
www.ietdl.org

IE

d

Published in IET Systems Biology
Received on 28th October 2013
Revised on 12th March 2014
Accepted on 13th March 2014
doi: 10.1049/iet-syb.2013.0047

Special Issue on Selected papers from The 7th
IEEE International Conference on Systems Biology
(ISB 2013)
T Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 169–175
oi: 10.1049/iet-syb.2013.0047
ISSN 1751-8849
Key network approach reveals new insight into
Alzheimer’s disease
Jan K. Schluesener1, Xiaomei Zhu2, Hermann J. Schluesener1, Gao-Wei Wang2, Ping Ao2

1Division of Immunopathology of the Nervous System, Department of Neuropathology, University Tuebingen, Germany
2Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China

E-mail: jan-kevin.schluesener@uni-tuebingen.de

Abstract: Alzheimer’s disease (AD) is a severe neurodegenerative disorder without curative treatment. Extensive data on
pathological molecular processes have been accumulated over the last years. These data combined allows a systems biology
approach to identify key regulatory elements of AD and to establish a model descriptive of the disease process which can be
used for the development of therapeutic agents. In this study, the authors propose a closed network that uses a set of nodes
(amyloid beta, tau, beta-secretase, glutamate, cyclin-dependent kinase 5, phosphoinositide 3-kinase and hypoxia-induced
factor 1 alpha) as key elements of importance to the pathogenesis of AD. The proposed network, in total 39 nodes, is able to
become a novel tool capable of providing new insights into AD, such as feedback loops. Further, it highlights
interconnections between pathways and identifies their combination for therapy of AD.
1 Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative
disorder [1, 2]. Even though it is subject to extensive
research, early diagnostics and curative treatments are not
available to date [3]. Symptoms of AD overlap and may be
confused with other forms of geriatric dementia. They
include impairment of memory, confusion, mood swings
and aggression as well as language problems [4]. The
scientific data accumulated about AD is resourceful, ranging
from experiments conducted in various cell lines over
transgenic animal models to clinical trials [5, 6].
There are several theories on the pathogenesis of AD, the

two most accepted in the scientific community involve
misregulation of two genes [amyloid-beta A4 precursor
(APP) and tau] as well as their transcribed products. This
misregulation can cause immense damage to both the
exterior and interior of a nerve cell.
AD is a complex disease involving many genetic and

environmental risk factors influencing certain subcellular
processes. These molecules, such as APP, tau and
glutamate, are not isolated in one cell but interact through
signal transduction and transcriptional regulation.
Based on the basic properties of the regulatory network in

biological systems, we have proposed an endogenous
molecular–cellular network hypothesis [7, 8]. This
hypothesis suggests that a minimal set of core molecular–
cellular nodes interact with each other through signal
transduction and gene regulation to form an endogenous
molecular–cellular network. A quantitative description of
the endogenous network consists of a set of non-linear and
coupled differential equations. The non-linear dynamical
interactions among the endogenous nodes can generate
many local attractors with obvious or non-obvious
biological functions. We assume normal physiological and
morbid homeostasis are endogenous attractors underlying
the endogenous molecular–cellular network. The hypothesis
has been applied to phage lambda and cancers [8, 9].
Networks in AD are often created to visualise and thereby

comprehend combinations of sub-cellular processes. We also
show a method of defining stable states in networks.
Here, we use the endogenous network hypothesis to

address the issues in AD. First, according to the
accumulated molecular biology knowledge of AD, a
minimal set of molecular–cellular agents are assumed as
risk factors and molecular signatures of AD. Second, the
interactions, activation/up-regulation or inhibition/
down-regulation, among the agents were summarised from
well-documented gene regulatory network and signal
transduction pathway which suggest that the interactions
have solid biochemical basis. Third, the narrative and
graphical form of endogenous network of AD in Fig. 1 was
formalised by a set of differential equations, which provides
unparalleled precision to test assumptions and define
concepts and mechanisms under consideration [8, 10].

2 Methods and results

2.1 Network design

2.1.1 Minimal set of molecular–cellular nodes for
AD: According to the current understanding of AD at a
molecular level, a minimal set of nodes has been selected to
specify risk factors and molecular signatures of AD. There
are several theories on cause and progression of AD. The
APP and tau theories are the ones receiving broadest
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Fig. 1 Illustration of the concept of an endogenous network that
can show one to several distinct stable states, labelled A and B

The circle (status of a node) is being pulled by attractors into stable states A
and B by directed forces (arrows)
As soon as it reaches a stable states, it will not leave the state without a strong
force directed on it
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support in the scientific community. tau-proteins stabilise the
cellular cytoskeleton by binding microtubuli.
Hyperphosphoryliation of tau to ptau leads to creation and
accumulation of neurofibrillary tangles, resulting into
Tauopathies such as AD. For these reasons, we chose
amyloid beta (Aβ) and tau as nodes, since their aberrant
regulation is highly involved in the pathogenesis of AD [11].
A main cause of AD are the APP aa 35–45 peptide

segments. They are deposited in extracellular, dense,
star-like structures, accumulating either by increased
production or by decreased clearance, by for example,
microglia. In this network, we focus on increased
production by a positive feedback loop. Other genes chosen
as essential nodes are as follows.
The role of APP in healthy individuals is of regulatory

nature, it only exist in primates and is highly homologous
between humans and non-human primates. The latter,
however, seem to be mostly resistant to its adverse effects
such as AD [12]. Murine models for research are transgenic
models, what poses limitations to the research [13]. BACE
is a β-secretase involved in cleaving the pathogenic segment
off APP. Glutamate, the most abundant activating
neurotransmitter in the brain, has a widespread function in
healthy individuals. It is involved with memory and
learning, two functions that get impaired by AD.
It was shown that Aβ induces glutamate secretion [14].

Glutamate has, besides its function in the healthy brain, an
excitotoxic effect by overstimulating adjacent cells and was
connected to AD [15]. It is assumed that a rise in
extracellular glutamate levels caused by Aβ will increase
the intracellular levels of Ca2+ in surrounding glutaminergic
cells. Several neurological diseases are associated with
excessive stimulation by activatory neurotransmitters
(excitotoxicity). Studies showed that glutamate levels are
increased in brains of AD patients [15].
One of the receptors of glutamate is NMDAR

(N-methyl-D-aspartate receptor); it allows for Ca2+ influx.
170
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Ca2+ has many different functions in nerve cells, the most
common one is the depolarisation of the postsynaptic cell in
a chemical synapse. Transmitters are stored in vesicles in
the presynaptic nerve cell and fuse with the cell wall
because of an ionic change caused by an action potential.
They diffuse through the synaptic cleft and cause a change
in the electrical membrane potential of the postsynaptic cell
by ionic influx into the cell by transmitter-regulated
transporter proteins. Ca2+ is required by the
calcium-modulated protein (CaM). It is an intermediate
messenger that, among others, activates the rat sarcoma
(protooncogene) (RAS)/rat fibrosarcoma (RAF)-pathway
[16]. Ca2+ ions are as well of necessity for the function of
the cleaving enzyme calpain, responsible for cleaving the
CDK5 activator p35, creating its inhibitor p25. p25 and
CDK5 form a complex that is over-expressed in AD
patients [17]. CDK5 was chosen for the network since it
has been connected to AD [18] and hyperphosphorylates
tau in a way similar to AD; its expression is increased in
the brains of AD patients [19]. The healthy function of
CDK5 lies in neuronal maturation and migration [20]. The
p25–CDK5 complex inhibits tau by hyperphosphorylation;
this inhibition can constitute incorrect tau function,
contributing to AD. The CaM-mediated effect on RAS
activates RAF, but also activates PI3 K (phosphoinositide
3-kinase), a family of enzymes involved in developmental
cell functions. It is also part of the PI3 K/AKT/
mTOR-pathway which results in formation of the AKT/
PKB-complex. This complex initiates expression of HIF1α,
hypoxia-induced factor 1 alpha, increased in brains of AD
patients. NF-κ-B is a regulatory composite protein central to
many healthy cellular processes (such as development and
cellular homeostasis); misregulation of a regulatory gene
can have many effects, among them, apparently, AD [21].
The PI3 K pathway has an activating effect on NF-κ-B via
its role in the PIP2/PIP3 transduction [22], via GEF and
RAC1. Also affected is the AKT/PKB complex [23].
MAPK10 is a neuronal version of cJUN and a member of
the MAPK family. It is associated with different kinds of
cancer. It was shown, however, that this pathway is of
importance to AD as well [24, 25]. HIF1α, hypoxia
inducible transcription factor 1 alpha and its connection to
oxygen deprivation, appears as essential to the pathogenesis
of the disease [26]. In this family, transactivation is the
result of phosphorylation. In our network, MAPK10 is
inhibited by CDK5 [27] and tau [28, 29] and then has
increasing interconnections to TGFβ [30] and a negative
connection to NF-κ-B [31], two other important regulatory
groups. NF-κ-B is of central importance for almost any
regulatory network. In ours, it receives negative input
from MAPK10 and PPARgamma [32] and positive input
from carbon monoxide (CO) [33] and RAC1 [34]. It
shows increasing effect on AKT [35]. HIF1α is a key
node for its respective part of the network. It is of
importance to AD, as was shown repeatedly [26] and has
proven to be central in this network as well. It activates
both BACH1 and NRF2 [36], two inhibitors of HO-1, an
enzyme creating CO, feeding back positively on
NF-κ-B. For our network, we assumed that a negative
effect outweighs the direct positive effect by
interconnection. tau protein is noted in Table 3 as being
decreased, although it accumulates. This is because of its
phosphorylation, which leads to loss of function and
accumulation [37]. HIF1α is a protein that usually is
expressed under an hypoxic environment. Several
publications [26, 38, 39] showed its importance in AD.
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 169–175
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2.1.2 Interaction of the agents forms an endogenous
AD network: After identifying key molecular factors, the
activation/up-regulation or inhibition/down-regulation
among these agents was summarised from well-documented
gene regulatory networks and signalling transduction
pathways which suggest that the interactions have a solid
biochemical basis. The hypothesis suggests that the agents
and interactions between them form an autonomous and
decision-making network, which suggest that the
transmission of information is not one way and there is no
privileged causality in the network.

2.2 Calculations

Attractors, or specific node interconnections, are putting a
directed force on a network’s state, directing it to a stable
state – in case of a medical network either a healthy or a
diseased state. Once a network reaches one of them, it is
unlikely that the state will change on its own without a very
strong exogenous attractor affecting it. Equation (1)
describes the irritation rule that is the basis for the
calculations, a more detailed description is available [40].
The bioinformatic analysis of the network was based on the
change of each node (protein, gene, molecule or ion). The
rate of change is determined by ‘increasing effects’
(production, activation and intake) and ‘decreasing effects’
Fig. 2 Closed AD network build around the key nodes APP, tau, BACE

Solid lines indicate activating, dashed lines inhibitory effects
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(degradation, inhibition and excretion). Increasing effects
are determined by interactions (e.g. node interconnection) in
the endogenous network and modelled by a sigmoid curve.
A network can have several steady states, formed by

increasing and decreasing effects as shown in Fig. 1.

2.2.1 Quantification of the endogenous network: A
quantitative description of the key endogenous network is
possible by coupled differential equations [10, 41, 42].
We use PPARγ as example to show how to obtain the

differentiation equations (Fig. 2). PPARγ is up-regulated by
CREB, while down-regulated by Akt. The concentration or
activity of PPARγ under the influence of the protein CREB
and Akt takes the form in (1), where [PPARγ], [CREB],
[Akt] refers to the protein concentration. f ([CREB], [Akt])
is the integrated production rate of PPARγ. (PPARγ/tPPARγ)
is the degradation rate, it depends on the degradation
constant tPPARγ

d[PPARg]

dt
= f ([CREB], [Akt])− PPARg

tPPARg
(1)

When we further assume that the activation of PPARγ
requires activated CREB, and at the same time is
inactivated and Akt, the integrated production rate
f ([CREB], [Akt]) is quantified by the Hill function, as
, Glutamate, CDK5, PI3 K and HIF1α

171
& The Institution of Engineering and Technology 2014



Table 1 Relating the gene symbol or molecule name with the
index number used for the calculations

Index number Node ID

1 glutamate
2 NMDAR
3 Ca2+

4 CaM
5 RAS
6 Shc1
7 RAF
8 MEK1/2
9 ERK1/2
10 p35
11 Calpain
12 CDK5
13 p25
14 CDK5/p25
15 tau
16 RSH
17 CREB
18 PPARγ
19 CEBPβ
20 NF-κ-B
21 CO
22 RAC1
23 AKT
24 PI3 K
25 PIP3
26 GEF
27 PDK1
28 AKT/PKB
29 PRAS40
30 mTOR
31 HIF1α
32 BACE
33 Aβ
34 TGFβ
35 MAPK10
36 TGFβR1
37 BACH1
38 NRF2
39 HO1
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displayed in the following equation

f ([CREB], [Akt]) = VPPARg ×
[CREB]n1i

K1i + [CREB]n11

× K12

K12 + [Akt]n12

(2)

where VPPARγ is the maximal production rate of the protein
PPARγ. n11 is the Hill coefficient, K11 is the dissociation
constant, biochemical parameters describing the kinetic
properties of each protein in regulating the production of
PPARγ.
The number and complexity of yet unknown factors

influencing cellular and sub-cellular behaviour make it
impossible to obtain all parameters needed for a complete
bioinformatic model. We focused on the interaction
properties that will not be influenced by the pitfalls of
unavailable biochemical factors, but rather depend on
logical interactions and their topological structure [42]. For
our calculations, we considered a relative concentration or
activity of the nodes by normalising them on a range from
0 (minimal content/activity) to 1 (maximal content/activity),
following the concept of relative gene expression (known
from e.g. microarrays). We also want to point out that it is
impossible to enumerate all the possible attractors of this
high-dimensional non-linear dynamic system. The attractors
in this study were obtained by sampling. By sampling
enough times, we can confirm that there are at least five
attractors (see supplemental material). The dynamical
system may include limit cycles and chaos; however, at the
present stage we found neither.
The maximal production rate VPPARγ and the degradation

rate tPPARγ are normalised as 1. The values for n1i and K1i

are selected within a reasonable range to grasp the key
feature of activation or inhibition, for example, n1i = 3 and
K1i = (1/8). The exact process of scanning for parameters is
described in the supplemental materials. The quantitative
assumptions provide a general framework to quantify the
endogenous network. Other proteins, like from the working
endogenous network of liver, are quantified in a similar
way (see supplemental materials).
The working endogenous network is described by a

non-linear dynamical system which implies some attractors
are underlying the endogenous network [7, 8, 10]. We show
that attractors are robust against reasonable parameters by
scanning n and K in the Hill function (supplementary
tables 2–7). The results suggest that attractors are
determined by emerging properties of network topology
structure and dynamic logic relationship rather than by
selective parameters. Each attractor is specified by relative
content/activity of the molecular–cellular agents. In order to
identify the biological function of attractors, we first
summarise the relative change of each agent, obtained from
computing in Table 1.
After computing the states, we compared the relative

change of each agent from a healthy to AD state, according
to the experimental data in Table 2. It compares already
published experimental results to the current network study.
2.3 Key network

The key network proposed in this paper is made of 39 nodes.
The number of each node and its associated gene is displayed
in Table 1. The network itself is displayed in Fig. 2.
172
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2.4 Calculation results

The value assigned by calculation can be taken as an indicator
of gene expression, reaching from 0 to 1.0. If ‘Node 1’ in
‘Stable State A’ has a value closer to 1 than in ‘Stable State
B’, the expression of ‘Gene 1’ is predicted as higher, and
vice versa. The relative value was assigned to each node by
normalising them (see Sections 1–3.2). The results of the
calculation are shown in Table 2, showing the relative value
of each node.
The results show two stable states. To test the correctness

of our prediction, we compared the calculated gene
expression level to the literature. The first stable state relates
to gene expression known from healthy individuals. We
found the change of gene expression between first and
second stable state (increased/decreased) documented in
various publications, see Table 3. Some of the nodes have
not yet been tested in lab experiments, so no biomedical
data is available yet to confirm the rest of our predictions.

3 Discussion

The published data from many different research sources were
not created with the sole intention of being used in a network,
but rather aimed to show individual effects. This poses the
challenge to evaluate the overall effect created by many
such interconnecting individual effectors. Computer
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 169–175
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Table 2 Predicted expression levels from the network analysis
ranging from 0 to 1 for the two stable states calculated from the
network

Node ID Healthy value Disease value

glutamate 0 0.8692
NMDAR 0 0.8678
Ca2+ 0 0.8673
CaM 0 0.8671
RAS 0 0.9286
Shc1 0 0.8655
RAF 0 0.889
MEK1/2 0 0.8754
ERK1/2 0 0.8703
p35 0 0.1155
Calpain 0 0.8671
CDK5 0 0.002
p25 0 0.867
CDK5/p25 0 0.867
tau 1 0.133
RSH 0 0.8683
CREB 0 0.8675
PPARγ 0.9091 0.0032
CEBPb 1 0.1352
NF-κ-B 0 0.8537
CO 0.9091 0.0031
RAC1 0 0.8683
AKT 0 0.8615
PI3 K 0 0.889
PIP3 0 0.8754
GEF 0 0.8703
PDK1 0 0.8754
AKT/PKB 0 0.9291
PRAS40 1 0.1109
mTOR 0.0909 0.9866
HIF1α 0.0075 0.9057
BACE 0 0.8814
Aβ 0 0.8726
TGFβ 0 0.8578
MAPK10 0 0.8449
TGF βR1 0 0.8632
BACH1 0 0.8814
NRF2 0 0.8814
HO1 1 0.0681

Table 3 Predicted expression levels from the network analysis
ranging from 0 to 1 for the two stable states calculated from the
network

Node ID Predicted AD Literature AD Reference

glutamate ↑ ⇑ [43, 44]
NMDAR ↑ ⇑ [45]
Ca2+ ↑ – –
CaM ↑ – –
RAS ↑ ⇑ [46]
Shc1 ↑ – –
RAF ↑ ⇑ [47]
MEK1/2 ↑ ⇑ [48]
ERK1/2 ↑ ⇑ [48]
p35 ↑ – –
Calpain ↑ ⇑ [49]
CDK5 – – [19, 50]
p25 ↑ ⇑ [50]
CDK5/p25 ↑ ⇑ [50]
tau ↓ ⇓ [37]
RSH ↑ – –
CREB ↑ ⇑ [51]
PPARγ ↓ ⇓ [52]
CEBPb ↓ – –
NF-κ-B ↑ ⇑ [53]
CO ↓ ⇓ [54]
RAC1 ↑ – [55]
AKT ↑ ⇑ [56]
PI3 K ↑ – –
PIP3 ↑ – [57]
GEF ↑ – –
PDK1 ↑ – –
AKT/PKB ↑ ⇑ [56]
PRAS40 ↓ ⇓ [58]
mTOR ↑ ⇑ [59]
HIF1α ↑ ⇑ [26]
BACE ↑ ⇑ [60]
Aβ ↑ ⇑ [61]
TGFβ ↑ – –
MAPK10 ↑ ⇑ [62]
TGFβR1 ↑ – –
BACH1 ↑ ⇑ [63]
NRF2 ↑ ⇑ [64]
HO1 ↓ ⇓ [54]

The arrows describe the relative expression of the nodes in the
network
In the column ‘Predicted AD’ the gene expression of the healthy
against diseased state was displayed as increased or decreased
Under the column ‘Literature AD’ they refer to increased/
decreased availability in reference to their respective control
groups
The minus sign refers to not yet available biochemical data
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modelling is a convenient platform to combine separated
knowledge into a large network to evaluate collective
behaviour. The results obtained with our AD network
affirms the single pieces of information were mapped and
that it contains key nodes of importance to AD
pathogenesis, so that global behaviour emerges. The
calculations revealed two stable states, one relating to
healthy gene expression levels, and one to AD
pathogenesis. Further, this network shows the ‘calcium-
mediated’ step as an important way for feedback loops.
A sound network is the basis of a reasonable approach.

This requires an extensive review of available data and
literature. This enabled us to construct a novel network
from scratch, incorporating data from several sources
(reviews, primary research articles and pathway databases).
A network needs to be big enough to consist of all
necessary elements, making it a reasonable biomedical
approach, yet small enough that problems from
over-inflated bits of information can be avoided. Using
these ideas, it is possible to create a key network, consisting
only of the most important nodes.
After designing the endogenous molecular network

describing key nodes of AD, it is possible to compute all
possible stable states of the network in this environment.
The calculations showed two stable states, one that predicts
a regulatory state similar to healthy individuals, as well as
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 169–175
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another one corresponding to expected AD expression
levels. The actual and expected expression levels were
displayed with upward pointing arrows (increased in regard
to the respective control group/stable state) or downward
pointing arrows (decreased in regard the respective control
group/stable state) which show the value of this node, if
biochemical data was available. The data is shown in Table 3.
The network forms a platform for further analysis of

pathological regulation of the AD state. It can be easily
expanded to include more genes and new interconnections.
Such networks can be used for advanced analysis, like
revealing treatment options or developing diagnostic tools.
When investigating a medical compound and its way of
action (e.g. activating a signal cascade feeding into the
network) a change in the stable states caused by it can be
investigated. The described method can be used to simulate
changes in gene expression in silico without the need for
elaborate laboratory techniques for early stages. Synergistic
effects of drugs could be simulated by this method quite
easily.
173
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Table 4 Abbreviations

Symbol Name

Aβ amyloid beta
AD Alzheimer’s disease
AKT protein kinase B (PKB)
APP amyloid-beta precursor protein
BACE beta-secretase
BACH1 BTB and CNC homology 1, Basic Leucine Zipper

Transcription Factor 1
Ca2+ calcium ion
CaM calcium-modulated protein
CDK5 cyclin-dependent kinase 5
CEBPβ CCAAT/enhancer-binding protein beta
CO carbon monoxide
CREB cAMP response element-binding protein
ERK1 mitogen-activated protein kinase 3
HIF1α hypoxia-induced factor 1 alpha
HO1 heme oxygenase 1
MAPK10 myogen-activated protein kinase 10
mTOR mechanistic target of rapamycin
NF-κ-B nuclear factor kappa B
NMDAR N-methyl-D-aspartate receptor
NRF2 nuclear factor (erythroid-derived 2)-like 2
p35 cyclin-dependent kinase 5, regulatory subunit 1
PDK1 pyruvate dehydrogenase lipoamide kinase isozyme
PI3 K phosphoinositide 3-kinase
PIP3 phosphatidylinositol (3,4,5)-trisphosphate
PPARγ peroxisome proliferator-activated receptor gamma
RAC1 Ras-related C3 Botulinum toxin substrate 1
RAF rat fibro sarcoma
RAS rat sarcoma (protooncogene)
Shc1 SHC-transforming protein 1
TGFβ transforming growth factor beta
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Several other frameworks have also been proposed from
the point of view of systems biology, such as the ENCODE
project [40]. Theoretically, the regulatory mechanism can
be deduced from high throughput data, given enough
quality data input. Nevertheless, in reality the present
genome wide gene expression and protein interactions
information are far from achieving this goal [65]. In the
endogenous network construction, we solve this issue by
making full use of the well-documented gene regulatory
network and signalling transduction pathway which reflect
our accumulated knowledge.
In this paper, a hypothesis focusing on AD has been

proposed, from the viewpoint of systems biology. The
working network was quantified by a set of differential
equations, giving us two robust attractors. By comparing
the modelling results and experimental data, we conclude
that these two attractors reproduce the molecular signature
of normal brain tissue and AD. In the light of the
hypothesis, the genesis and progression of AD can be
regarded as switching from one attractor over to the other
one, thus opening up possibilities for future development of
strategies for prevention or therapy of AD.
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