ratio (e.g. >60%) for each fine-level detail coefficient matrix cDj

(1≤ j≤ t) in RNA-seq data, we relax the variability explanation
ratio threshold ρ by only using the first PC to reconstruct each cDj

matrix to catch the subtle data characteristics along the maximum
variance direction for the sake of efficient implementation.

The first four plots in Fig. 1 show the true signals of the ten cancer
and control samples between the 1500th and 1600th genes, which
are randomly selected from the Breast data with total 775 control
and 100 cancer samples, extracted by DCA under the cutoff t = 2,
transform-level J = 7, and wavelet ‘db8’. The x and y axes
represent the genes and the gene expression after DCA, respectively.

It is obvious that the true signals of two types of samples appear to
be smoother and more proximal to each other besides demonstrating
less variations, because of major subtle data characteristics
extraction and system noise removal. Similarly, the second row
plots in Fig. 1 illustrate four randomly selected genes from the
Breast data and their corresponding true signals extracted by DCA.
It is clear that they capture global and subtle data characteristics
better than the original ones, and make it easy to distinguish
different expression patterns of genes.

2.3 Transcriptome marker diagnosis

Our transcriptome marker views input RNA-seq data as a
transcriptome marker to discriminate disease phenotypes in a
systems approach with the wish to achieve reproducible
rivalling-clinical diagnosis. However, which learning machine will
be suitable for such a transcriptome marker that invites the whole
transcriptome in diagnosis? We believe an ideal learning machine
should satisfy the following criteria. First, it should have a good
scalability that can handle massive data input well because the true
signals extracted from the big RNA-seq data can be large or even
huge. Second, it should demonstrate a good generalisation
capability for the sake of achieving reproducible rivalling-clinical
diagnostics. Third, it should have a transparent machine learning

structure for optimisation and rigorous learning analysis, in
addition to a good library support.

According to the criteria, we choose SVMs for its efficiency and
advantages in handling large-scale data, popularity in omics data
diagnosis, transparent learning structures, and sufficient library
support resources [21, 22]. As such, we propose novel DCA-based
SVMs (DCA-SVM) to conduct transcriptome marker diagnosis,
which is actually equivalent to a binary classification problem.

Given training RNA-seq samples X = [x1, x2, …, xp]
T and

their labels {xi, ci}
p
i=1,ci [ {−1, 1}, its corresponding true

signals Y = [y1, y2, …, yp]
T are computed by using DCA. Then,

a maximum-margin hyperplane: Oh:w
Ty + b = 0 in <

n
is

constructed to separate the ‘−1’ (‘cancer’) and ‘+1’ (‘control’)
types of the samples in true signals Y, which is equivalent to
solving the following quadratic programming problem
(classification support vector machine type 1 (C-SVM) with a soft
margin implemented by an L1 norm):

min
w, b, j

1

2
w‖ ‖

2
2 + C

∑

p

i=1

ji

s.t. ci(w
Tyi + b) ≥ 1− ji, i = 1, 2, . . . , p

ji ≥ 0.

(1)

The C-SVM can be solved by seeking the solutions to the variables
αi of the following Lagrangian dual problem:

max
a

∑

ai −
1

2

∑

p

i=1

∑

p

j=1

aiajcicjy
T
i yj

s.t.
∑

p

i=1

aici = 0, 0 ≤ ai ≤ Ci, i = 1, 2, . . . , p

ji ≥ 0.

(2)

The normal of the maximum-margin hyperplane can be calculated as
w =

∑p
i=1 aiciyi, where the sparsity of variables αi makes

classification only dependent on few training points. The decision rule

f (x′) = sign
∑

p

i=1

aik(yi · y
′)+ b

( )

is used to determine the class type of a testing sample x′, where y′ is
its corresponding vector computed from DCA. The function k(yi · y

′)
is a kernel function mapping yi and y

′ into a same-dimensional or
high-dimensional feature space. In this paper, we employ the

Fig. 1 Original and true signals of ten cancer and control samples of the Breast data between 1500th and 1600th genes, and four randomly selected genes

across 875 samples. The true signals of the samples appear to be smoother and more proximal to each other besides demonstrating less variations. The true

signals of the genes obviously capture the global and subtle data characteristics better than the original ones
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‘linear’ kernel because we believe complex disease diagnosis is a
linearly separable problem for extracted true signals and non-linear
kernels (e.g. ‘rbf’ kernel) will cause overfitting for omics data [23].

3 Results

We demonstrate our transcriptome marker diagnosis can achieve
rivalling-clinical diagnosis by using the three big RNA-seq data
sets and compare it with state-of-the-art peers in this section. The
state-of-the-art comparison algorithms include three groups of
classification algorithms from different analytic viewpoints. The
first group only consists of the standard C-SVM with a soft
margin specified by L1 norms. The second group consists of three
algorithms that integrate the standard C-SVM with input-space and
subspace feature selection methods, i.e. PCA-SVM, ICA-SVM,
and nfs-SVM. The PCA-SVM and ICA-SVM project the training
data to the subspace spanned by principal/independent component
analysis to detect disease phenotypes [12]. The nfs-SVM filters

input data by using a naive feature selection (NFS) to glean genes
with relatively high average gene counts before employing SVM
to diagnose disease phenotypes. As a widely used input-space
feature selection method, NFS is usually used to remove
low-count genes for normalised data with the assumption that the
genes with high-counts after normalisation are more likely to be
informative genes [5, 10]. The third group consists of a partial
least-square (PLS)-based linear logistic regression (PLS-LLR) that
employs PLS to conduct dimension reduction for LLR analysis.
Though there are other more complicate PLS-based with logistic
regression methods, they cannot apply to our data directly due to
their requirements for relatively low data dimensionality [24, 25].

3.1 Cross-validation, parameter setting, and input data
choice

To avoid potential biases from a specific cross-validation method, we
employ the k-fold (k = 5) cross-validation and an independent

Fig. 2 Comparisons of transcriptome marker’s average diagnostic accuracies sensitivity, specificity, and positive predication ratio with those of other peers

across three big RNA-seq data under the five-fold cross-validation

Fig. 3 ROC plots of transcriptome marker diagnosis (p-marker), SVM, PCA-SVM, ICA-SVM, and NFS-SVM under the five-fold cross-validation
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training and test set approach in our experiments for the sake of more
comprehensive performance analysis for the proposed transcriptome
marker. In the independent training and test set approach, we
randomly select 50% of the data for training and another 50% for
test to fully leverage the large number of samples from big
RNA-seq data. In addition to choosing the first ten
PLS-components in the PLS-LLR classifier, we uniformly set the
transform level J = 7; cutoff t = 2; and apply the first PC-based
detail coefficient matrix reconstruction in DCA for all data for the
convenience of comparison, though these parameter setting may
not be optimal theoretically.

To avoid the possibly negative impacts from sequencing-depth and
gene-length biases on classification and regression, we employ
RNA-seq normalisation data instead of RNA-seq raw count data in
diagnosis. Moreover, we have found that the RPKM normalisation
data generally show a slight advantage in diagnosis than the coverage
data for RNA-seq data (data not shown) [10]. Thus, we choose the
RPKM normalisation or the default normalisation data of each big
RNA-seq data in diagnosis for the sake of algorithm performance.

Fig. 2 demonstrates that the proposed transcriptome marker
diagnosis achieves almost perfect performance and demonstrates
obviously leading advantages over its peers for all data sets in
terms of diagnostic accuracy, sensitivity, specificity, and positive
predication ratios. The big RNA-seq data is actually linearly
separable data in our transcriptome marker diagnosis due to
DCA-based true signal extraction. Alternatively, all the
comparison algorithms demonstrate high oscillations with respect
to the diagnostic measures, which indicate they lack good
generalisation and stability across different data sets and exclude
them as candidates for clinical diagnosis.

Furthermore, it seems that both SVM and PLS-LLR diagnoses
achieve almost a same level performance, both of which
demonstrate slightly better diagnoses than the other comparison
methods. However, they both demonstrate serious diagnostic biases
that mean they are only good at diagnosing one type of sample and
ignoring the other. Such a diagnostic bias usually reflects as quite a
large average positive predictive ratio (PPR) and a small negative
predictive ratio (NPR) or vice versa. Correspondingly, they will
have imbalanced sensitivity and specificity values. For example, the
SVM diagnosis attains an average PPR 89.19% and NPR 20.78%
for the Breast data, which lead to an imbalanced sensitivity

(94.71%) and specificity (11.00%) correspondingly. That is, it
demonstrates a bias by diagnosing the positive targets well, but
the negative targets poorly. On the other hand, the PLS-LLR
diagnosis attains an average PPR 24.00% and NPR 88.51% for the
Breast data, which lead to an imbalanced sensitivity (2.00%) and
specificity (97.42%) also, i.e. it diagnoses the negative targets well,
but the positive target poorly.

Fig. 3 illustrates the receiver operating characteristic (ROC) plots
of the proposed transcriptome diagnosis (p-marker) and four
SVM-based comparison peers under the five-fold cross-validation
for all three data sets [26]. It is interesting to see that the proposed
profile-marker diagnosis has achieved perfect performance for all
data sets and it seems that there is no statistically significant
difference between the other comparison diagnostic methods. In
particular, though average count-based NFS is widely used in
RNA-seq differential analysis, such a coverage-related measure
does not seem to contribute to enhancing the following SVM
diagnosis. It further suggests that using a subset of genes may not
achieve a desirable diagnostic result because of the
unpredictability of feature selection and complexity of disease.

In contrast to the comparison methods, the proposed systems
diagnostic method achieves a 99.77% diagnostic accuracy
(sensitivity 99.74% and specificity 100%) for the Breast data, a
99.81% diagnostic accuracy (sensitivity 99.79% and specificity
100%) for the Kidney data, a 99.76% diagnostic accuracy
(sensitivity 99.73% and specificity 100%) for the Prostate data.
We have to point out that such a clinical-level performance is that
because the true signals extraction in DCA that forces the SVM
hyperplane construction to rely on both subtle and global data
characteristics of the whole profile in a de-noised feature space,
which seems to contribute to a robust and consistent high-accuracy
diagnosis greatly. In fact, since such a consistent performance
applies all three data sets rather than work only on an individual
data set, it almost prevents from any overfitting possibility and
provides a solution for reproducible diagnostic by viewing the
extracted true signals as a uniform profile marker systematically.

In the independent training and test set approach, we include an
ensemble learning method: random undersampling boost
(RUBoost) as well as the original SVM diagnosis in the
comparison algorithms [27, 28]. The reason we choose the
ensemble learning method is because it is believed to perform well
for imbalanced data [29, 30]. We employ an ensemble of 1000
deep trees that have minimal leaf size of 5 with a learning rate 0.1
in RUBoost learning to attain high ensemble accuracy.

Table 2 compares the performance of the transcriptome
marker diagnosis (p-diagnosis) with those of RUBoost and
SVM diagnoses. Not surprisingly, the proposed transcriptome
marker diagnosis still outperforms the other methods by its
rivalling-clinical diagnosis for almost all data sets. In particular, it
achieves 100% specificity for the Breast and Kidney data, which
means the corresponding transcriptome marker diagnosis has a
zero false positive rate. On the other hand, both SVM and
RUBoost diagnoses have quite a high false positive rate due to
their low specifies: 31.43 and 65.71% for the Kidney data. Though
our transcriptome marker diagnosis only achieves 96.26%
accuracy with 100% sensitivity and 70.37% specificity for the
Prostate data, it is easy to detect there is a zero false negative in
the diagnosis, which indicates that all negative targets (‘normal’)
are correctly reported.

Table 2 Comparisons of three diagnoses with independent training and
test sets

Algorithm Accuracy,
%

Sensitivity,
%

Specificity,
%

NPR,
%

PPR,
%

Breast data
p-marker 99.54 99.49 100.00 96.00 100.00
SVM 98.86 98.97 97.92 92.16 99.74
RUBoost 99.77 100.00 97.92 100.00 99.74

Kidney data
p-marker 99.63 99.58 100.00 97.22 100.00
SVM 90.41 99.15 31.43 84.62 90.70
RUBoost 87.82 91.10 65.71 52.27 94.71

Prostate data
p-marker 96.26 100.00 70.37 100.00 95.88
SVM 92.49 94.62 77.78 67.74 96.70
RUBoost 94.84 97.85 74.07 83.33 96.30

Table 3 Comparisons of the proposed method with SVM

Algorithm Accuracy ± standard, % Sensitivity ± standard, % Specificity ± standard, % NPR ± standard, % PPR ± standard, %

Breast data
p-marker 99.77 ± 0.282 99.80 ± 0.264 99.41 ± 1.360 98.52 ± 2.062 99.92 ± 0.195
SVM 98.61 ± 0.524 98.71 ± 0.629 97.82 ± 1.759 91.04 ± 4.065 99.70 ± 0.235

Prostate data
p-marker 99.46 ± 0.553 99.57 ± 0.530 98.70 ± 3.718 97.13 ± 3.385 99.83 ± 0.507
SVM 92.60 ± 1.547 95.97 ± 1.484 68.46 ± 9.535 70.41 ± 7.904 95.65 ± 1.546

Kidney data
p-marker 99.55 ± 0.617 99.75 ± 0.404 98.25 ± 4.331 98.33 ± 2.609 99.74 ± 0.660
SVM 88.52 ± 1.712 96.61 ± 1.558 31.93 ± 8.586 58.39 ± 13.44 90.89 ± 1.682

IET Syst. Biol., 2016, Vol. 10, Iss. 1, pp. 41–48

46 & The Institution of Engineering and Technology 2016



Table 3 compares the performance of the transcriptome marker
diagnosis (p-marker) with those of SVM diagnoses by generating
100 trials of independent training and test data sets by following
the same setting as before. It is interesting to see that the proposed
method (p-marker) still keeps its leading performance than its peer
method. We drop RUBoost for its statistically almost same level
performance with SVM in diagnosis. On the other hand, we can
see that a smaller training data for the Breast data can even lead to
better performance in SVM diagnosis, which may indicate the
instability of SVM diagnosis.

Considering the randomness in training and test data selection, it is
obvious that such an exceptional diagnostic demonstrates its
consistency, and such performance is an impossible result from
classification overfitting by considering the results from the
previous five-fold cross-validation. Instead, the transcriptome
marker’s clinical-level diagnostic performance is from our
effective true signal retrieval mechanism from DCA.

3.2 Big RNA-seq phenotype separation: verify the
correctness of our method from a visualisation viewpoint

Our transcriptome marker diagnosis indicates that big RNA-seq data
diagnosis is a linearly separable problem after true signal extraction.
In other words, big RNA-seq data is linearly separable data. It means
we can always find a hyperplane to separate two types of data
completely [21]. That is, we should be able to identify support
vectors, which are normal or tumour samples closest to the
optimal hyperplane, to separate the two groups of data
geometrically. However, what does it mean to find support vectors
from a translational bioinformatics viewpoint?

It means that we should be able to find gene markers to conduct
phenotype separation for big RNA-seq data and identify the
corresponding support vectors from a visualisation viewpoint. That
is, the phenotype separation with few gene markers will provide
an alternatively strong support for the correctness of our
profile-marker diagnosis, in addition to shedding light on a
systems gene-marker identification. In other words, we should be
able to identify gene markers that can separate big RNA-seq data
spatially if our diagnostic results are correct or at least not subject
to overfitting.

To tackle this problem, we present a novel gene-marker finding
approach to demonstrate the linear separability of big RNA-seq data.
The gene-marker finding algorithm consists of the following steps.
We first approximate a corresponding normally distributed data by
conducting the transform Y = E(log (X + 1))/var(log (X + 1)).
Then, we apply DCA to retrieve true signals of the original big
RNA-seq data for the following differential expression analysis;
finally, we employ classic t-test to look for the differentially
expressed genes with the smallest p-values [31].

Fig. 4 illustrates that the phenotype separations of three data sets
by employing their corresponding top three genes with the
smallest p-values. The reason for choosing the top three genes is
for the sake of three-dimensional visualisation, where the

expressions of the first, second, and third gene markers are
represented by the x, y, and z axes, respectively. Each light/dark
grey dot represents a tumour/normal sample in Fig. 4 and it is
quite easy to identify the corresponding support vectors to separate
the two groups of samples. In other words, we separate two types
of data in the subspace generated by the three top-ranked gene
markers. That is, RNA-seq data is linear separable data under our
technology, which strongly indicates the correctness of our
proposed profile-marker method from a visualisation standing
point. As such, big RNA-seq disease diagnosis is actually a
linearly separable problem under our technology.

3.2.1 Represent transcriptome markers by using exon
expression data: Moreover, we have used exon expression
data to represent a transcriptome marker to further test the
effectiveness of our method. The exon expression data of the three
data sets have the same number of samples, but a huge number of
features compared with their gene expression data sets. For
example, the Breast and Kidney data sets have 239,886 exons and
the Prostate data has 239,322 exons, which count 1.2 GB, 788
and 566 MB storage, respectively. However, our transcriptome
marker attains the identically rivalling-clinical performance for all
three data sets. This is probably because the feature spaces of two
different data sets are identical in classification. On the other hand,
it suggests that our proposed method can also work quite well for
the big data such as exon expression data with at least half
gigabytes storage. It further suggests our method demonstrates a
favourable sub-linear property in handling big omics data [32].

4 Discussion and conclusion

It is worthwhile to point out that our transcriptome marker diagnosis
relies on the true signals extraction by DCA from big RNA-seq data.
Since we drop splice quantification information in the big data
preprocess in this paper for the convenience of computing, we are
interested in investigating its role in disease diagnosis in our future
work to unveil its genomic root. Moreover, it will be an urgent
task for us to collect related clinical-level information from TCGA
database to further enrich our profile-marker diagnostic results for
the sake of deciphering complex disease diagnostic mechanism in
a more comprehensive approach. Our experimental results
demonstrated that the DCA’s parametric tuning works efficiently
though they may not be the optimal ones theoretically. It is
possible to seek optimally parametric settings in DCA for each
proteomic data from an information entropy analysis or Monte
Carlo simulation standing point [20, 33]. However, we are not
sure such a computing-demand way is partially worthwhile
because some rivalling-clinical-level diagnostics have already
attained under our current experimental parametric tuning.

In this paper, we present a transcriptome marker approach for
disease diagnosis using big RNA-seq data and demonstrate its
advantages by comparing it with its competitive methods. Such a

Fig. 4 Phenotype separation for big RNA-seq data sets with identified top three gene markers. Each light/dark grey dot represents a tumour/normal sample. The

expressions of the first, second, and third gene markers are represented by the x, y, and z axes, respectively
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systems approach seems to fit the personalised diagnostics better for
its reproducible diagnosis by viewing input data as a profile marker.
This is because it can be difficult both biologically and
computationally to achieve a reproducible clinical-level diagnostics
for the complex diseases that have usually involved thousands of
genes. Our transcriptome marker diagnosis not only avoids the
overhead in tedious gene-marker or network-marker validation, but
also makes the corresponding clinical implementation efficient,
which is an essential component in personalised diagnostics.

As we pointed out before, the proposed method demonstrates
linear separable performance for all data sets in this paper. Such a
result not only demonstrates the correctness of the proposed
method from a visualisation viewpoint, but also provides a novel
gene-marker discovery approach for big RNA-seq data. This is
because the gene markers that can separate the whole big
RNA-seq data spatially can be further investigated to find its
potential usage in disease diagnosis. The following work can even
go through the gene markers to identify its corresponding network
markers. As such, our work is both biologically and
computationally important. On the other hand, it suggests
complicate non-linear predictive models could not be a desirable
choice for big RNA-seq data. For example, we have applied the
feed-forward deep-learning model to the Breast data and found
almost all the test samples are diagnosed as the majority-count
sample (tumour type) [34].

Though we are quite optimistic to see that our transcriptome
marker diagnosis will be a potential candidate to achieve a clinical
disease diagnosis from big RNA-seq data to overcome the
reproducibility problem in the traditional methods, rigorous
clinical tests are needed urgently to explore such a potential and
validate its clinical effectiveness. In our ongoing work, we are
working with pathologists to investigate the transcriptome
biomarker diagnosis in clinical tests to validate its profile-marker
discovery mechanism [35, 36].
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