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Abstract: Breast cancer is the second leading cause of death in the world. Breast cancer research is focused towards its early
prediction, diagnosis, and prognosis. Breast cancer can be predicted on omics profiles, clinical tests, and pathological images.
The omics profiles comprise of genomic, proteomic, and transcriptomic profiles that are available as high-dimensional datasets.
Survival prediction is carried out on omics data to predict early the onset of disease, relapse, reoccurrence of diseases, and
biomarker identification. The early prediction of breast cancer is desired for the effective treatment of patients as delay can
aggravate the staging of cancer. In this study, extreme learning machine (ELM) based model for breast cancer survival
prediction named eBreCaP is proposed. It integrates the genomic (gene expression, copy number alteration, DNA methylation,
protein expression) and pathological image datasets; and trains them using an ensemble of ELM with the six best-chosen
models suitable to be applied on integrated data. eBreCaP has been evaluated on nine performance parameters, namely
sensitivity, specificity, precision, accuracy, Matthews correlation coefficient, area under curve, area under precision–recall,
hazard ratio, and concordance Index. eBreCaP has achieved an accuracy of 85% for early breast cancer survival prediction
using the ensemble of ELM with gradient boosting.

1Introduction
Healthcare in cancer research is inclined towards the recognition of
some kind of cancer well in time and providing preventive actions
to improve the health of a person [1]. Researchers and data
scientists in the medical field are working together on healthcare
for early prediction and preventions of one of the fatal diseases like
breast cancer. Breast cancer is one of the most common kinds of
cancers. It has attained huge attention due to its life-threatening
consequences. According to the National Cancer Institute (NCI)
[2], around a hundred types of cancers are present in the human
body, including breast, prostate, ovarian, liver, and bladder cancers.
NCI shows that breast cancer is the most common type of cancer in
the US and needs to be diagnosed early. Breast cancer is a common
disease in both genders, surprisingly in males also but mostly
found in women [3]. Every 1 in 1000, men have breast cancer.
Breast cancer in males exists in smaller proportions [4]. However,
in females, the percentage of women having breast cancer is 25%
[5]. Globally, the survival rate of breast tumour patients is 50%,
which is very low. The death rate of patients dying from
malignancy is 58% [6]. The basic building blocks of the human
body are cells. Breast cancer occurs as a result of abnormal growth
in the cell of the body. The collection of these abnormal cells leads
to tumours. From this collection, a cell detaches itself from other
cells and move to other body parts through blood vessels. Genes
present in the nucleus of the cells of the human body are
responsible for the movement of cells. Sometimes anomalous
changes may turn off or turn on these genes. This turns off and
turns on may lead to breast cancer [7, 8]. Advanced computational
intelligent [9] approaches in artificial intelligence (AI) are being
exploited recently to predict breast cancer in its early stages. Omics
datasets have been used recently for breast cancer prediction.
Datasets like microarray datasets along with clinical and image
datasets, are being used for early prediction. Healthcare data is
very complex and working with such data requires various data
mining, preprocessing and features extraction techniques for
efficient results. Also, the size of the genomic profiles, which are
being used is very large approaching to terabytes. Traditional
relational databases failed to store such large databases using
relational database systems [10]. For accurate data analysis, there is

a need to develop an efficient framework for breast cancer survival
prediction which can guide through preprocessing, feature
extraction techniques and use highly accurate algorithms for early
prediction in breast cancer.

In this paper, the Extreme Learning-based model for Breast
Cancer Survival Prediction named ‘eBreCaP’ is proposed.

• It integrates different subtypes of genomic data [11] like gene
expression [12], Copy Number Alteration (CNA) [13],
deoxyribonucleic acid (DNA) methylation [14] and protein
expression [15] with pathological images for efficient survival
prediction of breast cancer.

• It ensembles an ELM [16] with Buckley–James estimator,
regularised cox model [16–17], likelihood boosting and gradient
boosting [18] for survival prediction.

• It optimises performance parameters for survival prediction such
as accuracy, sensitivity, specificity, precision, area under curve
(AUC), area under precision–recall (AUPR), Matthews
correlation coefficient (MCC), concordance index (CI), and
hazard ratio (HR).

The remaining of the paper is organised as follows. Motivation and
related work are described in Section 2. In Section 3, eBreCaP is
proposed. The experimental setup and results are given and
elaborated in Section 4. In Section 5, the conclusion and future
scope are presented.

2Background
Breast cancer prediction is performed on various types of data with
the help of machine learning (ML) [11] and deep learning (DL)
algorithms [19]. Supervised ML [20] was used by Dai and co-
authors [21] for the prediction of breast cancer. The authors took
DNA microarray data [22] of 117 young patients. The experiment
was performed to accurately predict poor gene signature, which
causes cancer. Zou and co-authors [23] proposed unsupervised
learning which consists of the integration of principle component
analysis (PCA) [24] and autoencoder neural network (NN) [25] on
gene expression dataset for breast cancer prediction. A total of
129,158 gene expressions profiles were taken and features were

IET Syst. Biol., 2020, Vol. 14 Iss. 3, pp. 160-169
© The Institution of Engineering and Technology 2020

160



extracted with a DL approach. The model was trained and
experimental results indicated that the proposed approach achieved
85% accuracy. Tabl et al. [26] made use of hierarchical ML
algorithms to predict the survival of breast cancer patients. The
method was trained with a support vector machine (SVM), Naïve-
Bayes classifier and random forest (RF) [27]. It is evident from the
results that RF produces the best result by identifying all classes
correctly and accurately. Huang et al. [19] anticipated a DL
framework to identify for how much time the patient is going to
survive after some treatment with Cox models [18]. Survival
Analysis Learning with Multi-Omics NN on a gene-expression
dataset for survival prediction was also carried out. Experimental
results proved that the proposed approach attained an AUC value
of 79%. Researchers also worked towards the integration of
heterogeneous datasets as not to miss out on any related medical
information hidden in various datasets which is important to be
incorporated for prediction. Gevaert et al. [28] work on the
integration of clinical and microarray data for early prediction of
breast cancer with the help of Bayesian networks [29]. A sample of
78 patients was taken and preprocessing techniques were applied.
Further, the clinical and microarray data were integrated with
various techniques like full integration, decision integration, and
partial integration. The trained and tested models made evident that
Bayesian networks performed superior with a mean AUC value of
0.85. Sun et al. [30] carried out work on multimodal DL NN by
integrating multi-dimensional data (MDNNMD) for the detection
of breast cancer patients. The experiment was implemented and
compared with SVM, RF and logistic regression (LR) [31]. The
end results accomplished 82% accuracy using the MDNNMD
approach. Radiology images also play a crucial role in the
identification of tumour cells. Li and co-authors [32] presented a
new strategy by integrating genomic and radiology images for
breast cancer prognosis. The experimental study gave good results
with a mean AUC value of 80% when integrated genomic and
radiology images were taken. On the other side, Hung and Chui
[33] used scored equation [34] which integrates gene expression
and protein network datasets to identify subtypes of cancer
correctly with the help of SVM [35] classifier. SVM attains 70%
accuracy by accurately predicting three subtypes of the tumours.
Han and co-authors [36] proposed a more practical scheme called
multiple kernel learning (MKL) [37] on omics data comprising
micro Ribonucleic acid (miRNA) expression [22], copy number
variation, and DNA methylation dataset. A sample of 10,000
patients was taken with 30 subtypes of cancers. The results
indicated that MKL executed better as compared to RF and NN
with a mean accuracy of 79%. Zhang and co-authors [38]
suggested a convolutional NN [25] comprising convolutional layer,
small SE-ResNet module and fully-connected layer to work on
histopathological images for the classification of breast cancer into
benign, malignant and eight subtypes. The SE-ResNet module [38]
is a modification of the squeeze and excitation module. A sample
of patients was taken and feature extraction techniques were
applied. The end results achieved 98% accuracy for binary
classification and 90% accuracy for multi-class classification. Fan

and co-authors [39] use ML algorithms like logistic regression and
Cox survival models to effectively classify breast cancer into
different subtypes and to predict survival after no-adjuvant
chemotherapy. The model was trained and it is evidenced that the
presented approach achieved an AUC value of 80%. Li and co-
authors [40] suggested a convolutional NN with an ELM algorithm
for the detection of breast cancer. The experiments used a sample
of 400 patients and attained 90% AUC value. Table 1 shows the
comparison of work done on Breast Cancer Prediction with
eBreCaP based on performance parameters. 

2.1 Motivation

Survivability of breast cancer patients can be predicted on omics
data (Genomic, Transcriptomic, and Proteomic data) [42]. Apart
from omics data, pathological images (tissue images features) can
also be used in breast cancer research. Pathological images also
give important information regarding the prognosis of breast
cancer. Hence, they should also be considered while developing
computational models/approaches for predicting the survivability
of breast cancer patients. Existing computational approaches for
the survivability analysis have not considered pathological images
while predicting survivability of breast cancer patients [19, 21, 23,
26]. The extraction of features from omics data with pathological
images and integrate information from both the datasets as
mentioned above poses a huge challenge on how to efficiently
extract the features from heterogeneous datasets to implement
survival prediction for breast cancer patients [43]. Motivated by
Sun et al. [44], an efficient model eBreCaP (extreme learning-
based Breast Cancer Prediction) for survival prediction of breast
cancer is proposed and compared with different survival models
considered in [44]. These existing models used to integrate
genomic data and pathological image data. The results indicate that
pathological images could contribute genuinely by uncovering
hidden features important in the survival prediction of breast
cancer patients.

2.2 Our contributions

The main contributions of this research work are

• K-means clustering and normalisation are used for pre-
processing the high-dimensional genomic data for breast cancer
survival prediction.

• FSelector package is used for feature space reduction in
genomic data.

• Tiling for pathological images is used, which was further
converted to textual data for more precise final evaluation.

• The performance of eBreCaP is compared with five existing
state-of-the-art ML models using traditional performance
parameters (sensitivity, precision, accuracy, AUC) and two new
parameters (HR and AUPR).

• eBreCaP: An Extreme Learning-based Breast Cancer Survival
Prediction model adds diversity in the classifier as it is capable

Table 1 Comparison of work done on breast cancer prediction on the basis of performance parameters with eBreCaP
Authors Sensitivity Specificity Precision Accuracy AUC AUPR CI HR MCC
Tabl et al. [26] _ _ _ ✓ _ _ _ _ _
Dai and co-authors [21] ✓ _ _ ✓ _ _ _ _ _
Zou and co-authors [23] ✓ _ _ ✓ ✓ _ _ _ ✓

Huang et al. [19] _ ✓ _ ✓ _ _ ✓ _ _
Gevaert et al. [28] _ ✓ _ ✓ ✓ _ _ _ _
Sun et al. [30] ✓ ✓ ✓ _ _ _ _ _ _
Li and co-authors [32] _ ✓ _ _ ✓ _ _ _ _
Hung and Chui [33] _ _ _ ✓ _ _ _ _ _
Han and co-authors [36] _ _ _ _ ✓ _ _ _ _
Zhang and co-authors [38] _ ✓ ✓ _ ✓ _ _ _ ✓

Huang et al. [41] ✓ — — _ ✓ _ _ _ ✓

Li and co-authors [40] ✓ ✓ ✓ ✓ ✓ _ _ _ _
eBreCaP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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of handling heterogeneous and high-dimensional data
simultaneously.

3Proposed model: eBreCaP
eBreCaP exploits the concept of extreme learning-based models.
The underlying workflow of eBreCaP is shown diagrammatically
in Fig. 1. eBreCaP follows three stages: Stage A: it selects the
features from the genomic as well as pathological images dataset.
Stage B: it integrates extracted features from genomic and
pathological images dataset using ELM. It trains the selected
candidate models namely ELM with Buckley–James estimator
(ELMBJ), Ensemble of ELMBJ (ELMBJEN), ELM with Cox
regularised models (ELMCOX), an ensemble of ELM with cox
regularised (ELMCOX), ELM with likelihood boosting
(ELMCOXBOOST) and ELM with gradient boosting
(ELMBOOST) on integrated datasets. Stage C: it tests the
performance of the selected models. Out of all other ensemble
models taken in stage B, ELMBOOST outperforms with an
accuracy of 85%.

3.1 Data preparation

The dataset for eBreCaP has been collected from The Cancer
Genome Atlas portal (TCGA) [45]. This research considered four
subtypes of genomic data comprising gene expression, CNA, DNA
methylation, and protein expression data along with pathological
images data. But each subtype contains a different number of
patients. For example, for gene expression, 1250 samples and for
pathological images, 1010 samples are available. Venn diagram
was used to find common patients from genomic and pathological
images. It gave 585 valid patients with 578 female patients and 7

male patients. As sufficient data is available for female patients,
survival prediction is carried out on female breast cancer patients.
Male patients were not taken into consideration due to the
unavailability of sufficient data. For training, the threshold value of
5 years was taken and the patients were classified into low survival
and high survival. The total number of patients with low survival
was 445 and with high survival was 133.

3.2 Preprocessing of genomic data

Genomic Data consists of Gene Expression, CNA, DNA
Methylation, and Protein Expression datasets. Bioconductor
package [46] in the R language is used to download the data. A
complete set of valid 578 patients is preprocessed and further
divided into the training and testing sets in 70: 30 ratios. The whole
preprocessing of the genomic and pathological image datasets is
shown in Table 2. 

3.2.1 Gene expression: In gene expression data, information is
produced by the gene, which is used to make a useful gene product
[47]. The human body is comprised of a cell. Each cell contains
miRNA data which is responsible for producing information [12].
The flow of information starts with DNA, which moves towards
Ribonucleic acid (RNA) and then to protein. This conversion of
DNA to RNA is known as transcriptomic data. Thousands of
transcripts are produced every passing second by each cell [12].
These transcripts are responsible for affecting the activity of the
body. First, 10% missing values (NA values) is removed using
na.omit function in R language and remaining missing values are
removed using the k-means clustering algorithm [48]. The
differentially expressed genes are calculated using p-values which

Fig. 1 eBreCaP: the proposed model
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are divided into under-expression, overexpression, and baseline
[49], i.e.

GeneValue =

Under − expression if value < 0

Baseline if value = 0

Over − expression if value > 0

3.2.2 Copy number alteration: CNA is a significant component
of genomic data and is described as a DNA segment of one or more
kilo-base with certain variations [13]. This variation is because of
several insertions, deletions, and modifications in the chromosome
number, which leads to increased data size [13].

These variations get implicated in somatic cells that cause
breast cancer. For copy number variation, removal of 10% NA
values and missing values is performed with the k-means clustering
algorithm [48]. Linear copy number values from Affymetrix SNP6
are selected and used for further processing.

3.2.3 DNA methylation: In DNA methylation, the methyl group is
converted to the cytosine ring of DNA at the fifth position [14],
which modifies the function of genes and affects gene expression
data [14]. For DNA methylation, removal of 10% NA values and
missing values is done with a k-means clustering algorithm [48].
Original beta values from the remaining dataset have been taken
directly and normalised using z-score normalisation [50].

3.2.4 Protein expression: Protein expression data defines how
the proteins are modified in the cells of a human body. Blueprints
of proteins are stored in DNA and further decoded to produce RNA
[15]. RNA produces information in the form of proteins. Using the
k-means clustering algorithm [48], the 10% NA values and missing
values are removed for protein expression, then the original values
from the remaining dataset have been taken and normalised using
min–max normalisation [50].

3.3 Preprocessing of pathological images

Pathological images are whole slide images in which a glass slide
is converted into a digital image that can be managed or analysed
on a computer screen [51]. Tissue slide of the affected area is
taken, which can be seen in a microscopic environment to get the
information. For pathological images, Hematoxylin and Eosin
whole slide images were used. These images have been
downloaded from TCGA and tiled into 1024 × 1024 pixels with the
help of Bioconductor bftools [52]. This results in thousands of tiled
images in gigabytes from which ten most denser tiles have been
selected.

3.4 Feature selection

Feature selection is the process of selecting the relevant features
and removing redundant and irrelevant features. Feature selection

can be achieved using the filter method, wrapper method and
embedded method [53]. The filter method is used to rank the most
important features using the information gain ratio and Chi-square
method [54]. The wrapper method works by diving the features
into different subsets. Each subset is trained and hence
performance was evaluated [55]. The subset which performed the
best out of all the subsets is selected. The embedded method is the
same as the wrapper method but they use the learning model for
selection purposes [56]. eBreCaP uses an FSelector [57] package
for selecting the best features for the genomic dataset.

3.4.1 Feature extraction of genomic data: Genomic and
Pathological image data is preprocessed in five steps, as shown in
Table 2. Initial preprocessing is done in two stages and the data is
normalised using z-score and min–max normalisation. The
normalisation process results in gene expression, copy number,
DNA methylation, and protein expression with 15,000, 25,000,
16,000, 215 features, respectively. It is still a huge feature set to
work with. Therefore, high-dimensional data required an
appropriate feature selection technique to extract the most
important features in relevance to its domain. This research used
the FSelector [57] package, which selects the most informative
features using information gain ratio and avoids the problem of
overfitting [41, 52] into model building. FSelector package used
Algorithm 1 (Fig. 2) for selecting the most informative genes. This
algorithm selects the top 50 features for gene expression, 10 most
informative copy number values, 40 features for DNA methylation
and 120 best features for protein expression data. The features are
selected based on the rank given by the FSelector algorithm. CNA
impact in our dataset is very less. Therefore, ten features from the
whole feature set have been selected. Similarly, the impact of the
protein expression dataset is extremely high. Therefore, more
features have been selected for protein expression as compared to
other subtypes. The values in range for each subtype are selected
based upon the assigned weight. Genomic data is passed to
FSelector package, which ranks the features from the highest to
lowest and selects the top-ranked features based on the cut-off
value [44].

3.4.2 Feature extraction of pathological images: Preprocessing
of pathological images results in 1991 image features. It is still a
huge feature set to work with. As a result, feature extraction is
required. To extract important image features, Cell Profiler [58] is
used which gives 130 images features including cell nuclei, cell
nuclei, cell shape, cell size, no of tiles, no of cells in images tiles,
and the texture of image tiles. The summary is shown in Table 3. 

3.5 ML models

The models implemented in the present work consist of six models
which are defined in a package called survELM and are described
below.

Table 2 Preprocessing and feature extraction steps for eBreCaP
Steps used Dataset

Gene expression CNA DNA methylation Protein expression Pathological
images

Preprocessing
(stage 1)

Removal of missing
values using K-mean

algorithm

Removal of missing
values using K-mean

algorithm

Removal of missing
values using K-mean

algorithm

Removal of missing
values using K-mean

algorithm

Image tiling using
bftools

Preprocessing
(stage 2)

Differential expressed
genes with p-value <0.5

Directly take copy
number values from

SNP6

Directly take the original
beta values

Directly take the original
values

Select ten denser
tiles

Normalisation Normalise them and set
to under-expression over-

expression baseline

Normalise them using z-
score normalisation

Normalise them using z-
score normalisation

Normalise them using
min-max normalisation

—

Feature selection
package

FSelector information
gain ratio

FSelector information
gain ratio

FSelector information
gain ratio

FSelector information
gain ratio

Cell-profiler

Extracted features Best 50 features selected Best 10 features
selected

Best 40 features
selected

Best 120 features
selected

Best 130 features
selected
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3.5.1 Extreme learning machine: ELM is a single hidden layer
feedforward NN that is used for survival analysis on high-
dimensional data [8, 59]. Earlier NNs have been used for survival
analysis with the backpropagation algorithm. It worked well only
for low-dimensional datasets [60, 61]. For high-dimensional
datasets, ELM is a proven universal function approximator [41]
which works by calculating the weights and bias randomly. The
learning speed of ELM is faster than NN approaches, therefore it
results in faster computations.

ELM works on a single-hidden layer feed-forward NN in which
input weight value is chosen randomly and output is generated
accordingly. It worked as follows:

For a given training sample, xi, yi xi ∈ R
P, yi ∈ R

m

i = n

n , if n
defines total observations, p gives the dimension of covariates, yi

defines the target, then ELM with n hidden layers is given as
follows:

f L x = ∑
i = 1

L

g x, wi,bi βi = h x β (1)

Here g defines the activation function, wi defines the input weights,
bi defines the bias variable, h x  defines the hidden layers, β

defines the output target variable. The hidden layer for ELM can be
expressed as

H =

h x1

h x2

⋮

h xn

=

g w1, b1, x1 … g(wL, bL, x1)

g w1, b1, x2 …g(wL, bL, x2)

⋮

g w1, b1, xn …g(wL, bL, xn) (n ∗ l)

(2)

and the target matrix is given by the following equation:

Y =

y1
T

y2
T

⋮

yn
T

=

y11…y1m

y21…y2m

⋮

yn1…ynm

(3)

The output weights can be solved with the given equation as
follows:

β = H
Y I

C
HH

Y
−1

Y (4)

where I is an n*m matrix. Kernel ELM can be defined by the
following equation:

K xi, xj = h xi ⋅ h xj (5)

Kernel ELM with L supporting vectors can be

f L xi = ∑Lj = 1 K xi, xj β j, i = 1, 2, …, n (6)

where f L x = Kn × lβ.

3.5.2 ELM with Buckley–James estimator: To perform survival
analysis, we need to work with censored data [62]. Censored data
is a particular kind of data in which some information is known but
the exact information is unknown. ELM does not handle censored
data. But, Buckley–James estimator, regularised Cox models and
gradient boosting models works well with censored data and
survival prediction. Therefore, the selection was made on the
algorithms which work effectively on censored data. Hence, we
combined ELM with Buckley–James estimator, regularised Cox
models and gradient boosting models. To calculate survival time,
Buckley–James estimator and Cox models are used which adopted
the least square method for calculation. Buckley–James estimator
is considered to be more superior to other least square methods
[63] and gives efficient results. Buckley–James estimator was
introduced in 1979, which makes use of the least square estimation
method for censored data which is explained here.

Suppose a random variable Y forms a linear regression on some
covariate X, then

Y = xβ + ε, (7)

where x is a vector of 1 × p with a constant β and having ɛ as a
random variable with zero mean and finite variance [64], Y
represents the survival time or an event. The survival time is
estimated with Buckley–James estimator and then ELM is applied
for survival analysis of patients. This whole process is named as
ELMBJ. For more perfect results, an ensemble of ELM with
Buckley–James estimator is performed, which is known as
ELMBJEN. A unique feature for ELMBJ and ELMBJEN is the
capability of giving correct predicted survival times instead of
common relative risks.

3.5.3 Regularised Cox with ELM: In this, the linear version of
the Cox model is replaced with a non-linear ELM NN and as a
result, the coefficient will be obtained [16]. Assume x is a variable
set having a total number of p covariates on a dataset D with
training samples n × (p + 2), where D belongs to (τ, δi, xi), i = 1, 2, 
… ,n. In the case of right-censored data, τi = min(Ti, Ci), here Ti is
the true survival time, Ci is the censored status, and δi is the
censoring indicator [14]. The hazard of a patient is

λi t = λ0 t exp( f (xi) (8)

Here f (xi) is a function of the covariate xi, and for traditional Cox
model, f xi = xiβ . Also, an RF-based ensemble is provided called
ensemble of regularised Cox with ELM (ELMCOXEN) for its
stable result. ELMCOXEN contains the advantages of both the
Cox models and non-linear properties of the ELM model [17].

3.5.4 ELM with gradient-based boosting: In this, we apply the
ELM model in boosting the environment to get the survival data.
Two types of boosting named gradient boosting and likelihood-
based boosting have been used. Gradient and likelihood boosting
help in minimising the loss function and give efficient results [65].

Fig. 2 Algorithm 1: FSelector package
 

Table 3 TCGA patients characteristics
TCGA
Characteristics Summary
total patients 585
gender male = 7, female = 578
selected patients 578
short term survivor 445
long term survivor 133
average age of diagnosis 30–78 (approx. avg = 58)
Data selected
Genomic data FSelector package
 gene expression 50 features
 protein expression 120 features
 DNA methylation 40 features
CNA 10 features
pathological images 196 features through cell profiler
 

164 IET Syst. Biol., 2020, Vol. 14 Iss. 3, pp. 160-169
© The Institution of Engineering and Technology 2020



3.6 Models selected for comparison

The other models which are used as a comparison with this
survELM are the regularised Cox model, random survival forest
(RSF) [64], Boosting CI (BoostCI) [44] and supervised principal
components regression (superPC) [59]. We use these models as a
comparison because these models give efficient results, as proved
by Sun et al. [44].

3.7 Ensembled modelling

eBreCaP consists of integrating genomic and pathological images
dataset and used it for survival prediction. Due to the high
dimensionality of data, kernel extreme learning machine (eBreCaP)
has become a powerful choice for more efficient results. Therefore,
the extracted features are integrated with the help of the kernel
extreme learning machine. The kernel used in the whole process is
of the linear type, which is given as follows:

k x, y = ∑
i

N

∝i yi xi
Tx + b (9)

Here (x, y) belongs to training data, b is a constant with adjustable
parameter ∝.

As eBreCaP consists of six models, firstly, ELMBJ was applied
in which ELM integrates the data and the Buckley–James estimator
will predict the survival outcome. In this, the kernel used is of
linear type and the value of alpha used is 0.5. To improve the
performance of ELMBJ, an ensemble version of this model, i.e.
ELMBJEN was applied. This ensemble method uses 100 ELM
base survival models for integrating the data and for predicting the
performance. After, COXELM method is used for integration by
taking linear kernel with an alpha value of 0.5. This method is
enhanced with its ensemble version, which is an ELMCOXEN.
ELMCOXEN used a linear kernel by taking an alpha value of 0
with 100 base models. After that, ELMBOOST and
ELMCOXBOOST were used with an alpha value of 0.5 by taking
a linear kernel. The whole process is iterated 20 times and the
results obtained are compared with different baseline models given
by various authors including SuperPC [59], RSF [64], survival
regression (Survreg) and BoostCI [44].

3.8 Survival analysis

Survival analysis works by measuring the follow-up time starting
from a defined time to when the tumour occurs, i.e. measuring the
time from the start of the event to end of the event or starting from
the diagnosis of the tumour to the death of the patient [59].
Survival time uses the data, which is censored. Censored data is the
one in which some information is known but the exact information
is unknown. For example, when the follow-up time for the patient
has come but the event did not occur yet, when the patient dies
before the event occurs, and when the patient leaves the study.
These types of censoring are known as right censoring. For
survival analysis, survival data is required, which includes the
following attributes:

(i) Response time (RTi), i.e. the time for a patient i at some specific
event.
(ii) Censored time (CTi) for the patient i.
(iii) Event indicator is given as δi and its value is given as follows:

δi =
1, if the event was observed RTi ≤ CTi

0, if the response was censored RTi > CTi

(iv) The value to be observed is calculated using the following
equation:

Yi = min RTi, CTi (10)

By using the above data, the survival function is

S t = Pr T > t = 1 − F t (11)

Here T is the response variable and is greater than 0.
This function tells the probability of a patient that he will

survive the past time t. The range for t goes from 0 to ∞ and is non-
increasing.

• When t = 0, the probability of surviving time for the patient is 1
and is given by

S t = S 0 = 1
• When t = ∞, the probability of surviving time for the patient is 0

and is given by

S t = S ∞ = 1

This is used in our research to calculate the response time for a
patient.

4Experiment analysis
A TCGA dataset from the cancer genome portal was used, which
includes genomic data (gene expression, protein expression, DNA
methylation, and CNA data) and pathological images dataset. The
dataset is integrated and trained with the survELM model. The data
is divided into 70 by 30 ratio and survival analysis is performed.

4.1 Experimental data

In our experiment, genomic and pathological image datasets
available on the Cancer Genome Atlas portal has been used.
Genomic Dataset consists of gene expression [12], CNA [13],
DNA methylation [14], and protein expression [15] data. In the R
source code, TCGA Bioconductor [46] package has been used for
the downloading of datasets in which initially the datasets were
available in a raw form consisting of 58,000 transcriptome values
for gene expression, 40,000 copy number values with different
duplicate chromosomes for CNA, 70,000 beta values for DNA
methylation, and 20,000 protein values for protein expression. The
size of the dataset is very large approaching to terabytes. Therefore,
working with such data size is quite difficult and hence,
preprocessing is required to reduce the size of the dataset. The
preprocessing of data is explained in Section 3.1.1. The
preprocessing stage results in 16,000, 25,000, 16,000, and 215
features of gene expression, CNA, DNA methylation, and protein
expression, respectively. To further reduce the features, the
FSelector [57] package has been used which will select the most
informative features based on Information gain ratio function and
gives 50, 10, 40, and 120 features of gene expression, CNA, DNA
methylation, and protein expression, respectively. For pathological
images, whole slide images have been taken and image tiling is
performed to select the most denser slides. The preprocessing of
images is defined in Section 3.1.2. The preprocessing of images
results in 1991 features. Further, cell profiler [58] is used, which
reduces the features space to 196 features having cell size, cell
shape, cell perimeter, cell area, and nucleus.

4.2 Experimental setup

Once data is preprocessed, it is integrated and trained with the help
of survELM package as described in Section 3.2. The dataset is
divided into 70% training data and 30% testing data and is shown
in Table 4. 

Also, 10% of training data is used for the cross-validation
process. Then the trained model and validation process is used to
predict the outcome of the result on the testing data. The tools used

Table 4 Division of dataset
Subtype Percentage, % No. of patients
training data 70 404
testing data 30 174
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in the present work are (i) RStudio 3.5.1 for modelling purposes,
(ii) bftools [52] for the tiling of images; (iii) cell profiler [58] for
extracting important image features. Furthermore, the packages
used in our research are Survelm, Survival, randomForestSRC,
SuperPC, mboost, Survcomp, pROC, and Hmeasure.

4.3 Performance parameters

The parameters which we used to achieve the performance in our
model are described below:

4.3.1 Concordance index: Concordance index is defined as a
ranking variable whose value lies with 0 to 1, where 0 represents
the worst value and 1 represents the best value. The higher values
of the concordance index signify the better performance of the
model. It is given as

CI =
1
n

∑
i ∈ 1..n δi = 1

∑
sj > si

I Xiβ
^

> X jβ
^

(12)

Here n is total no of comparison, i represents the indicator and s
represents the actual result.

4.3.2 Hazard ratio: The hazard ratio is the ratio of an event
occurring in one group as compared to an event in another group.
An event in one group means the treatment process and event in
another group means the control process. The hazard ratio value
should always be less than 1. When the value is close to 0, it means
that there is an ∼100% reduction in risk in certain diseases and
value close to 1 means there is a 0% risk reduction.

4.3.3 Area under precision–recall (AUPR): The AUPR shows
the relation between precision and recall at different threshold
values. The higher values of AUPR signify the better performance
of the model.

4.4 Results and discussion

The models given in eBreCaP are applied to predict the survival of
breast cancer patients effectively. The obtained results are
compared with recent studies [44]. We train the six models on
high-dimensional data by integrating genomic and pathological
images. The desired results and performance was achieved in 20
epochs (training 20 times). The AUC value and other performance
parameters are calculated for each model. The Receiver Operating
Curve (ROC) for all the six models is shown in Figs. 3 and 4. The

dark solid line in the curve shows the actual values which
determine the curve between the true positive rate (TPR) and false-
positive rate (FPR). ELMBJ gives an AUC value of 0.83 and its
ensemble method ELMBJEN gives an AUC value of 0.835 with
slight increases of 0.5%. Similarly, ELMCOX produces an AUC
value of 0.84 and its ensemble method ELMCOXEN gives an
AUC value of 0.85. ELMCOXBOOST and ELMBOOST give an
AUC value of 0.84 and 0.85, respectively. From the results, it is
concluded that among all the six models, ELMBOOST performs
the best with an AUC value of 0.85. The AUC value calculated
using MKL [44] on the genomic and pathological images dataset
was 0.80. eBreCaP when compared with MKL and other survival
models comprising of survreg, RSF, SuperPC, BoostCI gives
enhanced AUC value with 5% improvement. The results of
eBreCap compared with the existing work [44] are shown in
Table 5 and eBreCaP results are presented in bold. eBreCaP
produces an accuracy of 83, 83.5, 84, 84, 85, and 84% for ELMBJ,
ELMBJEN, ELMCOX, ELMCOXEN, ELMBOOST, and
ELMCOXBOOST, respectively. Other parameters including
sensitivity, specificity, precision, MCC, AUPR, HR, and CI are
also calculated which shows an improvement in the results by 7, 2,
6, 7, 5, and 4%, respectively, when compared with other state-of-
the-art models [44]. eBreCaP is effective in predicting the survival
time of breast cancer patients as it produces commendable results
not only in accuracy but also in the case of the above-mentioned
parameters. Furthermore, the results are showcased graphically
using line plots for AUC, accuracy, AUPR, and HR. The results of
eBreCap are plotted using green coloured points whereas red
coloured points are used to represent existing work results [44]. It
is visible from the plot in Fig. 5 that eBreCaP accuracy is much
more than the recent studies [44]. The decline in the line plot
shows that eBreCaP is better with an accuracy of 85% predicted by
ELMBOOST. Similarly, the line plot for the AUC is shown in
Fig. 6. This plot shows an improvement of 5% than the traditional
models [44]. Fig. 7 represents a line plot for AUPR in which
ELMBOOST and ELMBJ give the highest AUPR value of 0.75
followed by ELMBJEN which gives the second-highest value for
AUPR in eBreCaP. The decline in line plot clearly shows an
improvement of 5% compared with other state-of-the-art models.
Higher the value of AUPR, the better the model is. Additionally,
the hazard ratio line plot is plotted as shown in Fig. 8. The value
for hazard ratio must lies within 0 to 1. The value close to 0 shows
that the risk introduced is very less and close to 1 or greater than 1
shows a higher risk. In eBreCaP, ELMBOOST shows a lower risk
and survreg [44] produces a higher risk which shows the
effectiveness of eBreCaP. Moving ahead, the bar plots for accuracy,
sensitivity, precision, MCC, and CI are also plotted and shown in

Fig. 3 ROC value for ELMBJ, ELMNJEN, and ELMCOX
 

Fig. 4 ROC for ELMCOXEN, ELMCOXBOOST, and ELMBOOST
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Fig. 9. It is visible from the plot that ELMBOOST gives efficient
results having 85, 83, 64, 56, and 64% values for accuracy,
sensitivity, precision, MCC, and CI, respectively. This shows an
improvement of 5, 7, 2, 6, and 4%, respectively, for the above-
mentioned parameters when compared with the existing models
[44]. The specificity is not calculated in the existing work [44] but

eBreCaP achieved the specificity value >70% approximately for
each model and is given in Table 5. The comparative analysis
concludes that ELMBOOST is outperforming other algorithms
consistently in breast cancer survival prediction.

Table 5 Comparison of different models with eBreCaP
Paper Models Sensitivity Specificity Precision Accuracy AUC AUPR MCC HR CI
Sun et al. [44] SurvReg 0.68 — 0.49 0.74 0.69 0.55 0.41 0.98 0.59

RSF 0.70 — 0.4 0.73 0.71 0.50 0.43 0.54 0.57
SuperPC 0.72 — 0.46 0.76 0.72 0.42 0.42 0.65 0.53
BoostCI 0.73 — 0.6 0.79 0.725 0.54 0.45 0.76 0.55
GPMKL 0.76 — 0.62 0.80 0.80 0.68 0.50 0.44 0.60

our approach eBreCaP ELMBJ 0.78 0.70 0.63 0.83 0.83 0.75 0.52 0.14 0.63
ELMBJEN 0.79 0.72 0.635 0.835 0.835 0.73 0.54 0.09 0.64
ELMCOX 0.80 0.71 0.63 0.846 0.84 0.71 0.55 0.32 0.63

ELMCOXEN 0.805 0.715 0.64 0.84 0.85 0.72 0.54 0.07 0.635
ELMCOXBOOST 0.82 0.74 0.63 0.84 0.84 0.71 0.53 0.33 0.63

ELMBOOST 0.83 0.75 0.64 0.85 0.85 0.75 0.56 0.05 0.64
Bold values indicates the result of our proposed work eBreCaP. It is done to highlight the difference in results of proposed work and existing work.
 

Fig. 5 Line plot for accuracy
 

Fig. 6 Line plot for AUC
 

Fig. 7 Line plot for AUPR
 

Fig. 8 Line plot for HR
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5Conclusions and future work
Breast cancer is one of the leading causes of death in females.
Survival analysis is the statistical study of the different events like
the onset of diseases, relapse, and re-occurrence of the disease after
treatment. In the present research, eBreCaP is proposed which
effectively predicts the onset of breast cancer in females depending
on real-life integrated genomic and pathological profiles. The
genomic data and pathological image data is available on TCGA
which are integrated and used in eBreCaP for analysis. The high-
dimensional and heterogeneous data on and the most important and
significant features were extracted contributing to the effective
prediction of breast cancer in females. The effective application of
preprocessing and feature extraction techniques on genomic as well
as pathological images was eventually able to reduce 5-digit
feature space to 2-digit feature space. The reduction in feature
space is the most important contribution while handling high-
dimensional heterogeneous data like genomic and pathological
data. eBreCaP is packaged with six models such as ELMBJ,
ELMBJEN, ELMCOX, ELMCOXBOOST, ELMCOXEN, and
ELMBOOST having accuracy 83, 83.5, 84.6, 84.5, 84, and 85%,
respectively. It is experimentally analysed using six parameters like
sensitivity, specificity, precision, accuracy, AUC, AUPR, MCC,
HR, and CI. The results are also compared with the existing state-
of-art-work [44]. The observed results show improvement and
increase in each performance parameter comprising sensitivity,
precision, accuracy, AUC, AUPR, MCC, and CI by 4, 2, 5, 5, 7, 6,
and 4%, respectively, in breast cancer survival prediction.
ELMBOOST with 85% accuracy outperforms among all the six
models. ELMBOOST also has high values for AUC, AUPR, CI,
and HR which guarantees high accuracy and suitability of the
model for the purpose. eBreCaP can also be applied to predict
another type of cancers using clinical data, genomic data, images
data as well as the integration of these data. DL algorithms can be
applied for further improvement and the work can be extended on
bio-marker prediction.
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