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Abstract: Lung cancer is a leading cause of cancer-related death worldwide. The early diagnosis of cancer has
demonstrated to be greatly helpful for curing the disease effectively. Microarray technology provides a promising
approach of exploiting gene profiles for cancer diagnosis. In this study, the authors propose a gene expression
programming (GEP)-based model to predict lung cancer from microarray data. The authors use two gene selection
methods to extract the significant lung cancer related genes, and accordingly propose different GEP-based prediction
models. Prediction performance evaluations and comparisons between the authors’ GEP models and three
representative machine learning methods, support vector machine, multi-layer perceptron and radial basis function
neural network, were conducted thoroughly on real microarray lung cancer datasets. Reliability was assessed by the
cross-data set validation. The experimental results show that the GEP model using fewer feature genes outperformed
other models in terms of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. It
is concluded that GEP model is a better solution to lung cancer prediction problems.
1 Introduction

Cancer is considered as a genetic disorder with unknown causes and
mechanisms in most cases. Among the cancer types, lung cancer is a
major killer disease around the world, especially in America and East
Asia [1–3]. Lung cancer accounts for ∼25% of cancer related death
worldwide, which is higher than other most prevalent cancers
together, such as breast, prostate and colorectal cancers [4].
However, the genetic factors of lung cancer are still yet to be clearly
understood because lung cancer is a complex genetic disease which
is developed by the concurrence of many genetic changing events
[5]. Lung cancer can be divided into two types: non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). The more
common lung cancer type is NSCLC, which is found in ∼80% of
lung cancer patients. NSCLC can also be sub-categorised as
squamous cell carcinoma, adenocarcinoma (AC) and large cell
carcinoma (LCC) [6]. Traditionally, physical analyses of tissues are
performed for lung cancer diagnosis and prognosis using chest
X-ray, computed tomography scan and magnetic resonance imaging
[7, 8]. Unfortunately, these techniques can only detect the
malignant cells in the late stage of lung cancer, which results in low
survival rates (∼16% for NSCLC and 6% for SCLC) [9]. With the
advances in molecular biology, unfortunately, these techniques can
only detect the malignant cells in the late stage of lung cancer,
which results in low survival rates (∼16% for NSCLC and 6% for
SCLC) [9]. With the advances in molecular biology, especially the
microarray technology, we can now acquire the information of
DNA, RNA and proteins to detect the formation of tumours in
earlier stages. This would result in an increase of cancer patient
survival rate, especially for lung cancer patients. One application of
microarray technology is for cancer classification analysis, in which
microarray data are used to determine if genes are active,
hyperactive or inactive in various tissues. Then, samples are
classified into two or more groups especially the microarray
technology, we can now acquire the information of DNA, RNA and
proteins to detect the formation of tumours in earlier stages. This
would result in an increase of cancer patient survival rate, especially
for lung cancer patients. One application of microarray technology
is for cancer classification analysis, in which microarray data are
used to determine if genes are active, hyperactive or inactive in
various tissues. Then, samples are classified into two or more
groups [10]. There are many studies on the classification of lung
cancer [1, 4, 11, 12]. To ensure the successful diagnosis and
effective treatment for cancer diseases, the classification process has
to be accurate and reliable.

Machine learning techniques have been widely used in the last two
decades for cancer prediction and prognosis, especially the techniques
of artificial neural networks (ANNs), support vectormachines (SVMs),
and Bayesian networks [13, 14]. For example, to identify SCLC and
NSCLC cells, SVM method was used on lung cancer gene
expression databases with prior knowledge [15]. ANNs have solved
many problems related to classification and pattern recognition.
ANNs use input variables to train the classifier and create the output
by using multiple hidden layers which use mathematic processes to
connect the neural nodes. ANN has become a standard method for
different classification tasks [16]. However, it has some drawbacks.
The structure of ANN causes many time-consuming operations
which lead to an inefficient performance. Furthermore, the generic
layered structure of ANN known as a ‘black-box’ makes it almost
impossible to look into the working mechanism of the classification
process or why an ANN does not work. Different from ANNs, SVM
hardly has the over-fitting problem, but when the dataset is large, the
training process will be slow [13, 17]. In recent years, an innovative
evolutionary algorithm called gene expression programming (GEP)
was proposed by Ferreira [18, 19]. GEP provides a data visualisation
model which can easily convert a classifier into a mathematic model.
One study has shown the power of GEP in predicting essential
proteins indispensable for cell survival [20]. Another success story of
GEP is the prediction of adverse events of radical hysterectomy for
cervical cancer patients with the accuracy of 71.96% [21]. For lung
cancer classification, some GEP-based models have been proposed.
For example, Yu et al. [11] proposed an optimal biomarker joint
model using a GEP algorithm to classify lung tumours. They also
developed a GEP model for the auxiliary diagnosis of NSCLC lung
cancer using serum biomarkers [17]. These research works show that
GEP provides a promising approach to cancer prediction/diagnosis
and prognosis because of its good performance of using simple
coding to solve complex problems. However, to our knowledge,
there is no research on using the GEP model to classify lung cancers
from microarray data.
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In this research, we propose a new GEP-based classifier to classify
lung cancers frommicroarray data. In fact, we use two models to select
feature genes (attributes) from microarray data, one is the Relief
Attribute Eval another is the Random Forest (RF). GEP models are
then constructed based on the selected feature genes to classify lung
cancers. We used three real lung cancer datasets to compare the
prediction performance of our GEP-based classifier and other three
representative classifiers: SVM, multilayer perceptron (MLP) and
radial basis function neural network (RBFNN) classifiers, in terms
of accuracy, sensitivity, specificity and area under ROC curve
(AUC). For the reliability evaluation, the k-fold cross validation and
the average of the results were used. The experimental results show
that the proposed GEP model using fewer attributes outperforms the
existing models in lung cancer prediction.

The paper is structured as follows. Section 2 briefly explains the
GEP method followed by Section 3 which presents our GEP-based
approach for constructing a novel classifier and the settings of our
experiments. The experimental results of our classifier in
predicting lung cancer, as well as the comparison results of our
classifier with other representative classifiers on the same datasets,
are presented in Section 4. We discuss our experimental results in
Section 5, and finally in Section 6 conclude our work with some
directions for future work.
2 Gene expression programming

GEP is an algorithm that simulates biological evolutions to create and
evolve computer programs.GEPwas proposed byFerreira [22]with the
assumption of being, in some way, an extension of genetic
programming (GP) [23] while preserving a small number of genetic
algorithm (GA) properties [24]. The difference between GP and GEP
is the chromosome representation. In GEP chromosomes are not
represented as trees, but as linear strings with a fixed length. This
feature is inherited from GA. In GEP, programmes (individuals) are
encoded by chromosomes, and a chromosome consists of genes (can
be one gene or more) which are structured with a head and a tail. The
head consists of functional operators such as (+,−,×,/) and/or
terminal elements such as symbols and conditions. The tail consists
of terminal elements only and its size is calculated by t = h (n− 1) +
1, where h and n represent, respectively, the size of the head and the
maximum number of parameters which is required by the functions
in the function set [25]. There are no limitations on the size of a gene
which is determined by the head size. Phenotype with an expression
tree (ET) is a result of the conversion process from genotype, which
is established when each gene representation is given.

A chromosome is constructed by a linking function (can be a
mathematical function such as addition or a logical function such as
AND) that links the genes to each other (i.e. the outcome of joining
multiple trees together). Individual chromosomes form a sample
population, which undergoes evolutions to produce new generations
by performing genetic operations (mutation, transposition, root
transposition, gene transcription and gene recombination),
calculating the expression values for every chromosome/individual,
judging the fitness of each chromosome based on its expression
value, and then selecting those chromosomes with better fitness
values as the next generation to continue the evolution. The
evolution process will stop when a predefined termination criterion
is satisfied, then the individual/chromosome with the best fitness
value is selected as the classifier model. Depending on the problems
considered, different fitness functions could be defined. More
details of GEP can be found in [26].
Fig. 1 Flowchart of building a GEP classifier
3 Classification model and settings

3.1 GEP-based classifier

In this work, we use GEP to construct a classifier for lung cancer
prediction/classification. To do this, we need to follow the
following major steps: defining chromosomes using the function
and terminal sets, initialising a population with the defined group of
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chromosomes, defining a fitness function for evaluating
chromosomes, selecting eugenic individual/chromosomes from the
population, reproducing a group of chromosomes of the next
generation via genetic operations on the selected eugenic
chromosomes, and checking the termination condition of the
evolution. Fig. 1 illustrates the flow chart of building a GEP classifier.

Actually, to build a classifier from GEP for lung cancer prediction,
we first build a set of functions and a set of terminals to define
chromosomes that will be expressed as the non-linear
combinations of functions and terminals. The set of functions
consists of mathematical operators which are +, −, ×, ÷, Exp, Sqrt,
Log and Logi, while the set of terminals consists of extracting
feature genes (attributes) from the microarray dataset and the relevant
coefficients. Here Exp(x) is the exponential function, Sqrt(x) is the
square root function, Log(x) is the logarithmic function, and Logi
(x) is the function defined as Logi(x) = 1/(1 + exp(-x)). After that,
we define the chromosomal structure by setting the head length be
10, tail length is 11 and the number of genes in each chromosome
be 4. For instance, if there are five attributes related to lung cancer
(d0,d1,…,d4), a single chromosome could be constructed as
follows (the head is shown in bold, each line joined by the symbol
‘+’ represents a gene of GEP)

∗.+ .+ .∗.∗.+ .+ .+ ./.− .d3.d3.d1.d4.d2.d4.d4.d4.d3.d0.d0

+
+ .Sqrt.− .d3.d0.∗.+ .+ .∗.
+ .d0.d1.d0.d2.d4.d0.d4.d4.d2.d0.d0

+
/.∗.+ .− .d1.∗.d1.+ .d4.d4.d2.d3.d0.d0.d4.d3.d0.d1.d3.d2.d2

+
∗.∗.∗.d0.Logi.− ./.− .

+ .Logi.d1.d3.d3.d1.d1.d0.d4.d1.d2.d4.d3
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The chromosome notation used in the above example is called Karva
notation, or K-expression. A K-expression can be converted into an
ET. The conversion starts from the first position in the Karva
notation, and expands as a binary tree by adding the elements of
the Karva notation into the tree as the nodes one by one. At each
tree layer, the elements are added from left to right. This tree
expanding process continues layer-by-layer until all leaf nodes in
the ET are the elements from the terminal set. The corresponding
ET of the above chromosome is shown in Fig. 2.

The second step is to initialise the population by randomly
constructing individuals (i.e. chromosomes) from the defined
function and terminal sets. The size of the population is set at 30
in our model.

The third step is to define a fitness function for evaluating each
chromosome individually. The fitness function SSPN is defined as
the product of sensitivity (SN), specificity (SP), positive predictive
value (PPV), and negative predictive value (NPV). We select
SSPN in this study as the fitness function, which is used to obtain
optimal results [11, 23]. The mathematical formula of the fitness
function is given by the following equation

SSPNi = SNi × SPi × PPVi × NPVi (1)

where SNi, SPi, PPVi and NPVi are calculated by (2), (3), (4) and (5),
Fig. 2 Example of GEP ETs. Four sub-ETs
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respectively

SNi =
TPi

TPi + FNi

( ) (2)

SPi =
TNi

TNi + FPi
( ) (3)

PPVi =
TPi

(TPi + FPi)
(4)

NPVi =
TNi

(TNi + FNi)
(5)

where TNi, TPi, FNi and FPi are the numbers of true negatives, true
positives, false negatives and false positives of classification/
prediction, respectively, for chromosome i (a classifier) over the
whole training dataset.

The above four possible outcomes TN, TP, FN and FP are for a
single prediction of a binomial classification task with two classes
‘Yes’ (‘1’) and ‘No’ (‘0’). In fact, for each chromosome in an
evolved generation has two steps. The first step is extracting the
expression values of the training case from the microarray dataset
with respect to the selected feature genes (attributes). The second
IET Syst. Biol., 2016, Vol. 10, Iss. 5, pp. 168–178
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Table 2 Characteristics of microarray datasets

Dataset # Samples # Genes Class 1 Class 2

Michigan 96 7129 86 10
Harvard 181 12 533 31 150
GEO 58 1700 40 18
step is calculating the value score by combining these extracted
expression values according to the ET of the chromosome. Then,
the classification score is converted into ‘1’ or ‘0’ using a 0/1
rounding threshold (e.g. 0.5), i.e. if the classification score is
greater than the rounding threshold, then the result of the
classification is ‘1’ (‘Yes’), otherwise ‘0’ (‘No’).

The fourth step is to rank all individuals (chromosomes) in the
generation from the highest to the lowest fitness scores, and
choose the top 20% of the population as the selected eugenic ones.
The fifth step is to perform a set of genetic operations, including
mutation, transposition and crossover, on the eugenic individuals
to produce new chromosomes of the next generation that has the
same size as the former one. Steps 4 and 5 are repeated until a
predefined number of generations are achieved. Then, the
individual (chromosome) with the highest fitness score in the last
generation is selected as the final classifier. The settings of GEP
method for building a classifier are presented in Table 1.

3.2 Microarray datasets

In our experiments, we evaluated our GEP classification model on
three public microarray datasets which are free to download and
commonly used by researchers for lung cancer classifications.
These three datasets and their main characteristics (e.g. the number
of samples, the number of genes and class distribution) are shown
in Table 2. These gene expression datasets were downloaded from
the National Library of Medicine (http://www.ncbi.nlm.nih.gov/
pubmed) and Kent Ridge Bio-medical Dataset (http://datam.i2r.a-
star.edu.sg/datasets/krbd/index. html# cs4-software), the details of
these datasets are as follows.

Michigan dataset had 96 lung cancer cases and 7129 genes.
Among these samples, 86 patients had cancer labelled as
(‘Tumour’). The remaining ten patients were labelled as ‘Normal’
and they did not suffer from lung cancer.

Harvard dataset (Brigham and Women’s Hospital and Harvard
Medical School) had 181 lung cancer cases and 12,533 genes.
Among these samples, 150 patients had cancer type AC. The
remaining 31 patients suffer from malignant pleural mesothelioma.

GEO dataset (GSE10245) had 58 lung cancer cases and more than
1700 genes. Among these samples, 40 patients had cancer type (AC).
The remaining 18 patients did not suffer from AC on both clinical
and radiological tests.

3.3 Microarray attributes selection

Attribute or feature selection, is a technique of creating robust
learning models by selecting the most relevant attributes from the
original attributes. This technique is widely used in machine
learning algorithms to improve learning model performance. Gene
feature selection is essential to cancer classification, as we can use
a small number of correctly selected genes to obtain accurate
classification results [27]. The attributes in lung cancer microarray
Table 1 GEP parameters for building a lung cancer classifier from
microarray datasets

Parameter Setting

number of chromosomes 30
number of genes 4
head size 10
tail size 11
gene size 21
number of generations 700
linking function addition
function set +, −, *, /, Exp, Sqrt, Log, Logi
mutation rate 0.044
IS transposition rate 0.1
RIS transposition rate 0.1
gene transposition rate 0.1
one-point recombination rate 0.3
two-point recombination rate 0.3
gene recombination rate 0.1
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datasets are those genes informative for classification. We used
two ways to extract the feature genes: n-top ranked genes selection
and automatic gene selection.

3.3.1 n-Top ranked genes selection: In our experiments, we
used the attribute evaluator Relief Attribute Eval. Relief-F method
of this evaluator evaluates the feature F by selecting a random
sample from F and samples of its nearest neighbours from the
same class and other classes. F is scored depending on the
differences between the different classes. If F has a different
expression for samples from different classes, it will experience a
higher score (or vice versa) [28, 29]. This ranking technique is
provided by the software Weka [30], which is a collection of open
access machine learning algorithms for data mining tasks. We
selected 5, 10 and 20 top ranked informative genes (i.e. features to
create three sub datasets for each original lung cancer microarray
dataset. Each sub-dataset of an original microarray dataset had the
same number of samples (patients) as the original one, but a much
less number of genes. We denoted a sub-dataset with 5, 10 and 20
feature genes as GEP-5, GEP-10 and GEP-20, respectively. The
purpose of creating three sub datasets for each original dataset was
to experimentally determine a proper number of features (genes)
for the GEP algorithm to generate a better classifier and get better
lung cancer prediction results. Reliability was assessed by
cross-data set validation. Using the ten-fold cross-validation, the
dataset was randomly divided into ten equal subsets. For each run,
nine subsets were used as a training dataset to construct the model
while the remaining subset was used as a testing dataset for
prediction. The average accuracy of ten iterations was recorded as
the final measurement.

3.3.2 Automatic gene selection: To extract feature genes, we
also used another feature selection technique RF [31] which can
automatically determine the number of features. RF is one of the
popular machine learning algorithms which can provide an accurate
result with robustness and easy procedure [32]. It is an ensemble of
decision trees and each node in the decision trees represents a
condition of a single feature. Each decision tree is constructed by
using a random subset of the training data. We first randomly
divided the samples of each subset into two parts: training and
testing. 80% of all patients (samples) were randomly selected as the
training dataset for training the generated classifiers, while the
remaining 20% of all patients formed a testing dataset which was
used to test the predictive performance of the generated classifiers.
To avoid the biased performance estimate, RF was trained on the
training datasets only. The GEP classification method with this
automatic feature gene selection is denoted as ‘GEP-AS’. To ensure
the reliability of the selected feature genes, we repeated the
experiment ten times and used the average of the results to evaluate
the performance of the classification models.

We used the software GeneXproServer 5.0 [22] to run GEP
algorithm using the parameter set in Table 1.

3.4 Methods for comparison

We selected the representative classification methods to compare
with our GEP-based classifier in terms of classification
performance. These methods were: SVM, MLP and RBFNN.
These techniques are used by many studies for classification
purposes [13, 14, 33]. GEP algorithm was performed using
GeneXproServer 5.0 software [22] while SVM, MLP and RBFNN
methods were simulated by DTREG software [34].
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Fig. 3 Average and standard deviation of GEP models for all datasets in term of accuracy, sensitivity and specificity

a Average results
b Standard deviation results
3.4.1 Support vector machine: SVM is a supervised learning
method commonly used for data analysis and pattern recognition
[35, 36]. SVM is becoming a public technique to deal with
biological application problems and is popular for cancer microarray
data classification and prediction [13, 14]. The main idea of SVM is
to find the optimal hyperplane between two classes, which is
working to separate the classes by placing a margin around each
data point and maximising the margin between the classes. The
parameters of the SVM classifier in our experiment were as follows:

† Type of SVM model: C-SVC.
† Kernel function: radial basis function (RBF).
† C search range: 0.1–5000
† Gamma search range: 0.001–50.
† Stopping criteria: 0.001000.
† Cache size: 256.0.

3.4.2 Multi-layer perceptron: MLP is one of neural network
types that can process input variables through a group of layers
[37]. Usually the MLP uses three layers. The first layer is the input
Fig. 4 Average of AUC ROC with standard deviation of GEP models for all dat

a Average results
b Standard deviation results
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layer which deals with features (attributes) of an input microarray or
pattern. The second layer is a hidden layer (could be up to two
hidden layers depending on the designer how many layers to use)
which contains predefined number of nodes (neurons). The hidden
layers work to add the whole variable values of the input data
multiplied by weights. The weighted sum is used as the input for
the activation function whose output is fed to the next layer. The
output layer is the last layer which consists of neurons (nodes) and
produces the final classification result of the model. The parameters
of the MLP classifier selected in our experiment were as follows:

† Number of layers: three (one hidden layer).
† Hidden layer activation function: logistic.
† Output layer activation function: logistic.
† Automatic hidden layer neuron selection: Min = 2, max = 20,
step = 1.

3.4.3 Radial basis function neural network: RBFNN has
three layers. The first layer is an input layer; the second layer is a
hidden layer where the radial basis function is used as an
asets
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Fig. 5 Average of accuracy with standard deviation of GEP classifiers for all datasets

a Average results
b Standard deviation results

Fig. 6 Average of sensitivity with standard deviation of GEP classifiers for all datasets

a Average results
b Standard deviation results
activation function. Each input vector in the input layer is used as an
input to all neurons of a radial basis functions in the hidden layer.
The number of neurons in the hidden layer is determined during
the training process; the third layer is the output layer [38].
RBFNN is widely used in classification because it is simple to
design, performs robustly and is tolerant of input noise [39]. The
parameters of the RBFNN classifier selected in our experiment
were as follows:

† Number of layers: three (one hidden layer).
† Hidden layer activation function: Logistic.
† Output layer activation function: Logistic.
† Automatic hidden layer neuron selection: Min = 2, max = 20,
step = 1.

4 Experiment results

The experimentswere designed to have two parts:wefirst evaluated the
classification performance of ourGEP-based classifiers, then compared
the GEP-based classification performance with the performance of
three selected classification methods on the experimental data sets.
IET Syst. Biol., 2016, Vol. 10, Iss. 5, pp. 168–178
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The performance was evaluated in terms of sensitivity, specificity,
accuracy and area under the curve (AUC) [13]. Sensitivity and
specificity have been defined in Section 2. The AUC and the
accuracy were used to evaluate the overall performance of a
classifier. Particularly, accuracy is used to measure the correct
prediction, while AUC is to measure the prediction performance.
AUC depends on the receiver operating characteristic (ROC) curve,
which the graphical plot is showing the sensitivity (y-axis) versus its
1-specificity (x-axis). The performance values were calculated on
each subset which was created from every entire original dataset, i.e.
GEP-5, GEP-10, GEP-20 and GEP-AS as indicated in Section 3.3.
We applied GEP algorithm on the above sub datasets to generate
different classifiers and evaluated the performance of these
classifiers. For simplicity, in the following text without causing
confusion, we also use GEP-5, GEP-10, GEP-20 and GEP-AS to
represent the classifiers generated from these four sub datasets. Then,
we compared the performance of these classifiers with the
performance of the selected comparison methods (SVM, RBFNN
and MLP). For reliability, we used the ten-fold cross validation to
obtain the predicted results of GEP-5, GEP-10 and GEP-20. While in
GEP-AS model, the experiments were repeated ten times and the
average performance evaluation results of GEP generated classifiers
173



Fig. 8 Average of AUC with standard deviation of GEP classifiers for all datasets

a Average results
b Standard deviation results

Fig. 7 Average of specificity with standard deviation of GEP classifiers for all datasets

a Average results
b Standard deviation results
on the three evaluation datasets (GEO, Michigan and Harvard) were
calculated.

For all experimental models the average results of the three
datasets were calculated to show the overall performance of these
models in terms of accuracy, sensitivity, specificity and AUC.
4.1 GEP models results

Among the GEP classifiers, the highest average accuracy from the
three microarray datasets was 98.09% with standard deviation 2.32
which was achieved by GEP-5, and the average accuracy achieved
by GEP-10 was 91.63% with standard deviation 1.75. The average
accuracy achieved by GEP-AS was 89.18% with standard
deviation 3.52. The average accuracy achieved by GEP-20 was
96.07% with standard deviation 3.42. While the average accuracy
achieved by GEP Model with all attributes (genes) was 87.49%
with standard deviation 5.89. The average results and the standard
174
division of the five GEP models in terms of accuracy, sensitivity,
specificity and AUC are presented in Figs. 3 and 4. The details of
the results are shown in the appendix section of this paper.
4.2 Comparisons of GEP with representative classifiers

The comparison results of classification performance among GEP
classifiers, SVM, RBFNN and MLP classifiers in terms of
accuracy, sensitivity, specificity and AUC are shown in Figs. 5–8,
respectively. It can be seen from the results that the highest
accuracy among the all models was 98.09% achieved by GEP-5
model with the standard division of 2.32, while the highest
accuracy with ten attributes was 97.74% achieved by MLP with
the standard division of 2.07. The highest accuracy with 20
attributes was 97.37% achieved by MLP as well with the standard
division of 1.82. The highest accuracy with all attributes
was 91.72% achieved by MLP again with the standard division
IET Syst. Biol., 2016, Vol. 10, Iss. 5, pp. 168–178
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of 6.16. Finally, the highest accuracy with AS attributes was
96.29% achieved by both SVM and MLP with the standard
division of 1.45.

The detailed classification results on all datasets are shown in the
appendix section (Tables 3–5).
5 Discussion

The experimental results showed that the performance of the GEP
model with fewer feature genes (i.e. 5 attributes) was better than
the model with more attributes (i.e. 10, 20 and all attributes). The
experimental results also showed that the lowest accuracy for the
GEP classifiers was 87.49% with the standard division of 5.89
which were achieved by the classifier with all attributes, while the
highest average accuracy of the GEP classifiers was 98.09% with
the standard division of 2.32 when using 5 attributes. This is also
the highest accuracy for all the experimental models (GEP, SVM,
MLP and RBFNN). Actually the best accuracy the other three
models (SVM, MLP and RBFNN) achieved was 97.74% which is
lower than GEP model.

The results also indicated that the models using the automatically
selected feature genes (performed by the RF method) could provide
stable and convergent results. However, the classification
performance was not the best across all the experimental models.
This might be caused by the limitation of this feature selection
method which is unable to select some informative genes for more
effective classifications.

It was observed from the experimental results that GEP classifier
was more efficient as it achieved the highest accuracy by using five
feature genes only in the classification model. Of course, this five
feature genes have to be properly selected and informative without
missing microarray values.
6 Conclusions

In this paper, an innovative GEP-based classifier is proposed to
classify/predict lung cancer from microarray data. Compared with
other representative machine learning-based classifiers, the
proposed classifier achieved higher accuracies in classifying/
predicting lung cancers on the commonly used datasets (GEO,
Michigan and Harvard). The evaluation results showed that GEP
approach improved the lung cancer prediction.

The efficiency and effectiveness of the proposed GEP approach
heavily depend on the proper selection of feature genes (attributes)
that are informative without missing values for classification/
prediction. Our future work is to propose innovative methods to
more properly select features (attributes) from integrated lung
cancer datasets and multiple sources of lung cancer data to
improve the GEP-based algorithm for lung cancer prediction.
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Table 6 The standard deviation for all microarray datasets performance comparison between GEP, SVM, MLP and RBF

Accuracy Sub dataset GEP SVM MLP RBF TP Sub dataset GEP SVM MLP RBF

5 2.318424 3.026916 3.131116 2.377356 5 31.47637 32.60562 32.44997 32.92989
10 1.747532 3.803796 2.072074 3.74383 10 33.79646 34.3937 32.44997 33.23572
20 3.516678 4.504001 1.818467 3.491488 20 4.846417 32.63768 32.27651 33.08101
AS 3.417371 1.448747 1.448747 3.167652 AS 29.12583 28.05828 28.05828 29.40071

All attributes 5.892557 5.713337 6.155541 7.560231 All attributes 26.02624 30.29157 30.29157 30.0854

Sensitivity Sub dataset GEP SVM MLP RBF TN Sub dataset GEP SVM MLP RBF
5 7.218459 6.863266 7.218459 9.333475 5 30.43026 31.13021 31.13021 32.19723
10 13.34954 15.00863 7.218459 9.110438 10 32.47011 32.45769 31.87642 31.67098
20 7.795606 12.09045 6.342192 10.89274 20 6.484208 31.13021 31.39412 31.92407
AS 9.424551 4.986428 4.986428 9.180853 AS 26.433 26.97347 26.97347 26.79111

All attributes 15.16508 9.838267 9.838267 11.18011 All attributes 20.13369 30.37061 29.12816 30.39948

Specificity Sub dataset GEP SVM MLP RBF FP Sub dataset GEP SVM MLP RBF
5 0 1.178511 1.178511 9.274204 5 0 0.810816 0.810816 0.880013
10 3.625101 0 4.714045 8.282497 10 2.479588 0 0.490261 1.184521
20 6.736371 1.178511 0 8.713003 20 4.96389 0.810816 0 0.653146
AS 0 4.320494 4.320494 3.299832 AS 0 2.413517 2.413517 2.291729

All attributes 14.14214 13.5567 4.109609 8.866026 All attributes 1.475496 1.313494 1.382052 1.012555

AUC ROC Sub dataset GEP SVM MLP RBF FN Sub dataset GEP SVM MLP RBF
5 0.053269 0.054683 0.057983 0.034179 5 2.318424 2.223706 2.318424 3.026916
10 0 0.046676 0.052804 0.070244 10 1.279384 3.803796 2.318424 2.876924
20 0 0.03007 0.056622 0.021453 20 1.447212 3.620556 1.818467 3.33189
AS 0.040893 0.03516 0.035122 0.018385 AS 3.417371 1.444999 1.444999 2.843312

All attributes 0.119834 0.134165 0.12913 0.176176 All attributes 7.368053 6.997963 6.997963 8.563656
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