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Abstract: The authors investigated the regulatory network motifs and corresponding motif positions of cancer-related
genes. First, they mapped disease-related genes to a transcription factor regulatory network. Next, they calculated
statistically significant motifs and subsequently identified positions within these motifs that were enriched in cancer-
related genes. Potential mechanisms of these motifs and positions are discussed. These results could be used to
identify other disease- and cancer-related genes and could also suggest mechanisms for how these genes relate to co-
occurring diseases.
1 Introduction

In the last decade, a series of efforts have been carried out to identify
disease-related genes, including many attempts to achieve disease
biomarkers by computational methods [1, 2]. However, in recent
years much focus has been placed on the study of gene regulatory
or transcriptional networks with the goal of understanding how
they evolve and function in disease progression. These studies
include the creation of logical models, continuous models and
single-molecule methods (see [3] for a review). In addition,
advances in the understanding of regulatory processes brought
about by the Encyclopedia of DNA Elements project has allowed
for in-depth analyses of regulatory networks [4]. Other interesting
work has involved the development of a Bayesian network model
to measure the consistency of identified regulatory networks
within gene expression profiles [5], which was subsequently used
to study activated regulatory relationships in human lung epithelial
cells after an H1N1 viral infection [6]. These types of global
approaches are necessary to understand how the individual
components function in concert to regulate gene expression. Many
questions related to biological network organisation still remain.
How do gene regulation networks manage to stay robust to genetic
changes, some of which are deleterious or mutational in nature?
How does an organism maintain fitness? Parallels between gene
regulation networks and communication networks have been
drawn, focusing on failure and attack tolerance in biological
networks [7]. Wagner [8] discussed two main hypotheses on the
mechanistic causes of robustness: redundancy and distributed
robustness. He pointed out that while there is evidence that
duplicate genes play an important role in an organism’s tolerance
to change, many systems, including metabolic and gene regulation
networks, show no gene redundancy but are still able to tolerate
the removal of highly connected nodes. Subsequently, the
transcription factor (TF) co-regulation network in yeast was shown
to possess a distributed node degree distribution [9], which is
thought to lend a level of robustness to the scale-free gene
regulation network. However, the same co-regulation network
architecture was not found in E. coli [10], which highlights the
possibility that there are multiple pathways for achieving fitness.
In 2007, Wagner and Wright [11] observed that many regulator–
target gene pairs in more than a dozen biological networks had
intermediate regulators between them. These ‘alternative routes’
could be a possible cause of robustness.

A TF regulatory network provides a map of interactions between
regulating proteins and regulated genes. Within this network lie
patterns of connections between them. These patterns, or motifs,
give TFs a variety of tools for regulation depending on how much
or how little of a protein product is needed at any given time or
within a particular tissue. Having previously predicted DNA and
RNA-binding proteins [12] and examined the relationship between
co-regulating partners and their target genes (TGs) [13], we now
take a closer look at how these TFs regulate their targets. We are
also curious to know how disease-related genes relate to the
transcriptional regulatory network. Past analysis has shown that
certain changes in transcriptional regulation can lead to disease
phenotypes such as infertility [14], ocular diseases such as
glaucoma [15], several developmental diseases, [16] and cancer
[17]. One way to examine this problem is to identify the presence
and location of disease genes in human TF network motifs. Do
disease genes, specifically those that are cancer related, occur in
some motifs more often than others? Are they regulated by
common mechanisms in the TF network? Do cancer genes occupy
a particular position within these motifs more often than other
disease genes or non-disease genes? What about for specific
diseases such as breast, colon and lung cancer? This study
attempts to address these questions.
2 Methods

Our procedure for identifying disease-related genes in TF network
motifs is described in Fig. 1. First, we assembled a list of 154 TFs
and 3166 TGs with a total of 6883 interactions from the
Transcriptional Regulatory Element Database (TRED, http://rulai.
cshl.edu/TRED/, accessed January 2014) [18]. TRED is a
collection of cis- and trans-regulatory elements for mouse, rat and
human. It also contains a curated list of 36 families of TFs and
experimental evidence linking them to their TGs. The resulting
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Fig. 1 Illustration of our procedure for identifying disease-related genes in
TF network motifs
directed network contained 3320 nodes and 6883 edges. Each node
was involved in at least one regulatory interaction. The maximum
number of TGs for a TF was 785 (C-MYC). The maximum
number of regulators for a single gene was 31 (CCND1). There
were 71 root nodes in the network (corresponding to top-tier
regulators) and 36 mutual regulatory interactions. Although this
network does not represent a comprehensive account of human
TF/TG interactions, the proportion of TFs to TGs (5.2%) is very
close to the previously reported value of 6% observed across 32
human tissues [19].

Second, we searched common motifs in the network using motif
finder (mFinder) [20], a network-centric algorithm capable of
creating exhaustive subgraph lists. We identified statistically
significant three-node and four-node motifs in the TF regulatory
network. For three-node motifs, we generated 1000 random
networks for comparison. For four-node motifs, we compared the
real network to 100 random networks because of the
computationally intensive calculation involved. The significance
criteria for motifs in the real network were as follows: a Z-score
>2.00 (i.e. the number of motifs in the real network must have
been at least two standard deviations from the mean number of the
same motif in random networks), a p-value of <0.010, an m-factor
>1.10 and a uniqueness value ≥4 [the number of times a motif
appeared in the real network with a completely different (disjoint)
set of genes]. We also reported the concentration, which is the
ratio of the number of occurrences of a motif against other motifs
of the same size in the real network. The random networks were
created using the same number of incoming, outgoing and mutual
edges as the real network. The source and targets of the edges
were then randomly switched between nodes, resulting in a
randomly connected set of nodes. The number of times this
switching occurred was an arbitrary number between 100 and 200
times the number of edges in the real network.
Fig. 2 Global view of the human TF network is shown

One hundred and fifty-four TFs and 2948 TGs with a total of 6883 regulatory interactions
transcriptome) have a known association with at least one of 560 disease categories from
cancer (grey), 176 genes (5%) with breast cancer, 106 genes (3%) with colon cancer and 9
associated with cancer (not shown). These networks were visualised using Cytoscape [23]
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We then obtained gene annotation from National Centre for
Biotechnology Information’s RefSeq database [21] and disease
information from DOLite [22]. DOLite contains 560 disease
categories that are a collection of aggregated disease terms from
the Disease Ontology (http://disease-ontology.org, accessed
January 2014). Next, we visualised the network and calculated
statistics using Cytoscape [23]. Finally, we identified example
network clusters using the Cytoscape plug-in ClusterONE [24] to
show examples of some of the significant motifs in the real network.
3 Results and discussion

We found that 4029 human genes have an associated disease
according to DOLite. We identified 1217 genes (39% of the
human transcriptome) that have a known association with at least
one of these 560 disease categories (see Fig. 2). Six hundred and
twenty two genes (20%) were associated with one or more types
of cancer, 176 genes (5%) with breast cancer, 106 genes (3%)
with colon cancer and 97 genes (3%) with lung cancer.
Forty-eight TFs (31% of TFs in the database) were associated with
some type of cancer.

mFinder identified a total of 972 696 three-node subgraphs in the
network with only one out of 13 possible three-node motifs being
significantly overrepresented in the real network. Likewise, 169
264 278 four-node subgraphs were identified, with five out of 199
possible four-node motifs being statistically significant (Table 1).
Three examples, one three-node and two four-node motifs, are
shown in Fig. 3. Motif 46 (A) is a regulating feedback motif with
a feed-forward loop (FFL). This motif is common in
developmental and signalling transcription networks [26] and
allows for a rapid response to signals (e.g. ON to OFF) while
providing a delayed reaction to move in the opposite direction
(OFF to ON). This is important for filtering noisy input and
ignoring small fluctuations while allowing for a rapid response to
stimuli. The most common variations of this pattern are the
coherent regulating double positive feedback motif (all interactions
enhance transcription) and the coherent double negative feedback
motif (all interactions repress transcription). This result is in line
with that of Gerstein et al. [4], who observed that the FFL was the
most enriched three-node motif within their network of 119 TFs.
Motif 222 (B) is a combination feedback/bi-fan. This pattern
allows for combinatorial control depending on the input function
of each gene. The bi-fan is a pattern of joint regulation that
usually generalises to dense overlapping regulons (DORs) in the
larger network. Genes in DORs share a global function such as
nutrient metabolism and biosynthesis [26]. Motif 2206 (C) is a
combination feedback/multi-FFL, which is useful for sign-sensitive
acquired from the TRED database are shown. Left: 1217 genes (39% of the human
DOLite (white). Right: 622 genes (20%) were associated with one or more types of
7 genes (3%) with lung cancer. Forty-eight TFs (31% of TFs in the database) were
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Table 1 Significant motifs in the human transcriptional regulatory network

Motif ID Motif type Occur (Real) Occur (Rand) Z-score (Real) p-value UV [ ]

46 three-node 470 327.8 +−28.0 5.08 0.000 9 0.483
222 four-node 4913 2864.9 +−451.9 4.53 0.000 8 0.029
908 four-node 950 751.4 +−93.6 2.12 0.000 7 0.006
972 four-node 703 363.1 +−74.4 4.57 0.000 4 0.004
2206 four-node 486 306.2 +−44.2 4.07 0.000 5 0.003
2462 four-node 264 162.0 +−42.6 2.40 0.000 4 0.002

We identified six types of statistically significant three- and four-node motifs. ‘Occur (Real)’ indicates the number of times the motif occurred in the real
network, ‘Occur (Rand)’ is the mean number of occurrences in random networks (shown with standard deviation), ‘Z-score (Real)’ is the Z-score for motifs
in the real network, ‘p-value’ is the significance of the occurrence of motifs in the real network as reported by mFinder (p < 0.010), ‘UV’ is the unique value,
which is the number of times a motif appears in the real network with a completely different (disjoint) set of genes, ‘[ ]’ is the concentration (×10−3), which
is the ratio of the number of occurrences of a motif against other motifs of the same size in the real network.
delay/acceleration and pulse generation. This allows the genes to be
expressed in a particular order, and can act as a persistence detector
for each output [26].
Fig. 3 Three examples of statistically significant motifs in the human TF networ

Each circle represents a node, and the number inside the circle represents the position of a gen
number is determined by the in-degree of the node in the real network (dashed arrows) so that
position. This applies to the two four-node examples as well; the arrows are left out for simplicit
and statistical significance at each position is shown. Nodes for which there are a statistically s
black star. p-values were calculated using a standard one-tail t-test. q-values were calculated u

Fig. 4 Log-scale graph of the number of genes in three motifs by the position th

Five categories are shown: disease, cancer, breast cancer (BC), colon cancer (CC) and lung can
network
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One interesting observation is the high percentage of disease- and
cancer-related genes in the motif unit as a whole. In all three motifs, a
large percentage of the disease genes were cancer related. For motif
k

e within the motif. Since the transcriptional regulatory network is directed, the position
a lower position number indicates a lower in-degree and thus a higher-level regulatory
y. Total number of genes, number of disease-related and cancer-related genes, percentage
ignificant number of disease- and cancer-related genes (i.e. p≤ 0.05) are marked with a
sing the Benjamini-Hochberg (BH) or FDR method [25]

ese genes occupy (in parentheses)

cer (LC). Each column is normalised by the percentage of each category in the entire TF
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46, 42% of genes were disease related and 32% of genes were cancer
related, 42% of genes were disease related and 32% of genes were
cancer related, as compared with the percentage of these categories
over the entire network (39 and 20%, respectively). Notably, 76%
of disease genes in this motif were involved in at least one type of
cancer. The same scenario applies to the other two motifs, with
motif 222 having 42% disease-related genes, 32% cancer-related
genes and 76% cancer-related disease genes, and motif 2206
having 44% disease-related genes, 36% cancer-related genes and
81% cancer-related disease genes.

If we look at specific positions within the motifs, several
characteristics apply to each example. First, the number of TFs in
the first and second positions of motifs 46 and 222 and the first,
second and third positions of motif 2206 are larger than that of the
downstream positions (values not shown). This is expected and is
due to the regulatory activity occurring in these locations
(indicated by out-going edges). Some TFs occupy the third
Fig. 5 TF co-regulation and disease

a Mean and median values for the TGs and co-regulators of TFs as they relate to disease. Nu
b Similar comparison on a log scale with the number of associated diseases is shown. Cancer
disease genes
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position of motif 46, the third and fourth positions of motif 222,
and the fourth position of motif 2206. This is also expected, since
these patterns do not exist in isolation but are part of the larger
graph, and, in the real network, these TFs most likely regulate
other proteins in motifs located downstream from these examples.
For motif 2206, positions 1, 2 and 3 are each regulatory in nature
and follow a top-down hierarchy. Positions 2 and 3 are both the
second node in a FFL, and we would expect each of these
positions to have similar number of TFs, which they do. Second,
position 3 in motif 46 and positions 3 and 4 in motifs 222 and
2206 are associated with a larger overall number of genes. This
too is anticipated, since one TF may regulate many genes. Third,
there is one particular position in each of these motifs that is
associated with a larger percentage of disease- and cancer-related
genes relative to the other positions. In motif 46, 13/22 (59%)
genes in position 1 are associated with at least one disease
compared with 35 and 41% for positions 2 and 3, respectively.
mber of both TGs and co-regulators is greatest for cancer-related TFs
genes are related to a larger number of total diseases compared with non-cancer-related
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Cancer-related genes are also more common in position 1, with 11/
22 (50%) genes having a cancer association while the equivalent
value for positions 2 and 3 are 29 and 30%, respectively. This
pattern holds for motif 222 as well, and to a lesser extent for motif
2206. For this last motif, the more equal distribution of disease-
and cancer-related genes may be a result of the nature of the motif
itself as mentioned above.

Fig. 4 illustrates a comparison between the numbers of disease-
and cancer-related genes at motif positions against the percentage
over the entire network. Position 1 in motif 46 is occupied by
more disease- and cancer-related genes, as well as genes involved
in breast and colon cancer. A similar pattern holds at position 1 of
motif 222 and position 2 of motif 2206. Interestingly,
cancer-related genes are more common in all motif positions
relative to both other disease genes at that particular position and
the network as a whole. This could be due to the effects of
signalling cascades in cancer pathways (with down-stream genes
being affected by aberrant signalling upstream), whereas other
Fig. 6 TG co-regulation and disease

a Mean and median values for the TFs and diseases as they relate to TGs. Number of both T
b Comparison of TFs and TGs and the number of associated diseases of different types. Cancer
disease genes

132
diseases may be caused by mutations or other malfunctions that
remain isolated.

We then looked at the TF co-regulation network and its
relationship to disease (Fig. 5). We found that cancer-related TFs
regulated a higher number of TGs than non-disease-related TFs,
and that they also had more co-regulating partners. This seems
logical given what we know about the cascading effects of cancer
development, and that cancer-related genes often have a larger
number of interactions with other genes than non-disease genes
[27]. We also found that cancer-related TFs were associated with
more diseases of any type than non-cancer-related TFs. This
highlights the connection between cancer and other diseases. The
primary disease in a patient is often accompanied by secondary
diseases, a phenomenon known as co-morbidity [28].

Additionally, we identified the number of TFs associated with
each TG and found that TGs associated with cancer were regulated
by a higher average number of TFs than both non-disease and
non-cancer disease genes (Fig. 6). Furthermore, these
Fs and diseases is greater for cancer-related TGs
genes are related to a larger number of total diseases compared with non-cancer-related
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Fig. 7 Example motifs

TFs: diamonds, TGs: ellipses, cancer-related: marked as a black star, non-cancer-related: others
a PGR/Jun cluster – portion of the signalling pathway of the progesterone receptor PGR (breast cancer), which involves direct DNA-binding and regulation of TGs. These include the
oncogene JUN as well as IFNB1 (associated with colon and prostate cancer). A combination of multi-output FFL and bi-fan motifs is evident
b USF1,2/SP3 cluster – upstream stimulating factors (USF1 and USF2) are evolutionarily conserved and ubiquitously expressed. These TFs are major players in the transcriptional
regulation of chromatin remodelling enzymes. USF2 and TGFB1 have been linked to tumour growth, whereas SP3 and ACACA have been linked to breast cancer. SP3 can act as
an activator or repressor and is involved in cell-cycle regulation, hormone induction and housekeeping. Clusters were identified using the ClusterONE [24] plug-in with Cytoscape [23].

Fig. 8 Log-scale graph of the number of disease- and cancer-related genes expressed in the three most common tissue sources for our dataset

‘+n’ indicates that the genes are also expressed in n additional tissues
cancer-related TGs were involved in a higher than average number of
diseases, similar to what we observed for TFs. When comparing the
number of disease associations for TFs against TGs, we found that
TGs were related to a higher number of diseases on average than TFs.

To assess the significance of disease- and cancer-related genes
occupying specific positions within these motifs, we calculated the
p-values for each. Using a p-value threshold of 0.05, we found
that none of the positions in motif 46 were occupied by a
statistically significant number of disease- or cancer-related genes.
For motif 222, position 1 has a p-value = 0.03 for disease-related
genes and a p-value = 0.02 for those that are cancer related (Fig. 3,
in red). Similarly, the second position of motif 2206 has a p-value
= 0.04 for both disease- and cancer-related genes. We
subsequently performed error correction using the BH or false
discovery rate (FDR) method [25] and found that these significant
p-values do not translate to significant q-values. A test for
significance of specific cancer-related genes (breast, colon and
lung) resulted in similarly high q-values. Therefore the results on
whether disease- and cancer-related genes occupy specific
positions within these regulatory motifs are inconclusive.

Example clusters from the human TF network are shown in
Figs. 7a and b. For each cluster, a combination of the motifs in
Fig. 3 is apparent. In Fig. 7a, the combination of multi-output
FFLs and bi-fan motifs provide for complex and precise regulation
of TGs. In Fig. 7b, multi-output FFLs are noticeable, but this time
IET Syst. Biol., 2015, Vol. 9, Iss. 4, pp. 128–134
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in conjunction with multiple bi-fan motifs, resulting in the DOR
pattern mentioned previously. It is important to emphasise that the
individual motifs identified here overlap in real networks, and that
analysing these regulatory interactions in the context of small
sub-graphs is done in order to reduce complexity and to try to
understand the modes of action of all transcriptional regulators.

In further analysis, we identified the tissues in which the genes in
our dataset were expressed using the UniProt database [29]. A total
of 97 tissue types were represented. The number of genes originating
in each tissue varied from 3 to 630 (mean: 63.6, median: 316). Fig. 8
shows the three most common tissues in our dataset: placenta, 630
genes (20% of dataset, 1.8% of the genome), liver, 488 genes
(16% of dataset, 1.4% of the genome) and lung, 482 genes (16%
of dataset, 1.4% of the genome). We found that genes were more
likely to be associated with both general disease and cancer as the
number of associated tissues increased. Interestingly, the number
of genes related to cancer surpassed the level for other
disease-related genes as they become more ubiquitously expressed,
especially for those found in three or more tissues. This is in line
with the observation from Goh et al. that cancer genes that acquire
somatic mutations are more ubiquitously expressed, while
inherited diseases do not show the same expression pattern [25].
Many cancer genes also often have house-keeping functions or are
involved in cell signalling, either by direct DNA-binding or
through a signalling pathway activated by kinases.
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4 Conclusions

We built a human TF network from currently available data and
identified eight statistically significant regulatory motifs. We found
that both general disease-related genes and cancer-related genes
were present more frequently in these motifs when compared with
the network as a whole. Disease and cancer genes appeared often
in a combination of the FFL, regulating feedback, and bi-fan
motifs. For two of the three examples shown, one position within
the motif was occupied by a statistically significant number of
disease- and cancer-related genes. However, after adjusting for
multiple p-values, the results were inconclusive. Further
investigation is required to determine whether these genes are
enriched at particular positions. We identified two clusters from
the human TF network that exhibited a combination of statistically
significant motifs and disease-related genes. We also made a
number of interesting observations. First, we found that more
ubiquitously expressed genes were more likely to be associated
with both general disease and cancer. Second, we found that
cancer-related TFs regulated a higher number of TGs than
non-disease-related TFs, and that they also had more co-regulating
partners. Third, we found that cancer-related TFs were associated
with more diseases of any type than non-cancer-related TFs. This
highlights the connection between cancer and other diseases.
Finally, we identified the number of TFs associated with each TG
and found that TGs associated with cancer were regulated by a
higher average number of TFs than both non-disease and
non-cancer disease genes. Furthermore, these cancer-related TGs
were involved in a higher than average number of diseases, similar
to what we observed for TFs. When comparing the number of
disease associations for TFs against TGs, we found that TGs were
related to a higher number of diseases on average than TFs.

This analysis was not meant to ascertain or establish disease- or
cancer-specific pathways; our goal was simply to identify enriched
motifs and attempt to determine whether disease genes occupied
specific locations within these motifs. It is important to note that
the network used in this study contained only a fraction of the true
number of TFs, targets and disease-related genes in the human
regulatory network. Additional disease information, genes and
regulatory interactions would certainly enhance our findings and
possibly remove the ambiguity that we found in some of our
results, particularly the significance of disease- and cancer-related
genes at specific motif positions. However, the method
demonstrated here could be useful for identifying new
disease-related genes and could be extended to identify
co-occurring diseases among groups of genes involved in
regulatory motifs.
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