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Abstract: Atherosclerosis and resultant peripheral arterial disease (PAD) are common complications in patients with type 2
diabetes mellitus or end-stage renal disease and in elderly patients. The prevalence of PAD is higher in patients receiving
haemodialysis therapy. For early assessment of arterial occlusion using bilateral photoplethysmography (PPG), such as
changes in pulse transit time and pulse shape, bilateral timing differences could be used to identify the risk level of PAD. Hence,
the authors propose a discrete fractional-order integrator to calculate the bilateral area under the systolic peak (AUSP). These
indices indicated the differences in both rise-timing and amplitudes of PPG signals. The dexter and sinister AUSP ratios were
preliminarily used to separate the normal condition from low/high risk of PAD. Then, transition probability-based decision-making
model was employed to evaluate the risk levels. The joint probability could be specified as a critical threshold, < 0.81, to identify
the true positive for screening low or high risk level of PAD, referring to the patients’ health records. In contrast to the bilateral
timing differences and traditional methods, the proposed model showed better efficiency in PAD assessments and provided a
promising strategy to be implemented in an embedded system.

1Introduction
Cardiovascular diseases (CVDs), involving heart or vascular
diseases, are major risk factors for morbidity and mortality
especially in elderly patients and haemodialysis (HD) patients with
or without type 2 diabetes. In Taiwan, the prevalence of CVDs in
elderly patients aged > 65 years is associated with several
complications, such as coronary artery disease, stroke,
hypertensive heart disease, peripheral arterial disease (PAD), and
venous thrombosis. Compared to other complications, PAD and
atherosclerotic diseases are common and occur in both lower and
upper extremity peripheral arteries [1, 2]. Endothelial dysfunction
in vascular access has been found to be a contributing cause of
atherosclerosis due to diabetes mellitus. Therefore, patients
develop atherosclerosis of peripheral arteries, peripheral vascular
stenosis, and subsequent vascular diseases [3, 4]. Lower limb PAD
is highly prevalent in patients with type 2 diabetes mellitus. This
symptom leads to narrowed lower extremity peripheral arteries, leg
pain, and/or foot gangrene [5–7]. In addition, patients with
peritoneal dialysis and HD therapy also develop PAD in both lower
and upper limbs. Frequent complications, such as venous side
stenosis or stenoses near the graft-to-vein site, could reduce
dialysis blood flow [8–10]. In this study, we propose a prognostic
detection model that could be employed to screen PAD with
bilateral photoplethysmography (PPG) signals in HD patients.

PPG signals carry physical information about cardiovascular
functions, heart rates, arterial properties, and arterial/venous blood
oxygen saturation in clinical examinations [7, 11–16]. Optical
measurement techniques (red and infrared wavelengths) allow for
comfortable and non-invasive continuous monitoring of biosignals
and the placement of reflection or transmissive modes on any skin
surface. Thus, optical probes and measurement hardware could be
easily integrated into a mobile device or a tablet PC via wired or
wireless communication, as shown in Fig. 1. Using bilateral
multisite measurements or temporal analysis, previous studies [7,
11–13, 17–19] have shown significant bilateral PPG differences,

such as timing differences and PPG morphology, in CVDs, PAD,
arterial compliance, diabetic foot, and vascular diseases. An
advantage of optical measurements is their ability to detect changes
in vasoconstriction and vasodilatation in vessels < 2.5 mm in
diameter. Information about blood volume and blood transport can
be obtained via continuous measurement and temporal analysis at
different body sites. 

Time-domain methods are commonly applied to analyse PPG
signals for lower and upper limb PAD screening. Bilateral
differences in rise time (RT), pulse transit time (PTT), and pulse
waveforms have been validated that could separate normal
condition from lower grade or higher grade PAD. Depending on
the severity of PAD progression, the dexter-to-sinister dissimilarity
in transit time and pulse amplitudes increases significantly. Thus,
pulse area under the systolic peak (AUSP) contains both
information. This index has been validated so as to identify patients
with and without PAD [15, 17, 18]. A quantitative method based on
discrete fractional-order integrators [7, 20, 21] with finite
computations, short-memory requirements, and finite power series
was designed to calculate the bilateral pulse AUSPs. This method
could overcome the limitations of Fourier analysis and wavelet
transformation methods, such as the large number of numerical
computations, memory and sampling data requirements, and
choices of specific frequency features for healthy subjects and PAD
subjects [12, 22]. The Markov model [23, 24] with two states of
AUSP ratios expresses a matrix of substitution rates [24–26] to
replace the bilateral AUSP variations. Bilateral differences in
transition probabilities have been employed to separate normal
conditions from low-risk/high-risk PAD using the distance
estimation method. The joint probability was specified as a critical
threshold to find the similarity or different states for screening
bilateral AUSP variations. These quantities were inversely related
to the severity of PAD and were then employed to identify the
possible levels. This method could overcome the complex
computations and was easy to program into an embedded system.
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The remaining of this paper is organised as follows: Section 2
describes the PPG measurement, feature choice, and screening,
such as timing parameters, pulse shape indices, and AUSPs;
Section 3 addresses the methodology of the study, including the
discrete fractional-order integrator and transition probability
model; and Sections 4 and 5 present the experimental results and
conclusions.

2PPG measurement, features, and screening
PPG is a non-invasive optical measurement and a volumetric
measurement that provides an estimation of blood variations, pulse
volumes, and blood transport via the measurement of dynamic
attenuation of red or infrared light. With light from a light-emitting
source, a photodetector/photosensor monitors the changes in light
absorption using the reflection or transmissive mode to convert
light signals into voltage signals. The detector can be placed, either
bilaterally or unilaterally, at different body sites, such as the
earlobes, index fingers, thumbs, big toes, and on the forehead [11–
15], as shown in the transmissive absorption mode in Fig. 2. The
PPG pulse is attributable to variations in blood volume in the skin
surface, caused by the heart pumps, cardiovascular regulation,
thermoregulation, respiration, and pressure pulses. Hence, the heart
rate, cardiac cycle, and respiration can be detected. 

A PPG waveform consists of alternating current (ac) and direct
current (dc) components that carry human physiological
information. The amplitudes of PPG ac components are
proportional to the pressure pulses, while the differences between
the systolic and diastolic pressure will result in the blood changes
in the peripheral arteries. The PPG's systolic peak is a result of
pressure wave from the left ventricle to the periphery of the human
body. Hence, the systolic region of each PPG pulse is a time
interval revealing vascular dynamic compliances, as shown by the
RT of normalised PPG waveform in Fig. 3. Thus, PPG can be used

to evaluate cardiovascular risk factors, atherosclerosis, arterial
properties, endothelial function, and hypertension [11–15]. Some
indices, such as the reflection index, augmentation index, and
stiffness index, have been used to evaluate arterial stiffness, arterial
compliance, and vascular health. These indexes are estimated
depending on the systolic peak, diastolic peak, and dicrotic notch
duration [17, 18]. However, age-related change is an important
factor that could affect the pulse shape characteristics, such as
degradation of arterial compliance with age or increase of arterial
stiffness with age [15]. The dicrotic notch and diastolic peak may
disappear or be less pronounced in older and unhealthy subjects.
These indexes cannot be used for subjects of all ages. Timing
parameters, such as RT (foot-to-systolic peak time) and PTT (R-
peak to systolic peak time) [11–13], where the peak of R wave of
electrocardiogram is a timing reference, show that for bilateral
differences (dexter-to-sinister), ΔRT = |RTR − RTL| and ΔPTT = |
PTTR − PTTL|, as vascular disease gradually evolves; this is highly
correlated with the evaluation of vascular diseases and peripheral
arterial stenoses for subjects of all ages. However, timing
parameters in signal processing need an extra R peak detection
from an electrocardiogram as a timing reference. 

In this study, the AUSP is used to evaluate the bilateral
differences from the pulse foot (F) to the systolic peak (P) in the
time-domain PPG signal, as shown in Fig. 3. The characteristics of
systolic region show a similar correlation for subjects with
different ages. It can be seen the AUSP has an obvious
characteristic feature involving timing (time delay) and amplitude
information and can be used as a non-invasive continuous
measurement. This index increases with age and systolic stress,
while systolic load increases due to arterial stiffness and vascular
compliance degradations. The risk factors of CVD, diabetes, and
PAD have an important consequence to identify vascular disease
progression. Hence, the dexter-to-sinister AUSP ratio, ρ, is used to
evaluate bilateral similarity and difference, and the critical rule is
defined as follows:

ρ =
AUSPR

AUSPL

=

> 1,AUSPR > AUSPL

≃ 1,AUSPR ≃ AUSPL

< 1,AUSPR < AUSPL

(1)

where AUSP ratio > 1 or < 1 represents bilateral differences in PAD
screening.

3Methodology
3.1 Discrete fractional-order integrator

For integral computations, fractional-order integrator employs non-
integer numbers to output the time integral of its input signals, such
as electrical signals, audio signals, and biosignals. The summation
processes are computed using the ratios of the gamma function,
Γ(α), which incorporates the number of sampling data points in the

Fig. 1 Configuration of proposed screening model in an embedded system
 

Fig. 2 PPG optical measurements at the thumbs
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time interval [t0, t1], the fractional order parameters, α [21]. For
information and signal processing, temporal analysis of a time-
varying signal, f(t), is performed in discrete time steps using the
Grünwald–Letnikov (G–L) definition [20, 21], as follows:

D−α f (t) ≃ lim
Δτ → 0

(Δτ)α ∑
i = 0

n − 1

( − 1)i −α

i
f (t − i × Δτ) (2)

where 0 < α < 1 for integral process, α∈R; −1 < α < 0 for derivative
process; integer, α= ± 1, for integer-order differentiation and
integration process; n is the number of sampling points; and the
binomial coefficients are given as follows:

α

0
= 1,

−α

i
=

−α( − α − 1)⋯( − α − i + 1)
i!

=
Γ( − α − 1)

Γ(i + 1)Γ( − α − i + 1)

(3)

Traditional differentiation and integration computations use the
integer-order differential operators with Tustin transforms and
trapezoidal integration methods for geometrical interpretations.
The G–L integrator employs non-integer and irrational numbers to
deal with signals, and the summation is computed using the ratios
of the gamma function, Γ(α), and sampling data, f(t–i·Δt), in the
time interval [t0, t1]. It can be used to express the finite power
series or series expansion of non-linear functions as a weighted
summation to approximate the integral. Its integrator with the
various parameters, α, has a broad application range for the
analysis of time-varying signals which includes fluid flows, heat
conduction, and biosignals.

For bilateral PPG signals, the AUSP is calculated and bounded
in the specific time interval [t0, tFP] using the discrete fractional-
order integration, as shown in Fig. 3. Hence, the AUSP of dexter-
PPG and sinister-PPG is defined as

AUSPR ≃ lim
ΔτR → 0

(ΔτR)α ∑
i = 0

nR − 1

( − 1)i −α

i
PPGR, FP[i × ΔτR] (4)

AUSPL ≃ lim
ΔτL → 0

(ΔτL)α ∑
j = 0

nL − 1

( − 1) j −α

j
PPGL, FP[ j × ΔτL] (5)

timing step:

ΔτR =
tR, FP − t0

nR

∈ R and ΔτL =
tL, FP − t0

nL

∈ R (6)

where the discrete dexter-PPG signal is referred to as PPGR,FP[i × 
ΔĲR] in time interval [t0, tR,FP], the number of sampling points, i∈
[0, nR−1]; the discrete sinister-PPG signal is referred to as
PPGL,FP[j × ΔĲL] in time interval [t0, tL,FP], the number of sampling
points, j∈[0, nL−1]; nR and nL are integer numbers. Both the
AUSPR and AUSPL are functions of the variable fractional order, 0 
< α < 1, and they have a broad range for feature extraction of time-
varying PPG signals. In addition, the discrete bilateral PPG signals
can be normalised as follows:

PPGR, PF[i × ΔτR] =
PPGR[i × ΔτR]

PPGR, max

, i ∈ 0, nR − 1 (7)

PPGL, PF[ j × ΔτL] =
PPGL[ j × ΔτL]

PPGL, max

, j ∈ 0, nL − 1 (8)

where PPGR,max and PPGL,max are the systolic peaks of bilateral
PPG signals, and the initial conditions are PPGR[0] = PPGL[0] = 0,
as shown in Fig. 3.

3.2 Transition probability model

The bilateral AUSP ratios, ρR and ρL, are defined as follows:

ρR =
AUSPR

AUSPL

and ρL =
AUSPL

AUSPR

(9)

The AUSP ratios are used to evaluate bilateral similarity, as the
ratios, > 1 or < 1, represent bilateral differences in peripheral
arterial stenosis screening. Therefore, each pair of AUSP ratios, ρR
and ρL, can be replaced by the substitution rates, such as the
parameters, λ1 and λ2. For two states, the concept of substitution-
rate matrix, Q, is defined as follows [24, 26]:

Q =
ρ11 ρ12

ρ21 ρ22

=
−ρR ρR

ρL −ρL

= UΛU
−1, ρ12 = − ρ11, ρ21 = − ρ22

(10)

Fig. 3 Bilateral normalised PPG signals and bilateral AUSPs
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⇒ Q = UΛU
−1 =

u11 u12

u21 u22

λ1 0

0 λ2

u11 u12

u21 u22

−1

(11)

where each raw element of the matrix, Q, sums to 0 (−ρR + ρR = 0
and ρL−ρL = 0); matrix, U, is a non-singular matrix and U−1 is its
inverse; Λ is a diagonal matrix, diag{λ1, λ2}; and λ1 and λ2 are the
eigenvalues of matrix Q.

For two dynamic states, λ1 × Δt or λ2 × Δt gives the probabilities
that the ratio ‘ρR will change to ρL’ or ‘ρL will change to ρR’ in an
infinitely small time interval, Δt. A transition matrix can be used to
describe the dynamics of changes in two ratios, while two
observations can be classified. This provides a Markov transition
probability model to describe the evolution of the change ratings,
as shown in Fig. 4a. The transition probability matrix, PRL(t) = 
[prl]2×2, is defined as follows:

PRL(t) = eQt =
p11(t) p12(t)

p21(t) p22(t)
=

p11(t) (1 − p11(t))

(1 − p22(t)) p22(t)
(12)

subject to 0 ≤ prl(t) ≤ 1, ∑l = 1

2
prl(t) = 1, r = 1, 2; l = 1, 2. The

spectral decomposition of substitution-rate matrix, Q, is also [24]

Q = UΛU
−1 =

1 −ρR

1 ρL

0 0

0 −Δ

ρR

Δ

ρL

Δ

−1
Δ

1
Δ

(13)

where Δ = (ρR + ρL). After deriving the transition probability
matrix, P(t), for Markov chain with two dynamic states, the general
formulation is

PRL(t) = eQt = U
e0 × t 0

0 e−Δ × t
U

−1 (14)

⇒ PRL(t) =
P11(t) P12(t)

P21(t) P22(t)

=
1

(ρR + ρL)
⋅

ρL + ρRe
−(ρR + ρL)t

ρR − ρRe
−(ρR + ρL)t

ρL − ρLe
−(ρR + ρL)t

ρR + ρLe
−(ρR + ρL)t

(15)

When time t increases from 0 to ∞ (t→∞), the stationary
limiting distributions are

lim
t → ∞

P11(t) = lim
t → ∞

P21(t) =
ρL

(ρR + ρL)
(16)

lim
t → ∞

P22(t) = lim
t → ∞

P12(t) =
ρR

(ρR + ρL)
(17)

If ρR 1.0 and ρL ; 1.0, the transition probabilities will approach the
limiting distribution, [0.5, 0.5, 0.5, and 0.5], over any time, t ≥ 0, as
shown by the ideal transition probabilities in Fig. 4. Hence, the
ideal transition probability is

⇒ Pideal(t) =
P11, ideal P12, ideal

P21, ideal P22, ideal

=
0.5e−2t + 0.5 −0.5e−2t + 0.5

−0.5e−2t + 0.5 0.5e−2t + 0.5

(18)

We can then apply a column vector [P11(t) P22(t)]T to estimate
sequence similarity with the pair of AUSP ratios, ρR and ρL. The
Euclidean distance estimation is used to screen the similarity, as
follows [26]:

dR = ∑
n = 1

N

(P11(n) − P11, ideal(n))2 (19)

dL = ∑
n = 1

N

(P22(n) − P22, ideal(n))2 (20)

where σ is the number of sampling points within infinitely small
time intervals, Δt = tRL/σ, n = 1, 2, 3,…, σ. In time interval tRL, the
joint probability accommodating the variance with AUSP ratios, ρR
and ρL, is as follows:

pRL(tRL) = pR(tRL) × pL(tRL)

= exp −
1
2

dR

σ

2

× exp −
1
2

dL

σ

2 (21)

where ı is the standard deviation; pR(tRL) > 0.90 and
pL(tRL) > 0.90 are used to separate the normal condition from PAD
progression.

As shown in (21), pR(tRL) and pL(tRL) are used to screen the
same ratio of each pair of dexter-to-sinister AUSPs. The Euclidean
distance estimation screens the bilateral differences due to the
asymmetric AUSP. When two ratios are different, the limitation
values of transition probabilities will diverge from 0.50 with time
intervals over 1.0 s, as shown in Fig. 4b. Thus, the joint probability,
pRL, gradually decreases and approaches zero. Its quantity, from
value 1.00 to value 0.00, would be inversely related to PAD
progression.

3.3 Model implementation in an embedded system

A field programmable gate array (FPGA) is a high-level embedded
system that can be designed to perform the specific functions, as an
application-specific integrated circuit (ASIC) to implement the
given application. The detection method integrating the discrete

Fig. 4 Transition probability model
(a) Markov chain with two states, (b) Transition probabilities for bilateral asynchronous screening (average tRL = 1.0 s, σ = 20, Δt = 50 ms)
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fractional-order integrator and the transition probability model was
configured in an embedded system (NITM, myRio 1900, FPGA
module [27]). The integrating algorithm was designed in a
LabView FPGA module using the ‘Timed Loop’ and the ‘Stacked
Sequence Structure’. The logics of data acquisition, fractional-
order integrators, and transition probability model were
implemented in each stacked sequence structure, as shown in
Fig. 5. Data acquisition logic performed the PPG signal
preprocessing to obtain the sampling data of dexter and sinister
AUSPs in the (a) sequence structure. Two logics of fractional-order
integrators were carried out using the arithmetic and gamma
function operations in the (b) and (c) sequence structures. Then, the
dexter and sinister fractional-order AUSPs can be achieved to
calculate the AUSP ratios. While timed loop was used since be
deterministic loop, it would synchronise to the internal clock of the
embedded system. Both two-sequence structures finished the
calculations before each time period was achieved. With the timed
loop, the implemented loop rate for the arithmetic operations was
40 MHz (25 ns for each loop). Hence, two fractional-order AUSP
calculations took about nR × 25 ns and nL × 25 ns execution time.
As indicated in (16) and (17), the transition probability model was
implemented in (d) sequence structure. The final output of joint
probability exceeding value 0.81 (pR(tRL) > 0.90 and pL(tRL) > 0.90)
separated normal conditions from a PAD progression. The
inference results could simulate and verify the logic designs via the

graphic user interface, as shown in Fig. 5. Among the current
designs, the graphic user interface for Windows application has
reprogrammability and flexibility to quickly debug and develop
ASICs. Thus, the high-level FPGA module provided a promising
platform to design a prototype monitor for bilateral PPG screening.
The overall detection procedure is shown in Fig. 6. 

4Experimental results and discussion
4.1 Feasibility tests with the proposed screening model

This experiment was approved by the Human Research Ethics
Committee and the Institutional Review Board (IRB) of Hospital
(under contract number: VGHKS13-CT12-11). A total of 40
enrolled subjects were divided into normal subjects (18 subjects)
and subjects with PADs, CVDs, or diabetes mellitus (22 subjects)
and were further divided into three groups: (i) normal condition,
(ii) lower level of PAD risk, and (iii) higher level of PAD risk. Two
thumb clips with mounted light-emitting diodes and photodetectors
were placed on the dexter and sinister thumbs to obtain bilateral
PPG signals using the transmissive absorption mode, as shown in
Fig. 2. Thereby, two-channel temporal PPG analysis was
performed using a data acquisition controller from the
photosensors to a tablet PC. Then, the measurement data were
stored in the memory. The prototype detection method, which
involves data acquisition, discrete fractional-order integrator, and
the transition probability method, was implemented by using
LabVIEW FPGA module (NITM, myRio 1900). For feature
extraction, fractional-order integration with parameters, α = 0.1–0.4
[20, 21], was calculated using (4)–(6), as shown in Fig. 7a. It can
be seen that the distinguishable fractional-order integrations had a
fractional order α ≤ 0.35. Hence, fractional-order parameter, α = 
0.35, was chosen in this study. Then, AUSPs of dexter-PPG and
sinister-PPG were used to calculate the bilateral AUSP ratios, ρR
and ρL, using (9). 

According to the dexter-to-sinister timing differences, ΔRT,
these preliminary results were separated for normal subjects and
PAD subjects, as shown in Fig. 7b. The respective mean values of
normal control and lower/higher level of PAD risks were 5.13 ms
(range: 1.0–9.3 ms), 14.73 ms (range: 10.0–25.0 ms), and 38.91 ms
(22.0–58.1 ms). Three critical ranges, ΔRT < 10 ms, 10 ms < ΔRT 
< 20 ms, and ΔRT > 20 ms, were used to identify the risk levels for
PAD screening. The bilateral AUSP ratios with the three
boundaries, < 0.90, 0.90–1.10, and > 1.05, were also used to screen
the bilateral synchronous or asynchronous PPG signals, while ρR ; 
1 and ρL ; 1 indicated the bilateral synchronous. Hence, these
indexes were similar for bilateral RT and AUSPs. For the 40
enrolled subjects, the proposed screening model was used to
calculate the transition probabilities. Bilateral similarity or nearly
the same will converge/close to a limitation value of 0.50 in a finite
time interval; otherwise, it will diverge from 0.50 for asynchronous
PPG signals. Then, it can be seen that the joint probabilities

Fig. 5 Sequence structures and graphic user interface for PPG signal processing and arithmetic operations
(a) Data acquisition logic, (b), (c) Logic of fractional-order integrator, (d) Logic of transition probability model

 

Fig. 6 Flowchart of detection procedure
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decayed or dropped as PAD showed gradual progression. The
critical value, < 0.81, could be specified to identify the risk level
for separating the normal condition from PAD progression, as
shown in Fig. 7c. Comparison with the timing parameters and
physician decisions showed that the experimental results had (1) an
overall accuracy (hit rate) of 87.5% with five failures for all
subjects, (2) a sensitivity of 81.8% (18 true positives and 4 failures)
for PAD correctly identified, and (3) a true-negative rate of 94.4%
(17 true negatives and 1 failure) for normal subjects. It can be

noticed, the true-negative rate (1 failure) is higher than true-
positive rate (4 failures), as shown in Fig. 7c.

The measurement errors and quantification errors could affect
the efficiency of the proposed method. In some cases, bilateral
PAD might occur in HD patients with PAD and diabetes mellitus,
resulting in bilateral peripheral arterial stenosis, or in older subjects
with severe CVD and vascular diseases. This finding confirmed
that the proposed screening model could detect PAD in its early
stages, such as in subjects with a lower risk of PAD.

4.2 Case study: HD patients with PAD

In clinical studies [9, 10], CVD has been identified as the most
common cause of morbidity and mortality in HD patients. PAD is
independently associated with age, diabetes mellitus, and
hyperlipidemia. Higher prevalence has been observed in patients > 
70 years. However, PAD is also an important risk factor of
systemic atherosclerotic disease, resulting in intermittent
claudication, leg pain, and ischemic heart disease. Prevalence of
PAD was found to be greater in both HD patients and peritoneal
dialysis patients [9, 10], increasing the risk factors for hypertension
and hyperlipidemia. Clinical data were enrolled from 10 HD
patients with and without PADs, CVDs, and diabetes mellitus.
These experimental data were used to verify the proposed
screening model. In this study, we captured at least a 1-min record
for PPG measurements at the bilateral thumb sites. Fig. 8a
represents the experimental measurements containing 15 time-
domain PPG signals. Based on the ankle-brachial pressure index
[28], the three groups were divided into normal condition, low-risk
level, and high-risk level by physician decisions, as shown in
Table 1. In addition, the bilateral timing differences were employed
to identify the possible levels. These indices are preliminarily
regarded as clinical standard references to screen PAD. 

For example, Case Study 2# had PAD and CVD, as shown in
Table 1. This HD patient would be at a low risk of atherosclerosis
and could gradually end up in progressive dialysis vascular access
stenosis. This would cause some complications, such as endothelial
dysfunction, hand oedema, arterial steal syndrome, and
hypotension [29]. Hence, screening PAD is needed to evaluate the
risk level early in routine HD healthcare. As shown by the
detection procedure in Fig. 6, the detailed screening procedures
were

Step 1: for 60 detection cycles, computed the average AUSP ratios,
ρR = 0.8805 and ρL = 1.1357, using (4)–(6), and (9),

Fig. 7 Experimental results fro screen bilateral PPG signals
(a) Fractional-order integrations with fractional-order parameters, α = 0.10 - 0.40, (b) AUSP ratios versus bilateral timing differences, (c) Joint probabilities versus bilateral timing
differences (40 enrolled subjects)

 

Fig. 8 Experimental results for Case Study 2#
(a) Dexter and sinister PPG signals in time domain, (b) Dexter and sinister transition
probabilities, (c) Dexter and sinister distance estimations, (d) Joint probability, > 0.81,
for separating the normal condition from low/high risk of PAD
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Step 2: computed the transition probabilities, P11 = 0.5633 and P22 
= 0.4367, using (16) and (17), as seen the some part of profiles in
Fig. 8b,
Step 3: computed the Euclidean distances, dR and dL, using (19)
and (20),
Step 4: identify the similarity using the average index, pR = pL = 
0.8185 (the standard deviations, ı = 0.1), as seen the some part of
profiles in Fig. 8c,
Step 5: computed the joint probability, pRL = 0.6699, using (21).
The results indicated the average value = 0.6699 to identify the
‘subject 02# with PAD’.

In this study, the critical value of joint probability, pRL < 0.81, was
used to separate the normal condition from low-/high-risk level of
PAD, while the joint probabilities dropped with the specific range
from 0.8703 to 0.4475, as shown by some part of profiles in
Fig. 8d. It can be seen that the distance estimation screened the
differences, while the limitation values of transition probabilities
diverged from 0.50. Hence, the gross changes of joint probabilities
were sensitive to the Euclidean distances. Their quantities were
inversely related to PAD progression. For 60 detection cycles, a
positive predictivity of > 88.3% (53 true positives and 7 true
negatives) was obtained to quantify the performance of signal
analysis with a slight noisy background. The experimental results
confirmed that the proposed screening model could also detect
PAD for clinical applications. Testing data for the remaining nine
enrolled subjects (six with PAD and three without PAD) are shown
in Table 1.

Bilateral timing differences, such as PTT and RT [11–13], were
employed to screen PAD progression in patients with CVD and
diabetes mellitus. Previous studies also showed that timing
parameters (systolic rising edge), amplitudes, and shapes differed
more significantly in both lower and upper limbs, as PAD
gradually deteriorates. However, the bilateral timing parameters
were prone to measurement errors by heart-rate variations, such as
while searching R peak of an electrocardiogram with a timing
reference for parameter extraction in time domains [11, 12]. An
extra R peak detection algorithm was required. In addition, the
fractional-order dynamic errors [19, 22] were also employed to
extract the dexter-to-sinister differences involving rising time and
amplitudes in the systolic rising edge. The index, Ψ, increased with
the severity of dexter-to-sinister differences, as shown in Table 1.
This was a quantitative method to identify the risk level for PAD
screening. Then, an artificial neural network (ANN) method was
proposed for categorising the level of PAD, as vector = [normal,
low risk, and high risk] = [1/0, 1/0, and 1/0] was encoded as binary
values with value ‘1’ or ‘0,’ with signal ‘1’ denoting the three
groups and ‘0’ denoting the rest of the signals. ANN can be trained
in a way of off-line. Optimal ANN parameters were determined by
the traditional least-square algorithm or gradient descent algorithm
[7, 19, 22]. After all model parameters are determined, there is no
need for iterative computations on-line. However, hit rates
depending on training data, its mechanism should be implemented
with updating parameters immediately using incoming new

training data. The adaptive mechanism was required to retrain the
entire network with add-in candidate nodes and updating connected
parameters in online applications. Thus, the primary problems were
the determination of the multilayer network's structure, trial-and-
error procedure, and the update of ANN parameters with iterative
computations to limit the mechanism's inclusion in an embedded
system.

In contrast to the traditional methods, the proposed screening
model was a simple formulation method using the discrete
fractional-order integrations, fundamental arithmetic operations,
and exponent operations. Hence, the proposed model overcame the
complex computations and configuration design. This model could
be easily implemented both in a PC-based device or in a portable
embedded system. An embedded system with FPGA module
provided a programmable and portable design platform. The
screening model could be implemented, tested, debugged, and
modified through the sequence structure design and graphic user
interface. Its specific function had reprogrammability and
flexibility to quickly establish a specific ASIC in an FPGA module.
It had a short design cycle, superior to the traditional methods.

5Conclusion
In clinical practice, HD patients with CVD and diabetes mellitus
are prone to develop PAD and vascular diseases. In this study, we
established an assistant screening model for PAD detection,
consisting of discrete fractional-order integrator and transition
probability model. A discrete fractional-order integrator with α = 
0.35 was designed to calculate the dexter-to-sinister AUSP. This
fractional-order calculator could be implemented in real-time
signal processing using the finite series expansion. In contrast to
the frequency analysis methods, it could reduce the requirements of
a large number of sampling data, memory, and numerical
computations. A transition probability model was carried out to
identify the risk level of PAD. Then, the critical threshold, 0.81,
was employed to separate the true negative (for identified normal
condition) from true positive (for identified PAD). For randomly
selected HD patients and elderly patients (40 enrolled subjects), > 
85% of hit rate and 80% of true-positive rate were achieved. For
signal recognition, the experimental results showed that the
proposed screening model had > 85% of positive predictability in
60 detection cycles. In addition, the proposed manner overcame the
complex computations and required no iterative computation to
update any parameter. This model could be easily implemented in
the FPGA module with the ‘Timed Loop’ and the ‘Stacked
Sequence Structure.’ This promising tool could establish an
individualised tool for PAD screening in clinical examination or
routine healthcare.

6Acknowledgment
This work was supported in part by the Ministry of Science and
Technology, Taiwan, under contract number: MOST 104-2221-
E-244-003, duration: 1 August 2015–31 July 2016. The

Table 1 Experimental results using the proposed screening model, physician decision, bilateral timing differences, and ANN
No. PAD CVD Diabetes ΔRT (ms)

[7]
Physician
decision

Ψ [19,
22]

ANN [19, 22] Transition
probability

Distance estimation Joint
probability

P11 P22 pR pL
01 √ √ √ 48.22 high risk 1.200 [0 1 0] 0.5626 0.4374 0.8221 0.8221 0.6759
02 √ √  ×  19.38 low risk 1.140 [0 1 0] 0.5633 0.4367 0.8185 0.8185 0.6699
03 √ √  ×  27.39 high risk 0.289 [1 0 0] 0.5500 0.4500 0.8826 0.8826 0.7791
04  ×  √  ×  15.89 low risk 0.621 [0 1 0] 0.5552 0.4448 0.8588 0.8588 0.7375
05  ×  √  ×  30.68 high risk 0.522 [0 1 0] 0.6072 0.3928 0.5627 0.5627 0.3167
06  ×  √  ×  20.82 high risk 0.371 [1 0 0] 0.5600 0.4400 0.8353 0.8353 0.6977
07  ×  √  ×  13.15 low risk 0.252 [1 0 0] 0.5694 0.4306 0.7860 0.7860 0.6179
08  ×   ×   ×  5.30 normal 0.268 [1 0 0] 0.5363 0.4637 0.9361 0.9361 0.8764
09  ×   ×   ×  6.60 normal 0.290 [1 0 0] 0.5348 0.4652 0.9411 0.9411 0.8856
10  ×   ×   ×  7.90 normal 0.371 [0 1 0] 0.5400 0.4600 0.9232 0.9232 0.8524
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