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Abstract: Drug sensitivity prediction is one of the critical tasks involved in drug designing and discovery. Recently several online
databases and consortiums have contributed to providing open access to pharmacogenomic data. These databases have
helped in developing computational approaches for drug sensitivity prediction. Cancer is a complex disease involving the
heterogeneous behaviour of same tumour-type patients towards the same kind of drug therapy. Several methods have been
proposed in the literature to predict drug sensitivity. However, these methods are not efficient enough to predict drug sensitivity.
The present study has proposed an ensemble learning framework for drug-response prediction using a modified rotation forest.
The proposed framework is further compared with three state-of-the-art algorithms and two baseline methods using Genomics
of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) drug screens. The authors have also
predicted missing drug response values in the data set using the proposed approach. The proposed approach outperforms
other counterparts even though gene mutation data is not incorporated while designing the approach. An average mean square
error of 3.14 and 0.404 is achieved using GDSC and CCLE drug screens, respectively. The obtained results show that the
proposed framework has considerable potential to improve anti-cancer drug response prediction.

1 Introduction
In recent years, drug sensitivity prediction using computational
approaches has gained a lot of attention due to increased interest
among researchers in personalised drug therapies. Moreover, the
availability of large-scale pharmacogenomics data sets has further
encouraged researchers to develop predictive models. Predicting
the sensitivity of drug for an individual is one of the challenging
tasks in personalised medicine. Personalised therapies out rule the
concept of one size fits all, rather they emphasise tailored drug
therapy for individuals [1]. The main concept of personalised drug
therapy is to suggest drugs based on individual genomic profiles.
Earlier most of the drug therapies are based on an anatomical
origin of the disease, but later molecular analysis clarified that
genomic characterisation of the patient plays an important role in
designing drug therapy. Cancer is one of the genetic diseases
caused due to mutation and variation in genes. Complexity in the
tumour microenvironment makes cancer complex disease from the
treatment perspective. Patients with the same type of cancer show
heterogeneous treatment responses toward the same type of
targeted therapies. Such differences in responses are because of
genetic variations among individuals. Although providing
personalised treatment for cancer patients is a challenging task, still
researchers are trying hard to design personalised therapies.
Various large-scale throughput drug screenings have been
performed to reveal the relationships between genomic profiles and
drug responses. These screens provide pharmacogenomics data
sets, including a large number of human cancer cell lines and their
corresponding drug responses. Genomics of Drug Sensitivity in
Cancer (GDSC) [2], Cancer Cell Line Encyclopedia (CCLE) [3]
and NCI-Dream Challenge [4] are few such large-scale databases
that aim to promote oncological research. This data-sets help in
predicting drug (responses/combinations/repositioning) and play a
critical role in modern-day drug discovery. There is a need to
develop computational methods which could utilise these large-
scale screening data-sets and build effective predictive models.
One of the important tasks is to predict potential drugs for a given
cell line by exploiting the relationships between existing cancerous
genomic profiles and their drug responses.

Various machine learning approaches such as regularised
regression [3, 5], kernel-based method [4, 6] and ensemble learning
[7, 8] have been proposed in the literature for predicting drug
sensitivity [9–11] or drug combination synergy in cancer treatment.
Most of these approaches rely on genetic measurements for
predicting drug sensitivity. These approaches are based on the
common assumption that similar drugs (similarity in chemical
structure) will have similar drug targets. Most of the methods
proposed in the literature exploit the drugs structure similarity and
similarity in cell lines (genomic characterisation). Random forest
and Elastic-net regularisation are the most frequently used machine
learning algorithms to predict drug sensitivity (response) in
cancerous cell lines. Most of the computational methods for drug
response methods are based on traditional machine learning
algorithms such as Random Forest, Support Vector Machine and
Neural Network (NN). However, these methods do not perform
well always because of issues related to high dimensionality and
imbalanced nature of data. Hence, ensemble methods are thought
to provide better prediction results. In ensemble learning, multiple
base classifiers are trained and their output is combined to obtain
final output. Performance of an ensemble classifier is greatly
affected by the accuracy of the base classifier but also depends on
the diversity of the group of classifiers. Diverse classifiers help to
minimise errors and make more accurate decisions [12].

There are several other ensemble classifiers proposed in the
literature based on bagging and boosting [13]. Rotation forest (RF)
is one of the recently proposed ensemble classifiers which has the
underlying mechanism similar to random forest [14]. It has shown
promising results in comparison to other ensemble classifiers.
Randomised heuristics are used to provide diversity in bagging
based ensembles as in case of RF. RF uses decision trees (DTs) as
base learner which are separately trained on bootstrap samples
from the training data set and further add diversity in ensemble
classifier by randomised feature selection.

2 Related work
Recently various studies have been proposed in the literature on
drug response prediction. Wan and Pal [7] developed in silico
method based on random forest regression. Their proposed method
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was validated using the single agent and multi-agent anti-cancer
drug screen. Zhang et al. [15] developed the network-based
approach using dual-layer integrated network consisting of drug–
drug and tissue–tissue similarity network. They validated their
proposed approach using benchmark data set obtained from CCLE
and GDSC databases. Turki and Wei [16] proposed a novel
algorithm for drug response prediction using link-prediction
approaches. Their results show that link-prediction algorithm has
great potential in designing in silico method for anti-cancer drug
discovery. Apart from these approaches, multi-task learning is also
exploited for predicting the anti-cancer drug responses. Gonen and
Margolin [6] proposed kernelised Bayesian multi-task learning
using the Gaussian kernel and multi-task learning and
demonstrated potentially high performance. In 2014, Ammad-ud-
din et al. [17] have proposed QSAR analysis approach using
kernelised Bayesian matrix factorisation.

In 2016, Tan [18] presented drug sensitivity prediction
algorithm using trace-norm multi-task learning. Their proposed
approach converts the input gene expression data into kernelised
expression data. This kernel trick helps them to achieve better
performance as compared to other algorithms. Similarly, Yuan et
al. [19] proposed drug sensitivity prediction algorithm using
regularised multi-task learning. Later in 2017, Wang et al. [20]
proposed a Pearson correlation-based drug response prediction
algorithm. Their study emphasises on the fact that similar drugs
show similar drug responses. Recently ensemble learning is also
used in various research domains. It has shown promising results
due to low-variance models and diverse base learners. In this paper,
we have proposed the ensembled framework for drug-response
prediction using RF.

2.1 Our contribution

(i) Tissue sensitivity signatures (TSSs) and drug activity signatures
(DASs) are prepared using LINCS database.
(ii) Dimensionality reduction is used to deal with high dimensional
nature of data.
(iii) RF is modified to improve the prediction performance.
(iv) Diverse base learners are used to introduce diversity in the
prediction model.

3 Background and preliminaries
3.1 Rotation forest

RF is highly efficient ensemble classifiers proposed by Rodriguez
et al. [14] in 2006. They perform well as an ensemble classifier
because of principal component analysis (PCA) transformation and
feature disturbance. It is based on bootstrap sampling with axis
rotation of training data set. RF algorithm is designed to train
multiple DTs. Before training original feature data is randomly
divided into various feature subsets. Then, the new training subsets
are obtained, the linear transformation is performed using PCA.
Now, all the transformed feature subsets are integrated to
reconstruct the original feature set. Finally, base learners are used
to obtain the learned classifiers using transformed feature set. The
rotational forest provides diversity in classifier using PCA and it is
used for axis rotation of subset features. The steps for RF algorithm
can be described as follows.

Consider a training set T = (ai, bi)i = 1
N , where N is the number of

training samples in which ai denotes the input feature vector and bi
denotes class labels. Assume that feature set F is divided into P
subsets and there are K DTs in RF such as P1, P2, P3........... PK
denotes K subsets.

Step 1: Divide feature set F into P disjoint subsets with m = n/P
features.
Step 2: Let Fi j be the jth subset of features for training classifiers Pi
and Ai j be the corresponding data set from A for feature subset Ai j.
Step 3: Randomly selects the non-empty subset of classes from Ai j.
Step 4: Bootstrapping of subsets is performed from 75% of the data
set to obtain training set denoted by T′.

Step 5: Further, PCA is performed on T′ for generating the
coefficient matrix Ci j.
Step 6: Sparse rotation matrix Ri is obtained from Ci j.

Ri =

ri1
(1), . . . . . ri1

(m1), 0 . . . . . 0
0 ri2

(1), 0 . . . . . 0
. . . . . . . . . . . . . . . . . . . .

0 0 . . . . . riK
(1)

(1)

Step 7: Rearrangement of Ri should be performed to obtain Ri′. The
training set obtained after transformation is XRi

a.
Step 8: Parallel classification is performed.
Step 9: To classify new samples say r, let pi j (XRi′) denote the
probability of classifier Pi that r ε i. Then the average combination
method is used to compute class confidence

C j(r) = 1
K ∑

i = 1

K
pi j(xRi′) (2)

3.2 Decision tree

DTs are one of the most effective graphical approaches to represent
the classification or evaluation process of an object. It helps to
define the rules to take the particular decision regarding a given
problem domain. These are built using the bottom-up approach
with the inclusion of recursion. Internal nodes of the DT represent
the test cases for attributes and branches represent the output of
those test cases. Each leaf node is a representation of different class
label. Various versions of the DT are available such as ID3, C4.5,
and CART. However, the DT is not scalable and are prone to the
issue of overfitting.

3.3 Extreme learning machine (ELM)

Huang et al. [21] proposed ELMs in 2004 as a modified version of
the NN. ELM is considered to be more accurate, fast and has better
generalisation ability. It uses a single hidden layer feedforward NN,
which reduces the computational time. It is a three-layer network
structure with the first layer as the input layer, the second layer as
the hidden layer and the third layer as the output layer. Random
assignment of input weights and hidden layer threshold is done in
ELM. It is considered as one of the simple machine learning
algorithms with fast learning and generalisation performance.

3.4 Neural network

The artificial NN is one of the most extensively used machine
learning models. Due to an increase in computational power and
data storage capabilities, recently it has gained much attention. It is
used widely in various domains such as image processing, speech
recognition, and natural language processing. In this paper, we are
using the multi-layer feed-forward NN with multi-task abilities.

3.5 Data set

In this study, we have used open-source data sets from the GDSC
[2] and CCLE [3]. GDSC is a curated database consisting of drug
screening response data of thousands of tumour cell lines. Their
main contribution is to boost oncological research and help to
identify potential cancer biomarkers. The cell line information is
provided in the form of copy number variation, gene expression
and coding variants. However, gene expression data is considered
an optimal choice among researchers for computational modelling.
Hence, we are also using gene expression profiles of cancer cell
lines in our present study. We are using the CCLE data set. It is
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also an open-source data set consisting of the perturbated cell line
database obtained using Affymetrix U133 + 2 arrays. It consists of
data of 504 cancer cell lines perturbed with 24-anticancer drugs.
More than 15,000 genes are obtained in drug screening assays from
GDSC and CCLE databases. Gene expression data from such data
sources is high dimensional in nature.

We have also used the LINCS database to generate signatures
which can represent the activity and sensitivity of the drugs and
cell lines. The database currently holds perturbation profiles of tens
of thousands of cell lines treated with tens of thousands of drugs
(small molecules). The profiles are given in terms of 978 landmark
genes that can help to explain the variance in gene expression
profiles of cell lines. We have used top 50 landmark genes which
have shown highest variation as key descriptors for DASs and
TSSs. Therefore, modelling is done on this data which will help to
predict whether a given drug is active on a given cell line or not.

4 Proposed framework
Fig. 1 shows a detailed overview of the proposed drug sensitivity
prediction framework. First, the original data set is sub-sampled
into smaller data sets for training sub-samples using modified RF.
Traditionally, RF is proposed using DT as base learners but in the
modified version of RF, we have used two more diverse base
learners – NN and ELMs. RF is one of the recently developed and
effective ensemble learning method. One of the most intriguing
features of RF its ability to transform feature space into new
feature space using PCA transformation. RF train multiple DTs.

In the proposed technique, the first original feature data is
divided into sub-samples to obtain feature subsets. Second, the
linear transformation is performed on all the subsets of feature
data. Third, the integration of transformed feature sub-sets is
performed and finally, base learners are used for training and
model building. Linear transformation helps to attain feature
rotation along the feature axis. The diversity of base learners helps
to build better generalisation ensemble models. To add more
diversity to trained classifier rather than using single base learner,
we are using multiple base learners. The inclusion of multiple base
learners add diversity and remove overfitting in DTs. In the
proposed RF we use the NN, ELMs and DTs as base learners.
Ensemble classifier is developed with better performance and
generalisation as a result of a modified RF.

4.1 IC50 data normalisation

IC50 value is the drug response value which signifies the drug
concentration required to inhibit 50% of the diseased cells. If the
obtained IC50 value is more than the drug maximum concentration
then, that cell line is considered resistant to the given drug. In order
to normalise the drug response data, we divide the data with
maximum drug concentration and further perform log-
normalisation. If obtained IC50 is greater than zero then, cell lines
are considered resistant else they are sensitive to the particular
drug. After normalisation drug responses are in the range [−1, 1].
Normalisation helps to deal with skewed data and improves data
interpretability.

4.2 Drug activity signatures

DASs are the way to know the drug effects on a given cell line at
the genetic level. When a drug is given to a cell line some of the
genes are upregulated and downregulated

ES(D, C) = ⟨g1 ↑ , g2, ↓ , g3, ↑ , . . . , gk ↑ ⟩ (3)

where experimental signatures (ES) represent the genetic variation
on a cell line C with the application of drug D. LINCS (http://
www.lincsproject.org/) database and cloud service provide access
to calculate this vector for each drug-cell line (D-C) pair. It
provides top 50 genes which show the highest regulation. Using
these experimental signatures we can define DASs

DAS(D) = ∪c ES(D, C) (4)

where ∪c represents the combined effect of all the cell lines for a
particular drug. To sum up, now we have identified descriptor
which shows the combined variation induced on all cell lines as a
result of drug application (see Fig. 2). 

4.3 Tissue sensitivity signatures

TSSs represent the genetic variation occurred in the tissue as a
result of different drugs perturbation. However, drugs considered to
calculate TS should be active with cell line. First, we need to find
sensitivity signatures for each D-C pair by querying with LINCS
database. Querying may result in three possibilities:

Fig. 1  Proposed framework for drug response prediction
 

IET Syst. Biol., 2020, Vol. 14 Iss. 1, pp. 39-46
© The Institution of Engineering and Technology 2019

41



• DC pair is present in LINCS database.
• D-C for a given drug-cell line, the experiment may not be

present.
• If target protein for a given drug is used in experiments and their

interaction information is present in the database then by using
similarity mapping we can use that target protein. The
mathematical representation of all the three cases can be done as
mentioned below

SS(D, C) =

ES(D, C), (D, C) ∈ LINCS .
DAS(D), D ∈ LINCS

(D, C) ∉ LINCS .
TS(TargetsD), D ∉ LINCS .

(5)

where TS is target similarity signature for a given drug. Using
above sensitivity signatures one can define tissue similarity
signatures for a particular cell line as

TSS(C) = ∪D SS(D, C) (6)

4.4 Signature similarity

The sensitivity signature defines the key descriptor at the genetic
level which can cause cell death. Similarly, DASs define the key
descriptors that cause cell death on the application of given drug.
Intuitively if we could compare the key descriptors of drugs and
cell lines then, we will be able to establish a relationship between

drug response and genetic variation. Although the huge amount of
drug-response data is available still we are not able to represent the
drug-response of each individual drug. In such a scenario
ensembled model helps to integrate the diversity among different
models and to build a better prediction model. We have proposed
an ensemble modelling strategy which exploits drug and tissue
similarity signatures for building drug response prediction model.
Sub-sampling of training data is also done to train a diverse set of
base models and finally integrating results from different learners.

5 Experimental analysis
This section presents detailed explanation of the experimental
evaluation of the proposed drug-response prediction framework
using GDSC and CCLE data sets. Multiple iterations (≃200) of the
proposed technique is performed and results are obtained after
averaging the mean square error (MSE) of ten-fold cross-
validation. MSE is computed using (7). Dimentionality reduction is
performed using partial least square [22]. Figs. 3 and 4 show the
boxplot comparison of the per drug MSE of proposed approach and
other methods using CCLE and GDSC data sets, respectively. 
Boxplot comparison shows that for most of the drugs it is narrower
and MSE is converging at lesser value as compared to other
competing methods

MSE(d) = 1
Nd

(y^d − yd)T(y^d − yd) (7)

Proposed technique is compared with three existing state-of-the-art
techniques namely: KBMTL [17], Elastic-net [2] and Scalable-
Time Ridge Estimator by Averaging of Models (STREAM) [23]
and two baseline methods NN and Vanilla RF (VRF) [14]. and NN
using two publicly available data sets GDSC and CCLE.

Fine-tuning of parameters of all the techniques are performed
using grid search approach. There are two parameters used with
Elastic-net (α = 0.01 and γ = 1) which corresponds to lasso
regression. Scikit learn is used for implementing Elastic-net.
Parameters for KBMTL are set to their default values as suggested
in the paper [17]. KBMTL needs parameter optimisation, so we
have selected eight different parameter sets determined from the
suggestions of the different authors. In a NN implementation, two
hidden layers are used with rectified linear activation function.
STREAM performs Bayesian model averaging over regularisation
parameters, so does not require parameter optimisation. In the case
of RF for our proposed approach the value of K (number of
subsets) is set to 10 as it further helps in ten-fold cross-validation.
The value of B (number of base learners) is set to 50 as with the
further increase in the number of base learners no significant gain
is achieved. Similarly, sensitivity analysis of r (dimensionality
reduction parameter) revealed that it is quite robust when 0.1 ≤ r ≤ 
0.2. The drug averaged MSE is used as a comparative metric for
analysing the performance of different techniques. Table 1. 
represents the comparison of average MSE results for different
algorithms.

In order to get more insights into per drug performance of all
the algorithms, we computed the number of statistically significant
wins using the paired t-test. Table 2 represents the statistical
comparison results of different algorithms. Each row gives the
comparison of statistically significant win count with a number of
wins when an algorithm is directly compared to another algorithm.
An algorithm is said to win as compared to other algorithms if it
has lower MSE for a given drug t. In the majority of the cases, RF
wins as compared to other algorithms representing the lesser error
in prediction results. Robustness of the proposed technique is
checked using a ten-fold cross-validation technique. In a ten-fold
cross-validation, we split the data set into 10 equal parts and each
time using one part for testing and rest other parts for training. We
have also validated the proposed approach by using the CCLE data
set. The CCLE data set contains the activity area as drug response
parameters. As already discussed above, Table 1 contains averaged
prediction results obtained after ten-fold cross-validation.

Cytotoxicity prediction for missing drug response values in the
original data set is also performed to further check the performance

Fig. 2  Algorithm 1: drug sensitivity prediction using modified ensembled
RF
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of RF. The drug response prediction model is trained using existing
data values and further used to predict missing drug responses in
the GDSC data set. Lapatinib is an EGFR inhibitor for which most
(≃60%) of the drug response values are missing. Similarly,
PD-0332991 is a CDK 4 inhibitor with almost 10% of the drug
responses missing. We predicted drug responses for unassayed cell
lines corresponding to such drugs. Table 3 shows results for some
of such D-C pairs. Results are presented in terms of natural logμM
and only values <−4 (≃ 0.05 μM) are listed in the table. Standard
error while cross-validation for each drug-cell line pair is also

calculated and summed up in Table 3. The smaller value of
standard error and predicted cytotoxicity for given D-C pair
suggest their high potential in personalised drug therapy. Some of
our results can also be inferred from in vivo studies performed in
literature. We are listing few such potential pairs from our results
that also contains literature evidence. The results suggest that
lapatinib is sensitive to EGFR mutated cell lines and PD-0332991
is more sensitive to CDK mutated cell lines. Our results are
consistent with already published studies using assayed cell lines
[24].

Fig. 3  Boxplot comparison of the per drug MSE of the proposed approach and other methods using CCLE data set (X-axis: drugs, Y-axis: MSE)
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Vinorelbine is a cytotoxic drug used for the treatment of various
types of cancer. The first pair in Table 3. (EMC-BAC-2,
Vinorelbine) suggests that vinorelbine is sensitive to EMC-BAC-2
cell line(non-small lung cancer). The same observation is found in
the in vivo research outcomes of Buhl et al. [25]. Their study
suggests that response outcome is more effective when vinorelbine
is given in combination with cisplatin. If we analyse another pair
(NCIH2122 and Nilotinib), cross-validation error is maximum
suggesting Nilotinib not suitable for NCIH2122 (lung cancer cell
line). Nilotinib is a Bcr-Abl kinase inhibitor, used in Parkinson and
Alzheimer disease [26]. Although gene mutation is not considered
while modelling drug response data, still RF correctly predicts drug
responses for unassayed cell lines.

Fig. 4  Boxplot comparison of the per drug MSE of the proposed approach and other methods using GDSC data set (X-axis: drugs, Y-axis: MSE)
 

Table 1 Performance comparison of proposed algorithm
with existing algorithms for all the drugs using average MSE.
Best results are highlighted if there is significant difference in
performance according to paired t-test with p < 0.05

GDSC CCLE
STREAM 3.414 ± 0.607 0.5 ± 0.702
NN 3.368 ± 0.9 0.556 ± 0.29
VRF 3.351 ± 0.72 0.521 ± 0.31
KBMTL 3.34 ± 0.2 0.505 ± 0.81
Elastic-net 3.319 ± 0.64 0.503 ± 0.25
RF 3.14 ± 0.36 0.404 ± 0.66
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5.1 Application of the proposed approach to human cancer
data set

The proposed approach is a drug sensitivity prediction framework,
developed using gene expression and drug sensitivity data. The
proposed approach has the potential in preliminary analysis of
tumour patients towards various drugs. To further evaluate the
performance of the proposed framework, we have downloaded the
data set of ovarian cancer patients from gene expression Omnibus
(GEO) [https://www.ncbi.nlm.nih.gov/gds] database (GSE30161).
The proposed approach is then used to predict the responses of 53
ovarian cancer cell lines to cisplatin, doxorubicin, paclitaxel,
gemcitabine, carboplatin. We have randomly selected two patients
with ID (GSM746865, GSM746873). The patient with GEO ID
GSM746865 is predicted to be responsive to carboplatin,
gemcitabine, and paclitaxel and non-responsive to other drugs. On
the other hand the patient with GEO ID GSM746873 is not
responsive to gemcitabine, paclitaxel but responsive to other drugs.
Overall our analysis suggests that the majority of the cell lines are
responsive to carboplatin and gemcitabine.

6 Non-Parametric statistical analysis
For further statistical analysis, the non-parametric statistical test,
Wilcoxon signed-rank test has been conducted. The difference
between each pair of average results for each problem is computed.
These differences are sorted in ascending order and assigned a rank
from smallest to the largest difference. In case, if more than one
difference is equal, then the average rank is assigned to each of
them. Thereafter, the ranks are converted to signed ranks. It is used
to compare the proposed approach with other algorithms in a pair-
wise manner. The positive rank is given to the proposed algorithm
if it is better than the competitor algorithms with respect to a
particular data set. Otherwise, the negative rank is assigned. For
comparison, a significance level is set to 0.10 and summed up all
the positive and negative rank. The results of the Wilcoxon test are

tabulated in Table 4 where +, −, and = indicate that the
performance of the proposed approach is superior, inferior, and
equal to competitor algorithms, respectively. It is observed from
Table 4 that the proposed method outperforms over all the
competitor algorithms on CCLE and GDSC data sets.

7 Conclusion and future work
Cancer is a complex ailment involving diverse responses to the
same targeted therapies among distinct patients of alike cancer
type. There is a great need to develop advanced drugs and
personalised treatment alternatives. Unfortunately, the drug
designing cost and time-consuming clinical trials act as a major
overhead for cancer treatment. There is a critical need to devise a
protocol which can assist in the prediction of drug responses to
provide customised treatment at the given instant. We propose to
apply the modified RF ensemble method for the prediction of anti-
cancer drug responses. The performance of the prediction
algorithm is usually degraded attributing to noisy features and the
overfitting of models. However, these two aspects are critically
considered and taken into consideration by the proposed technique.
Ensemble learning helps in avoiding overfitting and adding
diversity. Dimensionality reduction is used to avoid noisy and
redundant features. The proposed framework is compared with
three state-of-the-art methods and two baseline techniques using
two distinct data sets namely: GDSC and CCLE. Further, for
checking the performance of RF for prediction of cytotoxicity of
new drug-cell line pair, we implemented RF to detect missing
response values. Results clearly depict that the proposed method
outperforms the other existing algorithms. In the proposed work,
the performance gain is not just attributed to ensemble method
used but, also due to the inclusion of TSSs and DASs.
Additionally, the proposed work can be put into the application for
the prediction of drug synergism and can be extended using the
large pharmacogenomic database to achieve better and efficient
prediction results.
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