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Abstract: DNA methylation is an epigenetic phenomenon in which methyl groups get bonded to the cytosines of the DNA
molecule altering the expression of the associated genes. Cancer is linked with hypo or hyper-methylation of specific genes as
well as global changes in DNA methylation. In this study, the authors study the probability density function distribution of DNA
methylation in various significant genes and across the genome in healthy and tumour samples. They propose a unique
‘average healthy methylation distribution’ based on the methylation values of several healthy samples. They then obtain the
Kullback–Leibler and Jensen–Shannon distances between methylation distributions of the healthy and tumour samples and the
average healthy methylation distribution. The distance measures of the healthy and tumour samples from the average healthy
methylation distribution are compared and the differences in the distances are analysed as possible parameters for cancer. A
classifier trained on these values was found to provide high values of sensitivity and specificity. They consider this to be a
computationally efficient approach to predict tumour samples based on DNA methylation data. This technique can also be
improvised to consider other differentially methylated genes significant in cancer or other epigenetic diseases.

1 Introduction
Epigenetics is the study of heritable changes in the gene expression
that cannot be explained by changes to the genetic sequence [1].
Some of the significant epigenetic mechanisms include DNA
methylation, histone modifications and microRNA's. Epigenetic
phenomena are known to influence several biological functions of
the organism ranging from circadian rhythms to auto-immune
diseases. The epigenetic mechanisms are in turn dependent on
external physical factors such as environment, stress, diet and light
[2].

DNA methylation is an epigenetic mechanism in which a
methyl group gets bonded to the 5-carbon of the cytosine ring to
result in 5-methyl cytosine (5-mC). In human somatic cells, 5-mC
occurs in CpG sites and islands. A CpG site is a location within a
DNA sequence in which a cytosine and guanine appear
consecutively. A CpG island is a long stretch of CpG sites in DNA.
When a CpG island in the promoter region of a gene is methylated,
the gene expression is switched off. DNA methylation patterns are
either inherited (maintenance) or developed newly (de-novo
methylation) [3].

Irregular changes in DNA methylation (hypo- and hyper-
methylation) have been linked with many diseases. In this paper,
we focus on cancer, which is considered to be caused by a
multitude of genetic and epigenetic occurrences. Specifically, the
methylation aberrations in the promoter regions of the tumour-
suppressor genes (TSG) and oncogenes associated with the tumour
type are significant in cancer genesis [4, 5]. Tumour-suppressor
genes are normally active in the genome; however, the epigenetic
silencing of these genes by hyper-methylation of DNA in the
promoter regions causes these genes to be silenced. On the other
hand, oncogenes, that are silent in the non-cancerous genomes, are
found to be ‘turned on’ in cancer, primarily due to hypo-
methylation of the DNA in the promoter regions [5, 6].

Kidney-renal-clear-cell-carcinoma (KIRC) is a fatal type of
cancer of the kidney and urinary tissues. There has been significant
research in prediction of KIRC cancer using different parameters in
the past; in [7], Yang et al. aim to provide an identification of the
genes and pathways associated with KIRC. In the same research
paper, the authors present lists of tumour-suppressor and oncogenes

associated with KIRC that are differentially methylated. In [8], Liu
et al. present an integrative model of studying KIRC stage
progression. From this paper, we understand that KIRC such as
most other types of cancer is caused by a series of genetic and
epigenetic alternations, transcription factor modifications and other
associated biological changes. In a similar research [9],
information theoretic entropy is used to analyse the DNA
methylation in healthy and tumour samples of KIRC. The
methylation probabilities are transformed using mathematical
functions to analyse the ranges of methylation that are more
significant in cancer.

In the past, entropy, mutual information and even Kullback–
Leibler (KL) distance have been used to study various chemical
and biological parameters associated with cancer [9–13]. In [10],
Hu et al. use mutual information to analyse the correlation between
gene expression and metabolic pathways. They also use KL
distance to investigate changes in relative isoenzyme expression. In
[11], entropy is used as a measure to quantify the complexity,
predictability and progression patterns associated with cancer. The
authors also use KL distance to measure the inefficiency of using
an ‘all-cancer’ distribution to the specific cancer type distribution.
In [12], information theoretic parameters are used to obtain a
significant subset of genes related to cancer, whereas in [13] KL
distance is used for outlier prediction in cancer.

The Jensen–Shannon (JS) divergence and distance are other
metrics that have been used in the past to study probability
distributions in various fields of biology and engineering [14, 15].
The JS divergence can be considered as a symmetric and smoother
form of the KL divergence [16] and is widely applied in the field of
bioinformatics.

We find that though there have been several independent
research on KIRC or the information theoretic techniques, there
has been no significant analysis on KIRC based on the DNA
methylation data using the distance measures and the average
healthy methylation distribution. Our motivation is to investigate in
that direction. The goal of our current research is to use the
distance metrics such as the KL distance and JS distance to analyse
a specific parameter in cancer (DNA methylation) with the global
epigenome as well as sets of significant genes such as tumour-
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suppressor genes and oncogenes associated with a specific cancer
type (KIRC). In that direction, we compute the ‘average healthy
methylation distribution’ as the first step. The distance of this
distribution from a given sample's methylation distribution is used
for further analysis. We use the results of analysis to check if we
are able to classify the normal and tumour samples using the
distance measures.

A formal definition of KL distance DKL between two
probability distributions P and Q is given in (1)

DKL(P ∥ Q ) = ∑
i = 1

N
Pi log

Pi
Qi

(1)

The KL distance defined in (1) is non-symmetric, non-negative and
has other useful properties. More details on this measure can be
obtained from the texts in information theory [17].

The definition of JS distance as DJS between distributions P and
Q can be defined as

DJS(P | |Q) = 1
2DKL(P ∥ M) + 1

2DKL(Q ∥ M ) (2)

where

M = 1
2 (P + Q) (3)

M can be considered as a median distribution between P and Q.
The JS distance is symmetric and is non-negative.

2 Results
2.1 Data extraction and processing

We obtained the DNA methylation data for KIRC type of cancer
from the The Cancer Genomic Atlas (TCGA) database [18]. The
TCGA database is the most comprehensive and publicly available
cancer database [19]. They have a rigorous process involving
several cooperating centres for the underlying procedures including
sample collection, followed by high-throughput sequencing and
sophisticated bioinformatics data analyses. According to the
statistics provided in [19], as of 2014, more than 30 tumours have
been analysed and the results published in prestigious journals such
as Cell or Nature.

The following filter settings in the data matrix: disease: KIRC,
data type – DNA methylation, data level – level 3, tumour/normal
checkbox – tumour matched or normal matched for tumour/healthy
samples, the other parameters were the default settings. Only the
Illumina 27k DNA methylation samples were taken for our
experiments. We obtained about 200 healthy and 219 tumour
samples. Each sample consisted of CpG sites with their
corresponding gene symbols and beta values (methylation
intensities). This data was further processed into three sets: (i) one
set in which all the healthy and tumour samples were processed to
contain only those CpG sites corresponding to tumour-suppressor
genes for KIRC, (ii) another set in which all the samples were
processed to contain only the oncogenes for KIRC and (iii) the
global set of healthy and tumour samples containing all the CpG
sites obtained from the database. The experiments were applied to
these sets of data independently. The list of oncogenes and tumour-
suppressor genes for KIRC was obtained from the literature and is
provided in supplementary tables S1 and S2. MATLAB was used
for processing the data and extracting the relevant portions from
the TCGA data.

2.2 Average healthy methylation probability density function

To obtain the average healthy methylation probability density
function (PDF), the following steps were performed. For every
healthy sample, we obtain the methylation intensities for various
CpG sites to compute the methylation vector mi, where the suffix i

corresponds to the sample. This methylation vector for a sample is
given by

mi = mi j (4)

where mij represents the frequency of methylation intensities in the
jth bin for the ith sample. As the next step, we obtained the
histogram and the frequencies of the methylation intensities for all
the healthy samples. In our experiments, the number of bins in the
histogram (j) was varied between 5 and 35. The probabilities of
methylation intensities are obtained by the ratio of the methylation
intensities to the total number of CpG sites considered in the
sample. Let pij represent the probability of methylation intensities
in the jth bin for the ith sample. It is given by

pi j =
mi j
M (5)

where M represents the total number of CpG sites considered for
computation in the samples. This quantity pi j represents the
probability that methylation intensity is likely to occur in a CpG
site in a sample.

As a next step, we compute the average methylation intensity
probabilities over all the healthy samples for the different bins as
shown in (6)

Hm =
( ∑i = 1

NH mi j )
NH

(6)

In (6), NH represents the total number of healthy samples taken for
computations. This vector Hm represents the average healthy
methylation distribution.

2.3 Computation of methylation distribution

To compute the methylation distribution for each sample, we
obtained their probabilities of the methylation intensities as
explained using (4) and (5). We then obtained the methylation
distribution for every sample (Hi) as a vector representing the
methylation probabilities of the sample

Hi = pi j (7)

We denote the methylation PDF's of the healthy samples as {Hih}
and the methylation PDF's of the tumour samples as {Hit}. We then
proceed to obtain the KL distance and JS distance metrics between
Hm and Hi using (1) and (2).

2.4 Training and test data

We first consider the data processed only for the CpG sites that
code for the TSG's for KIRC. The data was split into training and
test data randomly with a ratio of 0.8 (80% – training data and 20%
– test data). To avoid bias in the computation of posterior
probability distributions, equal number of healthy and tumour
samples of training data were fed to the classifier. The results were
averaged over five trials with randomly selected training data for
each trial. We obtained the KL distances and JS distances of the
healthy training samples and the tumour training samples from the
average healthy methylation PDF. We then trained a Naïve Bayes
classifier with the training data and obtained the results for
classification for the test data. MATLAB functions were used to
simulate a Naïve Bayes classifier with a combination of Gaussian/
multivariate multinomial distribution for analysis. The choice of
the distribution was based on the bin size. We calculate the true
positives (tp), false negatives (fn), true negatives (tn) and false
positives (fp) after the classification process. The definitions for
these parameters are provided in Table 1. The performance of the
classifier is computed using the sensitivity and specificity defined
using (8) and (9). Sensitivity can be understood as a measure of
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how accurately the proposed method of classification can identify a
valid case of tumour while specificity is a measure of how reliably
the method can ignore the case of fp

sensitivity = tp
(tp + fn) (8)

specificity = tn
(tn + fp) (9)

3 Discussion
We have aimed to compute the average healthy methylation
distribution for a data set and use the KL distance and JS distance
measures to calculate the separation of individual methylation

distributions from the average distribution. Furthermore, we
compare the differences in KL/JS distances between the healthy
and tumour samples to analyse if we can predict cancer based on
these differences. From our observations, we see that the mean
distance of the healthy samples is less than the mean distance of
the tumour samples from the average healthy distribution. This is
true for both the KL distance and the JS distance measures. For a
bin size of 10 in the case of tumour-suppressor genes, the mean KL
distance for the healthy samples from the average healthy
distribution was computed as 76.6938, whereas the mean KL
distance for the tumour samples was computed as 78.3893. For the
JS distance, the mean distance of the healthy samples was
computed as 0.0155 and the mean distance for tumour samples was
computed as 0.0310.

First, we consider the sensitivity and specificity measures for
the tumour-suppressor genes in detail. Table 2 provides the values
of sensitivity and specificity of a classifier based on the KL
distance and JS distance metrics for different bin sizes of the
methylation distributions for tumour-suppressor genes. From the
observations, we can infer that higher values of sensitivity and
specificity are obtained for lower bin sizes relatively. The higher
values of sensitivity and specificity are obtained for JS distances
indicating that the symmetric distance measure may be a better
parameter in segregation of the healthy and tumour distributions.
Fig. 1a displays the plots of the KL distance distributions of the
healthy and tumour samples, whereas Fig. 1b displays the plots of
the JS distance distributions of the healthy and tumour samples,
both for a bin size of 10. From these figures, we observe that the JS
distance plots produce less overlap than the KL distance plots that
corroborates the inference that JS distance yields higher sensitivity
and specificity than the KL distance. 

The maximum values of sensitivity and specificity (96.7 and
97.4%) are comparable with the results obtained for segregation of
healthy and tumour samples using the previously reported
techniques for KIRC cancer based on RNA-seq data from the
TCGA database [7] (namely) 96.5 and 97% and higher than the
values reported by the previous DNA methylation-based cancer
detection techniques [20] (namely) 89 and 90%. In the receiver
operating characteristic (ROC) curves for these randomly selected
data, we obtained a maximum value of area under the curve for

Table 1 Definition of tp, tn, fp and fn
Decoded as healthy Decoded as tumour

healthy phenotype tn fp
tumour phenotype Fn tp
 

Fig. 1  Plots of the
(a) KL distance, (b) JS distance measures of the healthy and tumour TSG methylation distributions from the average healthy methylation distribution, for a bin size of 10. The data
correspond to the KIRC samples obtained from the TCGA database

 

Table 2 Sensitivity, specificity values for the KL distance
and JS distance metrics based on the Naïve Bayes classifier
for the tumour-suppressor genes distributions trained with
the KIRC data obtained from the TCGA database
Number
of bins in
PDF

Sensitivity –
KL distance

Specificity –
KL distance

Sensitivity –
JS distance

Specificity –
JS distance

5 0.8222 0.9091 0.7647 0.9474
10 0.9231 0.9091 0.9231 0.9091
15 0 5439 0.5385 0.7381 0.8125
20 0.5506 0.6364 0.7162 0.8511
25 0.5962 0.6667 0.7536 0.8462
30 0.6200 0.6875 0.7424 0.8000
35 0.5814 0.6944 0.7869 0.8000
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oncogenes (99.05%) with a corresponding bin size of 10. This
value is higher than area under the curve values reported in the

previous research (96.5% in [7] and 96.1% in [20]). The ROC
curve can be seen in Fig. 2. 

Compared to the traditional biochemical techniques for DNA
methylation-based cancer prediction (immunoassays or
chromatography) which are time and cost intensive [21] or
optimisation algorithms for data modelling [22], our proposed
methods have the advantage of computational efficiency. The time
taken to obtain the average healthy methylation distribution for 200
healthy samples is 396 s for TSG data, whereas the time taken to
compute the methylation distribution for a single sample is 847 s.
These values are those obtained using MATLAB software run on
an Intel 2.60 GHz processor. A similar computational efficiency
can be observed in the case of oncogenes and global data set.

We next discuss the results for the oncogenes. The activation of
specific oncogenes by DNA hypo-methylation is known to play a
significant role in carcinogenesis. Table 3 provides the sensitivity
and specificity results for the KL distance and JS distance
measures of the methylation distribution of the oncogenes for the
healthy and tumour samples. As with the case of tumour-
suppressor genes, we observe that the specificity values are by and
large higher than the sensitivity values. We also observe that the JS
distance with a bin size of 10 yields the highest value of sensitivity
for all the cases (96.7%). Bin sizes of 15 and 5 also yield
comparably high values of sensitivity and specificity indicating
that they are also considerable values for experiments. Fig. 3a
displays the KL distance distributions of the healthy and tumour
samples, whereas Fig. 3b shows the plots of the JS distances of the
samples for a bin size of 10. We find that while there are many
peaks in the tumour distance plot, there are fewer peaks in the
healthy distance plot, indicating that most of the healthy samples
are uniformly methylated. 

In addition to specific genes, we also ran the experiments for all
the CpG sites in the sample. The methylation distribution obtained
thus could be considered as a global methylation vector of a given
sample. The average healthy global methylation distribution was
computed and the asymmetric KL distance and the symmetric JS
distance measures of the healthy and tumour samples were
obtained. Table 4 provides the results of classification for this data.
We find that the separation between the tumour and the healthy
samples is not as segregated in the global data as it was in the

Fig. 2  ROC curve for randomly selected data for oncogenes of the KIRC
data obtained from the TCGA database. This ROC curve was obtained with
a bin size of 10. The area under curve was computed as 99.05%

 
Table 3 Sensitivity, specificity values for the KL distance
and JS distance metrics based on the Naïve Bayes classifier
for oncogenes distributions trained with the KIRC data
obtained from the TCGA database
Number
of bins in
PDF

Sensitivity –
KL distance

Specificity –
KL distance

Sensitivity –
JS distance

Specificity –
JS distance

5 0.7556 0.8627 0.7778 0.8966
10 0.9200 0.9286 0.9677 0.9615
15 0.9333 0.8355 0.9333 0.8355
20 0.8571 0.7700 0.8571 0.9556
25 0.5479 0.5714 0.6234 0.7111
30 0.5270 0.5417 0.6667 0.7447
35 0.5125 0.5238 0.7000 0.7692

 

Fig. 3  Plots of the
(a) KL distance, (b) JS distance measures of the healthy and tumour oncogenes methylation distributions from the average healthy methylation distribution, for a bin size of 10. The
data correspond to the KIRC samples obtained from the TCGA database
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oncogenes or the tumour-suppressor genes data. This can be
attributed to the fact that methylation profiles of the non-cancer-
related genes are not differentially methylated in healthy and
tumour samples. However, with a bin size of 5 (j = 5), we obtain
the highest value of specificity (97.44%). Fig. 4a shows the plots
of the KL distance measures of the healthy and tumour sample
distributions from the average healthy methylation distribution,
whereas Fig. 4b shows the plots of the JS distance counterparts. As
in the case of tumour-suppressor genes and oncogenes, it can be
observed that the healthy distance plot has peaks that are toward
the left compared with the tumour distance peaks, indicating that
the healthy samples are closer to the average healthy distribution
than the tumour samples. 

Bin size is an important parameter in the analysis since it
provides a lens to view the distributions. Too small bin sizes may
not provide enough details to the classifier while large bin sizes
may not reflect the right nature of the distributions to the classifier.
From the observations in these tables, one could generally infer
that the lower bin sizes provided higher values of sensitivity/
specificity than the higher bin sizes. In particular, bin sizes of 5 and
10 yielded good results.

Additionally, we can infer that the JS distance being a
symmetric measure presents better results compared with the non-
symmetric KL distance. While TSG's yield good results overall for
most bin sizes, the highest sensitivity was obtained with the
oncogenes distributions (bin size of 10). Moreover, the global

methylation profiles, though not providing high separation values
for most bin sizes yielded the highest specificity value (for a bin
size of 5). This indicates that the global methylation distribution
with an optimum bin size is an important factor in prediction.

4 Conclusion
In this research work, we have proposed techniques by which the
DNA methylation distributions of healthy and tumour samples can
be used in the early detection of cancer using advanced information
theory techniques such as the KL distance and JS distance. We
have obtained the ‘average healthy distribution’ of DNA
methylation for the samples and computed the KL and JS distance
measures of several healthy and tumour methylation distributions.
We have also trained a classifier based on these results to predict
the nature of test samples and obtained the sensitivity and
specificity of classification. These techniques were applied to
KIRC data obtained from TCGA database. We have used different
sets of genes that are significant in cancer (tumour-suppressor
genes, oncogenes) and global data to apply our techniques. We
present this paper as a computationally efficient approach toward
early prediction of cancer that can be enhanced using various
parameters in epigenetics, application of mathematical transforms
toward enhancing specific probabilities [9] or to study specific set
of genes other than TSG's or oncogenes for other diseases.
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