Skip to main content
. 2020 Feb 1;14(1):1–7. doi: 10.1049/iet-syb.2018.5083

Table 3.

Machine learning models considered for ensembling; their respective R packages, methods and tuning parameters

Machine learning model Function Package Tuning parameter
BlackBoost [40] blackboost mboost none
Avnnet [41] avNNet caret size = 5, linout = TRUE, trace = FALSE
regularised random forest (RRF) [42] RRF RRF none
support vector machine (SVM) [43] ksvm kernlab kernel = ‘rbfdot’, prob.model = TRUE
random forest [44] randomForest randomForest ntree = 500, mtry = 3
GBM [45] gbm gbm var.monotone, distribution = ‘gaussian’, n.trees = 1000