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Abstract: Discovering significant pathways rather than single genes or small gene sets involved in metastasis is becoming more
and more important in the study of breast cancer. Many researches have shed light on this problem. However, most of the existing
works are relying on some priori biological information, which may bring bias to the models. The authors propose a new method
that detects metastasis-related pathways by identifying and comparing modules in metastasis and non-metastasis gene co-
expression networks. The gene co-expression networks are built by Pearson correlation coefficients, and then the modules
inferred in these two networks are compared. In metastasis and non-metastasis networks, 36 and 41 significant modules are
identified. Also, 27.8% (metastasis) and 29.3% (non-metastasis) of the modules are enriched significantly for one or several
pathways with p-value <0.05. Many breast cancer genes including RB1, CCND1 and TP53 are included in these identified
pathways. Five significant pathways are discovered only in metastasis network: glycolysis pathway, cell adhesion molecules,
focal adhesion, stathmin and breast cancer resistance to antimicrotubule agents, and cytosolic DNA-sensing pathway. The first
three pathways have been proved to be closely associated with metastasis. The rest two can be taken as a guide for future
research in breast cancer metastasis.
1 Introduction

Cancer is one of the most daunting worldwide diseases. It
causes about 13% of all human death [1]. Distant metastasis
is the main cause of death among cancer patients. When a
patient is likely to suffer metastasis, he/she may be treated
with aggressive adjuvant therapy. However, the poor
understanding of the underlying causes and the
physiological mechanisms of metastasis may increase the
difficulty of diagnosis. In reality, about 70–80% patients
receiving such adjuvant therapy would have survived
without it [2]. Thus, there is a great need to gain deeper
understanding of metastasis so that every patient can
receive appropriate therapy. Many efforts have been made
to uncover the molecular mechanisms of different cancers.
In the last decade, many disease markers were identified

through genome-wide expression profiles. Differentially
expressed genes across different disease states have been
identified and their associated functions have been studied
to understand the disease mechanisms. In breast cancer,
both van’t Veer et al. [2] and Wang et al. [3] identified
about 70 gene markers that might play a role in the
development of metastasis and their prediction accuracy for
metastasis is about 0.6–0.7. Similar approaches determined
differentially expressed genes for B-cell lymphoma [4],
lung cancer [5] and leukaemia [6]. However, the detected
single-gene markers vary considerably in different data sets
for the same disease and thus they may lack universal
applicability. Chuang et al. [7] proposed a protein-network-
based approach for identifying markers of metastasis. The
markers are small subnetworks of interacting proteins
within protein–protein interaction (PPI) network. It
increased the reproducibility across different data sets and
the classification accuracy of metastasis. Moreover, Dao
et al. [8] addressed the great phenotypical complexity of
cancer by employing density-constrained biclustering to
search subnetwork markers. Although the genes and
subnetworks they found have provided novel hypotheses for
mechanisms of tumour progression, their main idea was to
extract a single gene or a small set of genes that were most
likely to account for the transition from non-metastasis to
metastasis. Nevertheless, it is widely accepted that all kinds
of molecules, including DNAs, RNAs, proteins, and so on,
interact with each other and work in concert to influence
metastasis of cancer. Focusing only on single genes or
small subnetworks tends to restrict the revelation of
mechanisms of metastasis.
On the contrary, discovering pathways, processes in

which all kinds of molecules interact to perform a specific
function, can be a better choice for gaining insight into
the mechanisms of metastasis in at least two respects.
First, pathway as an aggregate of biomolecules that
interact with each other can reveal biological processes
involved in metastasis more completely than the existing
works did. Second, understanding metastasis in terms of
pathway will provide more helpful guidance for cancer
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therapies. For example, Spek and Arruda [9] provided the
evidence on the role of the protein C pathway in cancer
metastasis and pointed out the potential of the activated
protein C as a novel drug target to reduce cancer
progression. Also, it is stated in [10] that the future of
cancer drug development may be targeting pathways
rather than single genes and their products.
Up to now, considerable pathways have been proved to

play an important role in cancer metastasis and many
methods have been developed to detect metastasis-related
pathways. Kang et al. [11] provided functional evidence
for a switch of Smad pathway, from tumour-suppressor to
prometastatic, in the development of breast cancer bone
metastasis. Hu et al. [12] highlighted the evidence for
aberration of the Notch signalling pathway in metastasis
of tumours such as ostesarcoma, breast cancer, prostate
cancer and melanoma. Moreover, Ward et al. [13]
revealed a hitherto-unknown but essential interaction of
the RalGFF and ERK pathways to produce a malignant
phenotype. And Wang et al. [14] indicated that the
overall activity of the cofilin pathway took part in
determining the invasive and metastasis phenotype of
tumour cells. Several approaches have been put forward
to detect metastasis-related pathways using gene
expression data and other biological data. There are at
least two types of approaches to identify or discover
pathways, that is, knowledge-based approach, which
exploits pathways in public repositories such as the gene
ontology (GO) or Kyoto encyclopaedia of genes and
genomes (KEGG), and data-based approach which
explores pathways using molecular measurements like
gene expression data. The first has been summarised in
[15], which reviewed the development of pathway
analysis during the last decade. As for the second, some
researchers utilised gene expression data coupled with PPI
network to discover pathways, including probabilistic
model by Segal et al. [16], and colour-coding methods by
Yeh et al. [17]. The knowledge-based approach suffers
from incomplete annotation as indicated in [15], whereas
the data-based approach integrates PPI network with gene
expression data to identify pathways and, PPI network, as
an incomplete biological database, may cause bias in
discovering pathways.
In this paper, we assume that the expression of genes in the

same pathway is covariant over samples and develops a
method for identifying pathways from gene expression data.
Our method can be divided into three steps. First, we build
the gene co-expression networks for non-metastasis group
and metastasis group and extract modules in parallel.
Second, the pathways that the modules are enriched are
identified. Third, we compare the modules from the two
groups in terms of pathways and discover metastasis-related
pathways. We apply our method to a breast cancer data set,
and meaningful results are discussed.

2 Materials and methods

2.1 Data set

The gene expression data set was downloaded from gene
expression omnibus (GEO) with accession number
GSE2034: ‘Breast cancer relapse free survival’ [18]. The
samples are obtained from primary breast tumours and they
are hybridised to Affymetrix Human Genome U133A Array
platform to get the gene expression profiles. A total number
of 286 breast cancer patients and 22 273 genes are included
48
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in the data set. We use the binary logarithm of the original
data for our analysis. After computing the variance of each
gene over all patients, we finally chose 5292 genes with
variances greater than 1.2 to conduct our analysis.

2.2 Network construction

We divided all the patients into two groups, including the
metastasis group and non-metastasis group. Specifically, we
assigned 107 patients, with whom metastasis had been
detected within 80 months after surgery, into the group of
metastasis and the remaining 179 patients into the group of
non-metastasis. Then, for each group, we constructed a
weighted gene co-expression network, where the 5292
nodes represent the 5292 genes and the weights of edges
are the absolute values of Pearson correlation coefficients
between the two corresponding genes. Apparently, a larger
weight of the edges indicates a stronger co-expression
relationship between the two genes.

2.3 Module extraction

A module in a network is a set of nodes that are closely
connected with each other and weakly connected to the rest.
For our weighted network, the modules are subnetworks
that have high weights. The frequently used method for
module identification is to divide a network into several
modules with each node being in one of the modules.
However, in reality, the nodes that have weak connections
to all the rest nodes are assigned to a particular module,
which may lead to a low enrichment of functions or
pathways. Here, we consider extracting the densely
connected modules and ignore those sparsely connected
genes. We adopted the criterion proposed by Zhao et al.
[19] for the module extraction. Let A = [aij] be the 5292 ×
5292 adjacency matrix of our gene co-expression network,
where aij is the absolute value of the Pearson correlation
coefficient between gene i and gene j and aii equals
0. Given a particular extracted module S, let Sc denote its
complement in the network. Then we maximise the
following formula over all possible S

W (S) = O(S)

|S|2 − B(S)

|S||Sc| (1)

where

O(S) =
∑

i,j[S

aij, B(S) =
∑

i[S,j[Sc
aij (2)

and |·| denotes the number of genes in a given module.
A great value of criterion (1) is an intuitively reasonable

indicator for a module of high quality. The first term of (2)
represents the average weight of the edges within S, and the
second term is the average connection between S and the
rest of the network. So, this criterion can extract modules
with a large number of links within itself and a small
number of links to the rest of the network [19].
Since (1) is a NP problem in nature, we use tabu search [20],

a local optimisation technique, to maximise the criterion. The
algorithm is described in Appendix 1 (Fig. 2, Algorithm 1).
Owing to the intensive computation of the algorithm and the
large size of the network, this algorithm may run slow. Thus
before running this algorithm, we first partition our network
into a few smaller networks with their module structure
IET Syst. Biol., 2014, Vol. 8, Iss. 2, pp. 47–55
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being kept. We apply the method proposed in [21]. This
method is shown to perform well for module identification
and it runs fast compared to most existing methods. Its main
idea is to maximise the average degree in each module and
minimise the average connections between any two
modules. Here, the number of partitions depends on the
scale that the module extraction algorithm can handle. After
this step, the module extraction algorithm is applied to all
the identified subnetworks to extract modules.
In our implementation, we first partitioned the network into

smaller networks and then carried out module extraction in
each of them. The number of nodes in each network varied
from 500 to 1000 and the total time of computation turned
out to be greatly reduced. We performed Algorithm 1
(Fig. 2) 10 times for 10 initial values of S and adopted the
optimal S as the final solution. The parameters were set as

m = 100, maxitx = 1500, T = 40 (3)

for each network.
After the numerical computation, we determine whether

the module should be extracted or not using the
permutation test proposed in [19]. Only modules with high
significance levels should be extracted. Every time a new
module was extracted, 100 permutated versions of the
original network were simulated and 100 corresponding
W(S) were obtained with the same parameters as (3). We
accepted the new module and searched for the next one in
the remainder only if there were no more than five
permutated networks having larger W(S) than the original
one. Otherwise, we rejected the module and stopped
searching in the current network since all pairs of genes are
nearly equally connected.
2.4 Filtering modules

It is necessary to select modules of high quality from all
extracted modules. Since the criterion (1) and the
permutation test impose no specific constraints on the sizes
of the extracted modules or the strength of links within a
Table 1 Pathways in the metastasis group

Metastasis Pathways

1 glycolysis pathway
5 cell adhesion molecules (CAMs)
15 PPAR signalling pathway
20 stathmin and breast cancer resistance to antimicrotubule

T cell receptor signalling pathway
primary immunodeficiency

21 cytokine-cytokine receptor interaction
24 chemokine signalling pathway
25 toll-like receptor signalling pathway

chemokine signalling pathway
cytokine–cytokine receptor interaction
cytosolic DNA-sensing pathway

30 signalling in immune system

32 Lck and Fyn tyrosine kinases in the initiation of TCR activa
B lymphocyte cell surface molecules
activation of Csk by cAMP-dependent protein kinase inhib
through the T-cell receptor

33 focal adhesion

33 ECM-receptor interaction

First column represents the index of a metastasis module. Column ‘Pat
The p-values are obtained from KEGG or Biocarta
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module, the method [19] tends to find modules of small
sizes in some cases. Gene sets of very small sizes or weak
linkage are possible to be extracted inappropriately as
modules. We therefore filtered all extracted modules and
accepted only those including at least five genes and having
average weight of more than 0.5.
3 Results and discussion

3.1 Pathway enrichment analysis

We identified 36 and 41 significant modules in metastasis and
non-metastasis networks (consisting of 338 and 397 genes,
respectively). The basic information about the modules
(including official gene symbol IDs and average weight) is
listed in Appendix 2 (Table 4) and Appendix 3 (Table 5).
Since the expression profile was hybridised to Affymetrix
Human Genome U133A array platform, we converted the
Affymetrix IDs into official gene symbol IDs using the tool
‘Batch Query’ provided by ‘NetAffx Analysis Center’.
After a file containing a list of Affymetrix IDs is uploaded,
the tool will return the corresponding official gene symbol
IDs. However, this conversion is not one-to-one. It is
possible that one Affymetrix ID corresponds to more than
one official gene symbol IDs or that no official gene
symbol IDs match an Affymetrix ID, but both situations are
rare. We accepted all official gene symbol IDs matching
one of Affymetrix IDs of genes in a module, so the number
of gene names in a module may not be equal to the size of
the module, as presented in Appendix 2 (Table 4) and
Appendix 3 (Table 5).
We used DAVID to do pathway-enrichment analysis for

each module. 27.8% (metastasis) and 29.3% (non-metastasis)
of the modules are enriched for one or several pathways
when setting the threshold of p-value to be 0.05. The
pathways we found in each module are listed in Tables 1
and 2.
Many known breast cancer susceptibility genes are in the

same pathways of metastasis modules. CDH1 is in cell
adhesion molecules (CAM) pathway. ERBB2, PTEN and
Included genes p-value

GAPDH, PGK1 0.015
ITGA6, HLA-G, HLA-DRA 0.017
ADIPOQ, FABP4, LPL 0.001,1

agents CD2, CD247 0.027
CD247, CD3D, LCK 0.001,3
CD3D, LCK 0.021
CD27, CXCL9, LTB 0.047
XCL1, XCL2, CCL19, PRKCB 0.013
CCL5, CXCL10, CXCL11 0.001,2
CCL5, CXCL10, CXCL11 0.003,9
CCL5, CXCL10, CXCL11 0.007,7
CCL5, CXCL10 0.032
IGK@, IGKC, CKAP2, IGLC1,
IGLV1-44

0.000,049

tion HLA-DRA, PTPRC 0.007,7
HLA-DRA, PTPRC 0.007,7

its signalling HLA-DRA, PTPRC 0.012

COL1A1, COL6A1, FLNA,
MYL9

0.000,061

COL1A1, COL6A1 0.049

hways’ represents pathway(s) for which the module is enriched.
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Table 2 Pathways in the non-metastasis group

Non-metastasis Pathways Included genes p-value

1 signalling in immune system CKAP2, IGLC1, IGLV1-44, IGK@, IGKC,
LOC642838, LOC100130100

0.000,59

7 Lck and Fyn tyrosine kinases in initiation of TCR activation HLA-DRA, PTPRC 0.007,7
B lymphocyte cell surface molecules HLA-DRA, PTPRC 0.007,7
activation of Csk by cAMP-dependent protein kinase
inhibits signalling through the T-cell receptor

HLA-DRA, PTPRC 0.012

10 vascular smooth muscle contraction MYLK, MYH11 0.022
16 ECM-receptor interaction COL6A1, COL6A2 0.033
17 insulin signalling pathway SHC1, TSC2, CRK 0.022
18 chemokine signalling pathway ARRB2, CXCR4, RAC2, STAT1 0.000,46

leukocyte transendothelial migration CXCR4, CYBA, RAC2 0.005,1
endocytosis ARRB2, CXCR4, HLA-G 0.012

23 primary immunodeficiency CD3D, LCK 0.021
24 T-cell receptor signalling pathway CD247, CD3G, PTPRC, ZAP70 0.001,4

cytokine–cytokine receptor interaction CD27, XCL1, XCL2, CCL5, CXCL9, LTB 0.001,7
24 chemokine signalling pathway XCL1, XCL2, CCL5, CXCL9, PRKCB 0.006,5

natural killer cell-mediated cytotoxicity CD247, PRKCB, ZAP70 0.032
29 PPAR signalling pathway PLIN1, CD36, ADIPOQ 0.000,54

adipocytokine signalling pathway CD36, ADIPOQ 0.039
31 toll-like receptor signalling pathway CXCL10, STAT1, CXCL11 0.001,2

chemokine signalling pathway CXCL10, STAT1, CXCL11 0.003,9
36 cell cycle CDC20, TTK 0.049
39 B cell receptor signalling pathway CR2, CD19 0.044

First column represents the index of a non-metastasis module. The column ‘Pathways’ represents pathway(s) for which the module is
enriched. The p-values are obtained from KEGG or Biocarta

Table 3 Results of the significance test for three pathways; number of studied genes N = 5292

Pathway M1 M2 |M1| |M2| k1 k2 c n p-value Ratio

glycolysis 1 14 13 17 2 1 6 31 1.9 × 10−3 38
CAMs 5 19 22 10 3 0 6 78 1.3 × 10−3 256
focal adhesion 33 21 8 6 4 1 3 127 9.6 × 10−6 6667

Column ‘M1’ denotes the index of the corresponding module in the metastasis group, while the column ‘M2’ denotes the index of the
module in the non-metastasis group that maximises S(M1, M2). The column ‘k1(k2)’ denotes the number of genes in both M1(M2) and
the pathway. ‘c’ denotes the number of genes in both M1 and M2, and ‘n’ denotes the number of genes that the pathway includes and
that we studied
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CCND1 are in focal adhesion pathway. RB1, CCND1, TP53
and MYC are involved in cell cycle pathway.
3.2 Significant pathways in breast cancer
metastasis

There are five significant pathways that are only identified in
metastasis modules. They are glycolysis pathway, CAMs,
focal adhesion, stathmin and breast cancer resistance to
antimicrotubule agents, and cytosolic DNA-sensing
pathway. Distributions of weights within those five modules
are plotted in Fig. 1. The first three pathways are shown to
be closely related with metastasis in previous research.
Up regulation of glycolysis is a near-universal property in

metastasis cancers, including breast cancer. It represents
adaptations to a hypoxic microenvironment that is
associated with tumour invasion, metastasis and lethality
[22]. And many researches around glycolysis pathway has
been conducted. Gatenby and Gillies [23] proposed an
explanation about high aerobic glycolysis in cancer. Zhong
et al. [22] pointed out that HIF-1α plays an important role
in human cancer progression. In their study, HIF-1α
overexpression was detected in only 29% of primary breast
cancers but in 69% of breast cancer metastasis [22]. Sun
et al. [24] discovered that DCA has anti-proliferative
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properties and can be effective against highly metastatic
diseases.
CAMs is also a signal of cancer metastasis. Alterations in

the expression and function of CAMs correlate with the
progression to tumour malignancy. There are many
researches about the relationship between CAMs and
different cancers. For example, Christofori and Semb [25]
pointed out that the loss of the CAM E-cadherin is involved
in the formation of epithelial cancer. He also discussed in
his review [26] that a possible signalling role of CAMs, and
with it, tumour malignancy. Paschos et al. [27] suggested
that CAMs may also mediate the selection of the host
organ, for the development of distant colorectal metastasis.
When we talk about focal adhesion pathway, much

attention has been paid on focal adhesion kinase (FAK).
For example, Kornberg [28] pointed out that FAK may
have two roles: over-expression of FAK leads to (i)
increased cell migration and (ii) increased cell survival
under anchorage-independent conditions. Planas-Silva et al.
[29] showed that FAK is likely to be biomarkers to predict
the risk of recurrence in ER-positive breast cancer. Since
FAK is closely associated with focal adhesion pathway,
deeper research in the pathway can shed light on
mechanism of breast cancer metastasis.
For the other two significant pathways, stathmin and breast

cancer resistance to antimicrotubule agents, and cytosolic
IET Syst. Biol., 2014, Vol. 8, Iss. 2, pp. 47–55
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Fig. 1 Distribution of weights of edges within each of five modules corresponding to five exclusive pathways in the metastasis group
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DNA-sensing pathway, few relative work is found. However,
these pathways may be viewed as putative markers for breast
cancer metastasis which may serve as a guide for future
research.
3.3 Significance test for pathway enrichment

To test the significance of the difference in pathways between
metastasis and non-metastasis groups in the background of
genes we studied, we conducted a significance test on three
pathways: glycolysis pathway, CAMs and focal adhesion,
which have been proved metastasis-related above. Such a
test is necessary because there is no guarantee that these
three pathways result from the difference between the
structures of metastasis and non-metastasis networks.
First, we define the similarity between two modules. Let G

be the set of all genes involved in our analysis, and A, B, G
be the two modules. We measure their similarity by

S(A, B) = A> B| |����
A| |√ · ����

B| |√ (4)

where |·| represents the number of genes a module contains. A
great value of (4) indicates a large proportion of genes which
A and B share.
For each of the three pathways, we use M1 to denote its

corresponding module of the metastasis group, and let M2

be the module of the non-metastasis group that maximises S
(M1, M2). The difference in gene composition between
these two modules can be viewed as a physiological change
from non-metastasis to metastasis. In order to prove it is the
change in pathway activity from non-metastasis to
metastasis that most likely accounts for the change from M1

to M2, we have designed a significance test for M1 and M2.
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The null hypothesis is that all genes are equally possible to
be extracted.
Assuming we randomly extract two modules R1, R2 , G

under the condition that

R1

∣∣ ∣∣ = M1

∣∣ ∣∣, R2

∣∣ ∣∣ = M2

∣∣ ∣∣,
R1 > R2

∣∣ ∣∣ = M1 >M2

∣∣ ∣∣ (5)

the p-value is computed as

∑min {k2,c,n}
i=0 ai

∑min {k2−i,m2−c,n−i}
j=0 bij

∑min {n−i−j,m1−c}
k=max {k1−i,0} cijk

Cm1+m2−c
N Cc

m1+m2−cC
m1−c
m1+m2−2c

(6)

ai = Ci
nC

c−i
N−n (7)

bij = Cj
n−iC

m2−c−j
N−n−c+i (8)

cijk = Ck
n−i−jC

m1−c−k
N−n−m2+i+j (9)

where

c = M1 >M2

∣∣ ∣∣, ki = Mi > P
∣∣ ∣∣, mi = Mi

∣∣ ∣∣ (10)

n = |G> P|, N = |G| (11)

Here, P denotes the set of all human genes involved in the
pathway that are obtained from KEGG. More specifically,
51
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here the p-value is the probability that

R1 > P
∣∣ ∣∣ ≥ k1 and R2 > P

∣∣ ∣∣ ≤ k2 (12)

under the condition (5).
In addition, to demonstrate that these three pathways are

much more significant in the metastasis network than in the
non-metastasis one, we compare the significant levels of
each pathway in two networks in the background G. Take
the pathway glycolysis as an example. For the metastasis
network, we define the p-value as the probability that we
obtain no less than k1 = 2 genes in glycolysis when
randomly selecting |M1| = 13 genes from G. The p-value of
glycolysis in the non-metastasis network is defined in the
same fashion with k2 = 1 and = |M2| = 17. Then the ratio of
the non-metastasis p-value to the metastasis one is calculated.
The p-values, ratios and other information are listed in

Table 3. The large ratios indicate that the significant levels
of pathway in metastasis network are many times higher
than those in non-metastasis network. This means there is a
large gap with regard to glycolysis between metastasis and
non-metastasis networks, although there is only a
discrepancy of 1 in the number of glycolysis genes
contained in their modules (2 and 1, respectively). The
small p-values demonstrate the significance of difference in
the pathway enrichment and prove the validity of our method.
4 Concluding remarks

In many previous researches on discovering the pathological
characteristics of cancer, people focused on extracting a
single gene or subnetwork differentially expressed across
different cancer states. However, single-gene identification
lacks reproducibility across different data sets and
subnetwork extraction may be biased due to incomplete
priori biological information and relatively small size of
subnetwork. Here, we detect the pathways involved in
cancer metastasis via a module extraction approach without
any preceding biological knowledge in a completely
quantitative way. Five exclusive cancer-related pathways are
discovered in the metastasis group and the significance test
proved that our method is able to detect the differences in
topological structures of networks.
Although we have obtained a basically satisfying result, it

is possible for us to improve the method in two respects. First,
the extraction criterion (1) proposed by [19] tends to find
relatively small modules, so it is likely that only some key
genes of a complete module are extracted, which may
impair the completeness of our modules. Had some
extraction method producing more complete modules been
adopted, more information of metastasis-related pathways
would have been mined. Secondly, computation intensity
for module search increases rapidly with the size of
network increasing. A more computationally efficient
method is desired.
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Table 4 Modules of metastasis group

Index Size Gene name AW

1 13 HSPD1, PSMC3, LAMP1, TMED2, ABCF2, HSPA8, AKAP1, MSH6, HSP90AB1, PGK1, TMEM230, ACTB, GAPDH 0.78
2 12 P4HB, CALR, UBE2M, APOE, PTP4A3, CDC37, JUND, TSC2, FARSA, ELOVL1, SH3BGRL3 0.73
3 19 CRK, TMED2, ARF1, STAT3, CDC5 L, MPDU1, YWHAE, NOTCH2, TAGLN2, HLA-G, ARPC4, NFYC, POLR2E, PICALM,

CDK11A, CDK11B, C14orf1, ENO1, EXOC5
0.71

4 7 FBN1, FBLN1, CDH11, COL6A2, VCAN, DCN 0.76
5 22 SNX17, PGRMC1, PPIF, SPTLC1, CDYL, SMARCA2, MED6, HLA-DRA, KLF6, PRPF4, WTAP, ACLY, HLA-G, DIMT1,

PRPF4B, USP34, ADAM10, TRRAP, ITGA6, RPS2, TMCO3, STAT1
0.60

6 8 PRKCD, CDK5, CPT2, MAD1L1, MED8, LTBP3, CCNL2, INO80B 0.61
7 14 PRPF31, MMP11, CLDN3, TFAP2A, HPCAL1, CRIP2, HMG20B, PPAP2C, CD46, MUC1, TP53I11, PLXNB1, LPPR2 0.60
8 7 TPSAB1, TPSB2 0.82
9 7 SRRT, NPRL3, MAZ, STIP1, NUMA1, PLEC, ELMO2 0.64
10 6 PKP4, GOLGA2, SRSF10, H2AFY, UBE2H, AKIRIN1 0.60
11 11 NUCB1, CYBA, ARRB2, NUP62, TSPAN4, AP3D1, COL4A2, ALOX5, FADS3, MBTPS1, EHBP1L1 0.59
12 5 MEFV, SPN, SCD5, SNW1 0.58
13 5 HBA1, HBA2 0.92
14 10 AEBP1, FBN1, COL10A1, INHBA, MFAP5, ADAM12, LRRC15, COL10A1, COL8A2 0.76
15 8 FHL1, LPL, FABP4, LEP, ADIPOQ, G0S2, GPD1, RBP4 0.74
16 7 FBLN1, SFRP4, DCN, COL14A1, DPT, SPON1 0.73
17 7 ITM2A, ABCA8, ENPP2, IGF1, ADH1B, CHRDL1 0.71
18 5 MYH11, LMOD1, SVEP1 0.69
19 10 IGHG1, IGHG2, IGHM, IGHV4-31, GUSBP11, IGLC1, IGK@, IGKC, LOC100294406, CYAT1, IGLV1-44, IGLL3P 0.92
20 9 LCK, CD2, GZMK, TRAC, CD247, TRBC1, CD3D 0.85
21 15 CXCL9, PTPRCAP, ACAP1, CD27, MAP4K1, CD3G, LTB, SH2D1A, GPR18, ICOS, PPP1R16B, NKG7, MAP4K1, CD52 0.67
22 7 KRT5, TRIM29, S100A2, SERPINB5, JUP, KRT17, KRT14 0.73
23 9 CA12, ESR1, GATA3, TBC1D9 0.84
24 15 ARHGAP25, POU2AF1, TRAF3IP3, CD1C, GPR171, PRKCB, LGALS2, CCL19, GZMB, PTGDS, CLIC2, XCL1, XCL2,

TRAT1
0.61

25 8 CCL5, GBP1, TAP1, CXCL10, CXCL11 0.77
26 8 SFRP1, GABRP, MIA, ID4, SOX10, SYNM 0.74
27 6 XBP1, FOXA1, AGR2, SPDEF, MLPH 0.83
28 8 NNMT, PDGFRA, FBLN2, GAS1, C1S, RARRES2, CXCL12, PDPN 0.68
29 6 MYLK, CNN1, DST, LOC100652766, ID4, LOC100287705, PTN 0.56
30 14 IGK@, IGKC, LOC642838, CKAP2, IGLC1, IGLV1-44, LOC100130100, LOC100287723 0.87
31 15 IGHM, IGH@, IGHA1, IGHA2, IGHD, IGHG1, IGHG3, IGHG4, IGHV3-23, IGHV4-31, IGLJ3, IGHG2, LOC100291917,

IGKC, IGLC1, IGLV1-44, LOC100294406, IGLL5
0.71

32 6 SRGN, CTSS, PTPRC, HLA-DRA, HLA-DQA1, HLA-DQA2, LOC100507718, LOC100509457, HLA-DRB1, HLA-DRB3,
HLA-DRB4, LOC100507709, LOC100507714

0.81

33 8 MYL9, COL1A1, MFAP2, EMILIN1, TAGLN, BMP1, COL6A1, FLNA 0.69
34 5 DCN, SLIT3, SFRP4, COPZ2 0.72
35 8 BIRC5, FOXM1, NDC80, NEK2, TTK, CENPE, MKI67, NCAPH 0.62
36 8 STK10, CD52, LCP2, PSMB8, HLA-DQB1, LOC100293977, CASP1, FYN, SLC15A3 0.57

‘Size’ denotes the number of Affymetrix IDs in a module, whereas ‘AW’ represents the average weight within a module
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Table 5 Modules of non-metastasis group; ‘Size’ denotes the number of Affymetrix IDs in a module, whereas ‘AW’ represents the
average weight within a module

Index Size Gene name AW

1 13 IGLJ3, IGKC, LOC642838, CKAP2, IGLC1, IGLV1-44, CKAP2, IGK@, IGH@, IGHA1, IGHA2, IGHG1, IGHG2, IGHG3,
IGHM, IGHV4-31, LOC100130100, LOC100287723

0.88

2 13 IGHM, IGH@, IGHA1, IGHA2, IGHD, IGHG1, IGHG3, IGHG4, IGHV3-23, IGHV4-31, IGHV4-31, IGHG2, LOC100291917,
IGK@, IGLV1-44, IGLL5

0.79

3 7 AEBP1, COL11A1, INHBA, LRRC15, COL10A1, COL8A2 0.78
4 5 DCN, COL1A1, FBLN1 0.83
5 10 C7, ABCA8, MEOX1, TNXA, TNXB, DARC, IGF1, CHRDL1, COL14A1 0.75
6 12 NNMT, FBN1, FBLN1, PDGFRA, FBLN2, GAS1, DCN, RARRES2, DPT, CFH, SPON1 0.71
7 8 SRGN, CTSS, LCP2, PTPRC, HLA-DRA, HLA-DQA1, HLA-DQA2, LOC100507718, LOC100509457, HLA-DRB1,

HLA-DRB3, HLA-DRB4, LOC100507709, LOC100507714
0.81

8 10 IGHA1, IGHA2, IGHD, IGHG1, IGHG3, IGHG4, IGHM, IGHV4-31, IGH@, LOC100291917, LOC100653245, IGLV1-44,
IGLC1, IGLJ3, IGHV3-48

0.66

9 6 FHL1, FABP4, LEP, G0S2, GPD1, ITGA7 0.75
10 5 MYH11, MYLK, LMOD1, CNN1 0.71
11 5 TPSAB1, TPSB2 0.86
12 5 MYL9, TAGLN, SERPINH1, CTGF, ADAM12 0.65
13 6 CD52, CD79A, ACAP1, PTGDS, CD7, MS4A1 0.60
14 17 P4HB, HSPD1, CALR, PSMC3, LAMP1, UBE2M, APOE, ARF1, MIR3620, TAGLN2, COL4A2, POLR2E, HSP90AB1,

FARSA, ELOVL1, SH3BGRL3, ACTB, LOC100505829, GAPDH
0.77

15 16 PGRMC1, SPTLC1, TMED2, YWHAE, HSPA8, SNORD14C, SNORD14D, NOTCH2, PRPF4B, MSH6, CCNG2, NFYC,
RBFOX2, ADAM10, PICALM, TMEM230

0.71

16 7 FBN1, EMILIN1, CDH11, COL6A2, VCAN, COL6A1 0.70
17 29 NUCB1, SHC1, CRK, PRPF31, JUND, CLDN3, TFAP2A, EIF2S3, HPCAL1, PTP4A3, CBX4, BTBD2, CRIP2, RALGDS,

HMG20B, PRPF4, TSPAN4, HNRNPUL1, CDC37, AKAP1, ARPC4, TP53I11, TSC2, ENO1, MBTPS1, PTMS, INO80B,
INO80B-WBP1, EHBP1L1

0.65

18 7 CYBA, ARRB2, RAC2, CXCR4, HLA-G, STAT1 0.64
19 10 SNX17, PPIF, CDYL, MED6, ABCF2, STAT3, CDC5L, WTAP, ACLY, LOC100652805, LOC100653302, PGK1 0.62
20 18 MAT2A, BHLHE40, SLC29A1, ATP6V1A, NFYA, MPDU1, FOXO3, FOXO3B, TP53, CD46, STIP1, USP34, MTUS1,

TRRAP, PLXNB1, SEC23IP, C14orf1, EXOC5, TMCO3
0.57

21 6 MMP14, MFAP2, MMP11, BMP1, FLNA 0.61
22 12 IGLC1, IGHG1, IGHG2, IGHM, IGHV4-31, IGK@, IGKC, GUSBP11, LOC100294406, CYAT1, IGLV1-44, IGLL3P 0.90
23 10 LCK, CD2, GZMK, TRAC, SH2D1A, TRBC1, CD3D, CD52 0.88
24 20 CCL5, CXCL9, ARHGAP25, PTPRCAP, POU2AF1, CD27, MAP4K1, CD3G, LTB, GPR171, PRKCB, CD247, PTPRC,

PPP1R16B, ZAP70, CTSW, XCL1, XCL2
0.69

25 9 IGHM, IGK@, IGKC, IGLJ3, IGLC1, IGLV1-44 0.80
26 11 CA12, FOXA1, ESR1, GATA3, TBC1D9, MLPH 0.82
27 7 SFRP1, GABRP, MIA, SOX10, SYNM 0.78
28 8 LRMP, LCK, IKZF1, CCL19, PTGDS, KLRB1, YME1L1 0.67
29 6 PLIN1, CD36, ADIPOQ, ADH1B, RBP4 0.80
30 6 MX1, IFI27, IFI44L, ISG15, RSAD2, IFI44 0.78
31 7 GBP1, TAP1, CXCL10, STAT1, CXCL11 0.81
32 6 KRT5, TRIM29, SERPINB5, JUP, KRT17, KRT6B 0.71
33 7 XBP1, SLC44A4, AGR2, AR, SPDEF, SIDT1, SPDEF 0.71
34 8 SFRP4, ITGBL1, COMP, OMD, COL10A1, MFAP5, ASPN, COPZ2 0.69
35 8 HBB, HBA1, HBA2 0.87
36 10 TOP2A, BIRC5, FOXM1, CDC20, NDC80, NEK2, TTK, CENPE, NCAPH, CDCA8 0.71
37 14 RUNX3, LAMP3, CD38, ITGB7, ADAMDEC1, XCL1, NCF4, GZMB, ICOS, NKG7, LYZ, BIN2, SLAMF8, IL21R 0.65
38 6 CLDN5, CCL14, CCL14-CCL15, CCL15, IGF1, MFAP4, SVEP1 0.70
39 10 SIT1, CR2, HLA-DOB, CD19, GPR18, P2RX5, IGHM, BANK1, STAP1, LRMP 0.58
40 12 CCND2, IL32, NCF1, NCF1B, NCF1C, GNLY, GABBR1, UBD, PTPN22, LAG3, CCR5, GZMH, BIRC3, KLRD1 0.56
41 5 RARRES1, CHI3L1 0.77

‘Size’ denotes the number of Affymetrix IDs in a module, whereas ‘AW’ represents the average weight within a module
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