
IET Systems Biology
Research Article
Interactive cooperation and hierarchical
operation ofmicroRNAand transcription factor
crosstalk in human transcriptional regulatory
network
IET Syst. Biol., 2016, Vol. 10, Iss. 6, pp. 219–228
& The Institution of Engineering and Technology 2016
ISSN 1751-8849
Received on 4th January 2016
Revised on 14th April 2016
Accepted on 27th April 2016
doi: 10.1049/iet-syb.2016.0001
www.ietdl.org
Esra Gov, Kazim Yalcin Arga ✉

Department of Bioengineering, Marmara University, 34722 Goztepe, Istanbul, Turkey

✉ E-mail: kazim.arga@marmara.edu.tr

Abstract: Transcriptional regulation of gene expression is an essential cellular process that is arranged by transcription
factors (TFs), microRNAs (miRNA) and their target genes through a variety of mechanisms. Here, we set out to
reconstruct a comprehensive transcriptional regulatory network of Homo sapiens consisting of experimentally verified
regulatory information on miRNAs, TFs and their target genes. We have performed topological analyses to elucidate
the transcriptional regulatory roles of miRNAs and TFs. When we thoroughly investigated the network motifs, different
gene regulatory scenarios were observed; whereas, mutual TF-miRNA regulation (interactive cooperation) and
hierarchical operation where miRNAs were the upstream regulators of TFs came into prominence. Otherwise,
biological process specific subnetworks were also constructed and integration of gene and miRNA expression data on
ovarian cancer was achieved as a case study to observe dynamic patterns of the gene expression. Meanwhile, both
co-operation and hierarchical operation types were determined in active ovarian cancer and process-specific
subnetworks. In addition, the analysis showed that multiple signals from miRNAs were integrated by TFs. Our results
demonstrate new insights on the architecture of the human transcriptional regulatory network, and here we present
some lessons we gained from deciphering the reciprocal interplay between miRNAs, TFs and their target genes.
1 Introduction

Biological functions are maintained by gene regulatory networks
tightly coupled to protein activity and function. All living systems
depend on the precise coordinated expression of gene products
which interact and specify cellular phenotypes and function.
Regulatory modules are required for the coordinated response of
distinct cellular processes within an organism, and for responding
to the external environment.

One of the most important cellular processes that determine the
levels of gene products is transcription. Transcriptional regulation
of gene expression is often the prior process due to response of
system changes, wherein the information contained in a genome is
converted and then ultimately used to produce the proteins
required for a given response. It is arranged by transcriptional
regulatory proteins and their target genes working in assent
through a variety of mechanisms. These regulators, known as
transcription factors (TFs), are proteins bind to either enhancer or
promoter regions of DNA adjacent to the genes that they regulate.
TFs can act as activators or repressors in a tissue- or
condition-specific manner. The roles of TF complexes in
regulating the levels of protein-coding genes have been
well-elucidated in many cell types [1, 2].

A recent class of small non-coding RNAs discovered, microRNAs
(miRNAs), also appears to have determining roles in the control of
cellular phenotypes, fundamental biological processes and disease
[3, 4]. Briefly, miRNAs constitute a unique family of short, with
20–23 nucleotides length, non-coding endogenous small RNA
molecules that have emerged as important modulators of gene
expression [5]. They take charge in RNA silencing and
post-transcriptional regulation of gene expression [5, 6]. We are
only beginning to understanding the network of individual miRNAs
in terms of their regulatory effects on other genes including TFs.
However, the networks comprised of TFs and miRNAs are largely
disconnected. It has been widely reported that miRNAs and TFs
share a common regulatory logic and are capable of controlling
hundreds of target genes by binding to distinct cis-regulatory
elements [7, 8]. It is unclear how the transcription of miRNA genes
and the feedback of miRNAs into transcription hierarchies are
regulated. Since miRNAs constitute an entire layer of the regulatory
fabric, it is useful for us to uncover their significance, function and
interaction within the hierarchy of other cellular networks.

miRNAs are necessary for many aspects of development, cellular
function and cell maintenance. Dysregulation of miRNAs are linked
to many diseases, including cancers [9, 10]. They are also implicated
in disease by behaving as oncogenes and tumour suppressors [11,
12]. It has been observed that the levels of certain miRNAs are
dramatically altered in primary tumours, and global miRNA
expression is lower in cancer tissues than in normal tissues.

As regulators of gene expression, miRNAs exert their effects in
two modes. miRNAs recognise the target mRNAs by perfect or
near-perfect sequence complementarity, resulting in the cleavage
and destruction of mRNA through the RNA interference
machinery; or, miRNAs appear to pair with imperfect
complementarity to their target mRNAs, and they inhibit protein
synthesis through translational inhibition using unknown
mechanisms that preserve the mRNA targets [13]. Several studies
have provided evidence that translational repression occurs
preinitiation or post-initiation of translation [14, 15]. Also
Vasudevan et al. [16], Liu et al. [17] were reported about activator
effects of miRNAs on target genes expression. On the other hand,
miRNAs can have roles that recapitulate the gain or
loss-of-function of transcriptional factors. These revelations
support the rationale for a deeper investigation into the global and
local architecture of miRNA–mRNA–TF interactions.

Construction of biological networks and topological properties
tells us a great deal about how they facilitate the cell to respond to
its environment and perform complex biological functions such as
cancer progression and apoptosis [18]. The topology of the gene
regulatory network plays an essential role to understand to the cell
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response, pathogenesis of genetic diseases and cancer progression.
Some repetitive topological units of biological networks, termed
network motifs, occur more often than would be expected from a
random generated network [19]. Detection of the network motifs
in the complex biological networks can yield new mechanistic
insights into regulatory system and offer crucial clues into gene
expression regulatory mechanisms [20, 21].

Several network based studies were performed to explore the
relationships between miRNAs and targeted genes or TFs. These
include investigation of the expression patterns between miRNAs
and targeted genes [22, 23], prediction of disease-associated
miRNAs and TFs [24–26], uncovering the local and global
architectural features [27, 28], integrative analysis of
transcriptional and post-transcriptional regulatory networks [29,
30], and reconstruction of disease, tissue or process specific
transcriptional regulatory subnetworks [31–33].

In this study, we set out to elucidate the cooperation scenarios of
miRNAs and TFs. For this purpose, we reconstructed a generic
transcriptional regulatory network of Homo sapiens (H. sapiens)
consisting of experimentally verified data on four regulation types
among miRNAs, TFs and target genes: miRNAs regulating TFs,
TFs regulating miRNAs, TFs regulating target genes and miRNAs
regulating target genes. The local and global architectural features
of the network were uncovered via topological analyses,
determination of hub molecules (TFs and miRNAs), and detection
of network motifs. The study was extended via integration of gene
and miRNA expression data on ovarian cancer as a case study to
observe dynamic patterns of the regulatory mechanisms. Together
these findings provide new insights on the architecture of the
transcriptional regulatory network, and here we present some
lessons we gained from deciphering the reciprocal interplay
between miRNAs, TFs and their target genes.
2 Materials and methods

2.1 Reconstruction of transcriptional regulatory network
of H. sapiens

The generic transcriptional regulatory network was reconstructed by
integrating three distinct regulatory relationships, i.e. miRNA–gene,
miRNA–TF and TF–gene interactions. For this purpose, interactome
data were compiled from various publicly available databases
(Table 1). A comprehensive miRNA–gene interaction dataset was
assembled by employing miRDB [34], starBase [35], miRecords
[36], miRTarBase [37] and miR2Disease [38] databases. Since two
of the databases (miRDB and starBase) store computational
predictions, to guarantee that an interaction is experimental
validated, miRNA–gene interactions that were reported in at least
three distinct databases were incorporated into the dataset. The
experimentally validated TF–miRNA interactions were obtained
from TransMir (ver.1.2) [39]. The target genes and TFs
interactions were extracted from PAZAR database [40].
Table 1 Data resources for transcriptional regulatory information

Interaction type Database (web-link) Data sum

miRNA–gene
interactions

MiRDB (http://mirdb.org/miRDB/) 271, 089 interactions
miRNAs and 15,788

miRecords (http://mirecords.
biolead.org/)

1740 interactions be
miRNAs and 1110 ge

miRTarBase (http://mirtarbase.
mbc.nctu.edu.tw/)

37, 402 interactions
miRNAs and 12,101

starBase (http://starbase.sysu.
edu.cn/)

423, 405 interactions
miRNAs and 13,801

miR2Disease (http://www.
mir2disease.org/)

597 interactions betw
and 386 genes

miRNA–TF
interactions

TransmiR (http://www.cuilab.cn/
transmir)

670 interactions betw
and 167 TFs

TF–gene interactions PAZAR (http://www.pazar.info/
cgi-bin/)

6071 interactions be
3690 genes

miRNA-disease
associations

miR2Disease (http://www.
mir2disease.org/)

81 miRNAs associat
cancer
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2.2 Topological analysis of transcriptional regulatory
networks

Reconstructed networks were visualised and analysed via Cytoscape
(v.2.8). Local and global topological features were represented by
several metrics, including the degree, betweenness connectivity,
shortest path length, heterogeneity, clustering coefficient, and
determined via NetworkAnalyzer [41] and Cytohubba [42]
plugins. The dual-metric approach [43] incorporating degree as a
local metric and betweenness centrality as a global metric was
employed at identification of hub molecules (miRNAs and TFs),
and top five molecules in terms of any of the metrics were
presented as hubs. Network motifs were determined via FANMOD
[44], and significantly enriched motifs with sizes up to five, Z
score ≥2, and observation frequency ≥0.001% were considered in
further analyses.
2.3 Gene set enrichment analysis

Enrichment analyses of gene sets were performed through DAVID
bioinformatics tool [45]. Gene Ontology (GO) terminology was
employed for association of genes with biological processes,
molecular functions and cellular compartments. Enrichment results
with p-value <0.05 were considered as statistically significant in
all analyses.
2.4 Identification of differentially expressed genes
(DEGs) and miRNAs in ovarian cancer

To characterise gene expression in ovarian cancer, two independent
transcriptomics datasets (GSE7463 and GSE14407) from the Gene
Expression Omnibus (GEO) database [46] were recruited. CEL files
were normalised using RMA [47] as implemented in the affy
package [48] of R/Bioconductor software (ver. 2.12) [49]. DEGs
were identified from the normalised log-expression values using the
multiple testing option of LIMMA (linear models for microarray
data) [50]. Benjamini Hochberg’s method was used to control the
false discovery rate and the 0.01 p-value threshold was maintained
to identify significant DEGs. Differentially expressed miRNAs
(DEmiRs) in ovarian cancer were extracted directly from the
miR2disease database. In this database, ovarian cancer associated 81
miRNAs were obtained, 42 of them were represented in
transcriptional regulatory network.
2.5 Reconstruction of ovarian cancer specific
subnetwork

Considering the DEGs and DEmiRs in ovarian cancer, a disease
specific subnetwork of the generic network was constructed.
Initially, miRNA–gene and TF–gene associations of DEGs were
extracted from the generic network. Then, miRNA–gene and
mary Confidence identifier References

between 2541
genes

computational predictions
(score ≥80)

Wang [34]

tween 285
nes

experimentally validated Xiao et al. [36]

between 576
genes

experimentally validated Hsu et al. [37]

between 386
genes

computational predictions Yang et al. [35]

een 176 miRNAs experimentally validated Jiang et al. [38]

een 239 miRNAs experimentally validated Wang et al. [39]

tween 161 TFs and experimentally validated Portales-Casamar et al.
[40]

ed with ovarian experimentally validated Jiang et al. [38]
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miRNA–TF associations were filtered for DEmiRs. The resultant
network was visualised and analysed via Cytoscape (v.2.8).

2.6 Analysis of network performance

We evaluated the performance of the reconstructed generic network
via comparison with other combinatorial transcriptional regulatory
networks in the literature [24, 51, 52]. For this purpose,
gold-standard datasets were reconstructed. The gold standard
positive dataset was composed of 300 interactions, which were
randomly selected among the experimentally validated miRNA–
TF, TF–gene and miRNA–gene interactions from publicly
available databases. The gold standard negative dataset was
consisting of randomly generated 300 interactions. Each
randomisation was performed 100 times in determination of
performance metrics. In comparison of the proposed generic
network with the other networks to illustrate the predictive power
of the reconstruction process, sensitivity–specificity trade-off was
considered. Sensitivity (recall) and specificity is the ability to
identify a true positive and true negative in a data set, respectively.
On the other hand, F1 score, which is the harmonic mean of
precision and recall, considers both true positives and true
negatives among the total number of cases examined.

2.7 Robustness analysis

Considering the incompleteness of the reconstructed networks, to
analyse the robustness of motif analysis results, we performed a
systematic analysis on the reconstructed network via removal of
5% true interactions, or addition of 5% false interactions.
Interactions were randomly selected or created, and each
randomisation was performed 100 times. The statistical
significance of z-scores (p-value) was exhibited using two-tailed
Student’s T-test.
3 Results and discussion

3.1 Generic transcriptional regulatory network of
H. sapiens was reconstructed

Although several studies reported conserved features of gene
regulatory mechanisms by TFs at network level, very little is
known about the features of miRNAs and their interface with the
TFs. There is a critical gap in our understanding of how the
networks of miRNAs and TFs are connected. Primarily, we
reconstructed a generic transcriptional regulatory network of
H. sapiens via integrating three distinct regulatory relationships,
i.e. miRNA–gene, miRNA–TF and TF–gene interactions. For this
purpose, interaction data from various databases were compiled
(Table 1). The regulatory mechanisms of miRNAs have made the
algorithms for predicting miRNA targets complicated, and the
precise determination of the full range of targets of miRNAs is a
major bottleneck. To avoid misinterpretations due to false positive
interactions arising from incorrect predictions of miRNA target
prediction programs, here we employed only the interactions,
which were experimentally validated. The miRNA–gene
interaction data were taken from five distinct databases, two of
which included computational predictions. Therefore, miRNA–
gene interactions, which were reported in at least three distinct
databases, were incorporated into the generic network in order to
guarantee the experimental validation of the interaction. For the
other interaction types, data were collected from relevant
databases, which provide experimentally validated relationships
exclusively. As a whole, the generic network was comprised of
8622 interactions associated with 284 TFs, 345 miRNAs and 4624
target genes (mRNAs) (Table S1).

Combinatorial transcriptional regulatory networks integrating distinct
regulatory relationships for H. sapiens are very limited in the literature.
Previously, context–specific networks were reconstructed for human
cancer [24] and epithelial-to-mesenchymal transition in cancer [51].
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Data repositories of transcriptional and post-transcriptional regulatory
relationships, such as RegNetwork [52], enabling reconstruction of
generic networks is emerging in recent years. Here, we evaluated the
performance of the reconstructed generic network via comparison
with other combinatorial transcriptional regulatory networks in the
literature (Table S2). The reconstructed generic network was more
comprehensive (less far away from incompleteness) taking into
consideration the number of regulatory elements (miRNAs and TFs)
and regulatory interactions associated with miRNAs (miRNA–TF and
miRNA–gene interactions). In terms of performance metrics,
context-specific networks indicated high specificity (ability to identify
true negatives), but very low sensitivity (ability to identify true
positives) due to their limited coverage in terms of regulatory
elements and interactions. On the other hand, the performances of the
generic networks were comparable to each other, but significantly
higher than context-specific networks, in terms of sensitivity and
accuracy. The reconstructed generic network, in this study,
represented the highest F1 score (0.78), which is a measure of
accuracy considering both true positives and true negatives.

Topological analysis of the generic network indicated the
dominance of TFs as the regulators of transcription, since 39
genes were regulated by a TF, whereas a miRNA regulates 7
genes in average (Figs. 1a and b, Table S3, S4). This observation
may support the hypothesis that TFs play general roles in
transcriptional regulatory mechanisms; however, miRNAs take
more specific duties, in general. The miRNA–TF associations also
constituted an intertwined structure, i.e. 141 miRNAs (41% of all)
were found to be regulated by more than one TF, and 106 TFs
(63.5% of all) were found to be regulated by at least two miRNAs.
When degree distributions were investigated, the generic network
follows scale-free topology which indicated the presence of hubs.
For instance, miR-124-3p with 139 target genes, and HIF1A with
380 target genes came into prominence as the leading regulators,
and the TF MYC was associated with the highest number of
miRNAs (Fig. 1c, Table S5). Hubs play central role in directing
the cellular response to stimulus. When hub nodes (TF, miRNA or
target gene) were evaluated according to two topological metrics
(i.e. degree as the local metric and betweenness centrality as the
global metric), network hubs were all TFs, supporting the central
role of TFs as key components in the transcriptional regulatory
network (Table 2). HIF1A, TP53, FOS, STAT1, RUNX1 and
EGR1 were the hub TFs regulating numerous genes. MYC, E2F1,
EGR1 and TP53 were the hubs interacting with a wide range of
miRNAs. On the other hand, miR-124-3p, miR-16-5p, miR-93-5p,
miR-1, miR-19b-3p and miR-130b-3p were the hub miRNAs in
terms of transcriptional regulation of target genes. In addition,
miR-21 was the leading hub interacting with a wide range of TFs.
3.2 Network motifs provide a deeper investigation into
the topological architecture

The reconstructed generic transcriptional regulatory network was
consisting of different regulatory interaction types, and therefore
indicated a complex structure. Uncovering the structural design
principles of this complex network might help us to understand
the role of transcriptional regulatory components. For this purpose,
we utilised the concept of network motifs [19, 53], i.e. the
recurrent and statistically significant patterns that occur
significantly higher frequencies than expected. These patterns give
important clues on the functional abilities of the network, i.e. how
particular functions are achieved efficiently, and how networks
oversee different tasks.

To investigate the possible regulatory scenarios describing the
roles of regulatory elements in regulation of gene transcription, a
core network consisting of miRNA–TF-target gene associations
was required. The core network, consisting of 757 interactions
associated with 44 TFs, 240 miRNAs and 179 target genes, was
reconstructed around the mutual TFs of the TF–gene and miRNA–
TF interactions as well as the mutual miRNAs of the miRNA–
gene and miRNA–TF interactions (Fig. 2, Table S6). Significantly
enriched motifs were determined (Fig. 3) and analysed to provide
221



Fig. 1 Topological analysis of the transcriptional regulatory network

a Hub miRNAs and their target genes
b Hub TFs of miRNA targeted genes
c Hub TFs and associated miRNAs
a deeper investigation into the architecture of miRNA–TF–gene
interactions.

A common limitation of biological network analysis is that
currently reported biological networks are far from completeness.
Therefore, taking into consideration the hypothesis that the
observations may be resulted from data incompleteness, we
performed a sensitivity analysis via either removal of 5% true
Table 2 Topological features of the generic, core and ovarian cancer specific t

Network type No. of
nodes

No. of
edges

Hubs

Generic network
TF–miRNA
interaction

409 670 MYC, EGR1, E2F1, TP53, miR-21

TF–gene
interaction

3801 6071 HIF1A, TP53, FOS, STAT1, RUNX

miRNA–gene
interaction

1469 1881 miR-124-3p, miR-16-5p, miR-93-5
miR-19b-3p, miR-130b-3p

Whole generic
network

5156 8622 HIF1A, TP53, EGR1, FOS, RUNX1

Core network
TF–miRNA
interaction

215 326 MYC, EGR1, E2F1, NFKB1, TP53

TF–gene
interaction

197 239 HIF1A, TP53, RUNX1, EGR1, FOS

miRNA–gene
interaction

282 272 miR-93-5p, miR-16-5p, miR-124-3
miR-29c-3p, VEGFA

Whole core
network

461 757 HIF1A, EGR1, TP53, E2F1, MYC

Ovarian cancer specific subnetwork
TF–miRNA
interaction

112 225 MYC, NFKB1, TGFB1, miR-21, m
miR-200c, miR-200b

TF–gene
interaction

1121 1291 HIF1A, TP53, EGR1, ETS1, GATA

miRNA–gene
interaction

69 65 miR-30a-5p, miR 429, miR-206, m
miR-30e- 5p, LIMCH1

Whole network 1277 1611 HIF1A, TP53, EGR1, ETS1, GATA
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interactions or addition of 5% false interactions in the reconstructed
core network to test the robustness of the findings in motif analysis.
As a result, the main results remain unchanged (Table S7), i.e. the
significantly enriched motifs were also observed within the
randomly generated networks with high Z scores (≥2) and
observation frequencies (≥0.001%), and no statistically significant
changes were observed in their Z scores (p-value >0.05).
ranscriptional regulatory networks

Network
heterogeneity

Characteristic path
length

Avg.
degree

1.26 5.07 3.27

1, EGR1 5.78 3.87 3.19

p, miR-1, 2.73 5.35 2.56

4.50 4.55 2.84

1.74 4.33 2.57

, SP1 2.12 4.51 2.29

p, miR-19b-3p, 1.01 6.64 1.93

1.66 4.27 3.28

iR-155, 1.07 4.08 3.16

3, SP1 6.9 3.74 2.3

iR142-3p, 2.78 2.06 1.88

3 6.24 3.78 2.44
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Fig. 2 Core transcriptional regulatory network

Fig. 3 Significantly enriched network motifs
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Fig. 4 Different gene regulatory scenarios of motifs

A (i) Pleiotropic structure, (ii) multi-input structure and (iii) super structure of miRNA-gene and TF-gene interactions
B (i) Hierarchical operation of miRNAs and TFs where miRNAs were the upstream regulators of TFs, (ii) hierarchical operation of miRNAs and TFs where TFs were the upstream
regulators of miRNAs, (iii) interactive cooperation of miRNAs and TFs, (iv) non-interactive cooperation of miRNAs and TFs
When significantly enriched motifs were investigated, in general,
the number of regulations originated from miRNAs was pretty much
the same with that from TFs (161 and 152, respectively). Motifs
describing gene regulation by either TFs or miRNAs were
describing a well-balanced distribution, i.e. the upstream regulators
of 28 cases were miRNAs, whereas 29 regulations were originated
from TFs. On the other hand, in motifs describing cooperative
regulation of target genes by miRNAs and TFs, the number of
regulations originated from miRNAs was higher than that from
TFs (48 and 36, respectively). These results suggest that mutual
TF–miRNA regulation come into prominence in transcriptional
regulatory network. Also, regulation of target genes by miRNAs
has got a crucial ratio in transcriptional regulation mechanisms.

Several features observed in transcriptional factor networks were
repeated in the miRNA landscape (Fig. 3). Fifteen motifs were
describing gene regulation by either TFs or miRNAs (with
observation frequencies between 2.86 and 12.66), and eight motifs
were consisting of miRNA–TF interactions (with observation
frequencies between 4.17 and 12.7). These motifs represented
three different topologies (Fig. 4a): (i) pleiotropic structure (single
regulatory element regulating several targets), (ii) multi-input
structure (several regulatory elements regulating single target) and
(iii) super structure (several regulatory elements regulating several
targets). On the other hand, four different gene regulatory
scenarios were observed (Fig. 4b) when we thoroughly
investigated the network motifs including miRNA–TF–gene
regulations: (i) interactive cooperation of miRNAs and TFs (7
motifs with significantly high observation frequencies up to
146.77), (ii) non-interactive cooperation of miRNAs and TFs (8
motifs with observation frequencies up to 5.93), (iii) hierarchical
operation of miRNAs and TFs where miRNAs were the upstream
regulators of TFs (5 motifs with observation frequencies around
8.7) and (iv) hierarchical operation of miRNAs and TFs where
TFs were the upstream regulators of miRNAs (8 motifs with
observation frequencies between 2.67 and 11.02).

3.3 Core network topology endorses the previous
findings on miRNA and gene interactions

Genome-wide studies (i.e. ChIP-on-Chip and ChIP-seq) on human
TFs show that they bind to a remarkably widespread, overlapping
set of genomic regions [54] and transcriptional regulation of many
genes by a single TF is the prominent motif of TF networks [19].
One observation was that, similar to TFs, a single miRNA has the
potential to target many genes (pleiotropic motif in Fig. 4a). For
example, miR-124-3p and miR-16-5p are targeting 139 and 128
genes, respectively. Also it was determined that 135 miRNAs
(75.8% of all) regulate two or more genes. The coordinated
control of many genes by a miRNA should be explained by the
observation that mammalian miRNAs do not require perfect base
224
pair complementarity with cognate mRNA sites [55]; thereby one
miRNA can target many genes with no overall sequence homology.

Analogous to transcription regulation where several TFs tend to
work in synergism through assembly as a protein complex to
regulate the promoters and enhancers of target genes, we observed
multi-input motifs of miRNAs, i.e. a single gene was targeted by
several miRNAs (Fig. 4a). For instance, vascular endothelial
growth factor (VEGFA), which is responsible for programmed
angiogenic processes during menstrual cycle, is regulated by 12
miRNAs. However, 378 genes (29.3% of all) are found to be
regulated by more than one miRNA and a gene is regulated by 2.6
miRNAs, in average. Since the recognition sites of mRNAs vary
considerably in length and sequence, they carry numerous
potential binding sites for the same or different miRNAs. Just as
TFs recognise short sequences, miRNAs likewise utilise sequence
complementarity to its target for recognition. This
specificity-determining region is often short, comprising seven or
eight nucleotides [56].

Another recapitulated feature of TFs is the interwind structure of
their subnetworks. A miRNA subnetwork was often linked and
interlocked with several subnetworks centred upon other miRNAs
(Fig. 2). This was mainly due to sharing common target genes (i.e.
multi-input and super motifs, as represented in Fig. 4a). This
result presents the challenging task of understanding how the
targeting of multiple genes by a single miRNA, and how the
intersection of networks can lead to a cellular effect.

3.4 Target genes may be regulated in cooperation of
regulators

The simplest motif of co-regulation was observed when a common
gene is coordinately targeted by a TF and a miRNA (Fig. 4b). For
instance, a common downstream target gene may be regulated by
an upstream TF and repressed by a miRNA, which represents a
frequently reported regulatory strategy in the literature [29]. If the
TF is a repressor, the overall function of the motif is to silence the
target, and this represents a coherent motif since both upstream
regulators act synergistically in the same direction. In contrast, the
TF may be an activator, and the negative interaction between the
transcription activator and miRNA creates an incoherent motif [57].

The cooperation of miRNAs and TFs may occur in an interactive
manner where miRNAs and TFs form interconnected loops whereby
each mutually regulates the other, in addition to common
downstream targets (Fig. 4b). For instance, this type of a motif
may comprise of a miRNA which represses target genes, and at
the same time, silences a transcription activator for these common
downstream targets. In contrast, there may not be an interaction
between upstream regulators, the target genes of miRNAs and TFs
may be mutual. The interactive cooperation of miRNAs and TFs
came into prominence in the human network with seven motifs
IET Syst. Biol., 2016, Vol. 10, Iss. 6, pp. 219–228
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Fig. 5 Process-specific subnetworks for the significantly enriched processes

a Metabolic process
b Regulation of transcription
c Cell death
d Cell cycle and
e Reproductive process
having the highest observation frequencies, when compared to other
cases (p-value < 0.05).

Another important observation on cooperative motifs was that a
TF was interacting with at least two miRNAs in gene regulation.
Multiple inputs as exemplified by TFs provide positive signals for
ensuring consistent activity in regulating a common gene. This
renders it insensitive to transient changes in individual input
strength [58]. Similar to TF based feed-forward loops comprised
of activators and repressors; the integration of miRNAs may
provide a negative input thus enabling the circuit to behave as a
sensor that can respond to the balance of signals [59].
3.5 Target gene may be regulated by multiple upstream
effectors in a hierarchical operation

In regulation of a target gene, in 13 motifs, the upstream regulators
also have an impact on each other, which is reminiscent of a
hierarchical operation. The control of a downstream target may
occur through the synergism of upstream factors, where one of the
factors is also the upstream of the other.

The hierarchical operation of miRNAs and TFs where TFs were
the upstream regulators of miRNAs was represented by eight
motifs (Fig. 3). For example, the upstream TF could activate the
production of a miRNA and simultaneously repress the
transcription of a common target gene, or the upstream factor
could repress the production of a miRNA, whilst activating a
target gene which is repressed by the miRNA. This design could
minimise the effects of leaky gene transcription when their
expression is not desired [57]. On the other hand, the hierarchical
operation where miRNAs were the upstream regulators of TFs was
also represented with five enriched motifs having significantly
higher observation frequencies when compared to the hierarchical
operation with TFs as the upstream regulators (p-value <0.05).
These motifs may represent the silencing of a transcription
activator by miRNAs. This result presents the challenging task of
understanding the regulatory roles of miRNAs, especially in
regulation of TFs.
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A considerable observation was that the hierarchical operation of
miRNAs and TFs where TFs were the upstream regulators of
miRNAs was represented by only pleiotropic motifs, employing
single TF (Fig. 4b). On the other hand, the hierarchical operation
where miRNAs were the upstream regulators of TFs was
represented by either simple or multi-input motifs. The abundance
of multi-input motifs pointed out the combinatorial interaction
among miRNAs, which is likely to allow for more accurate control
of translation rates. As observed with TFs, combinatorial control
allows multiple inputs, represented by individual miRNAs, to be
integrated into the post-transcriptional regulation of target mRNAs.
Understanding the extent of combinatorial interactions among
miRNAs will provide clues toward the differential control of
protein expression.

3.6 Process-specific subnetworks were also dominated
by hierarchical operation of regulators

To understand how regulatory networks were rewired in a process
specific manner, gene set enrichment analysis was performed for the
target genes in the generic network and process-specific
subnetworks were reconstructed for the top five enriched processes,
namely metabolic process, regulation of transcription, cell death, cell
cycle and reproductive process (Fig. 5, Table S8). The abundance of
miRNAs around a small number of TFs was remarkable in all
subnetworks. For instance, VEGFA, which is responsible for
programmed angiogenic processes during menstrual cycle [60, 61]
was one of the hubs in reproductive process-specific subnetwork and
interacting with 12 miRNAs (Fig. 5e). A deeper investigation into
the topological architecture of subnetworks pointed out the
dominance of multi-input motifs representing the hierarchical
operation where miRNAs were the upstream regulators of TFs.

3.7 Case study: ovarian cancer

Integration of functional genomics datasets with the reconstructed
network allows us to understand dynamic aspects of transcriptional
225



Fig. 6 Case study: ovarian cancer

a Ovarian cancer specific subnetwork
b Interactive cooperation examples
c Non-interactive manner examples
d Hierarchical operations examples on the lessons derived from motif analysis
regulation mechanisms. Here, transcriptomics datasets associated
with ovarian cancer were employed as a case study to elucidate
the active mechanisms of transcriptional regulation in ovarian
cancer based on gene and miRNA expression levels. We
determined DEGs and DEmiRs in ovarian cancer, and constructed
an ovarian cancer specific subnetwork consisting of 1611
interactions among 34 miRNAs, 90 TFs and 1153 DEG targets
(Fig. 6a). As the regulators, the TFs HIF1A, TP53, EGR1, ETS1
and GATA3 as well as the miRNAs miR-30a-5p, miR-429,
miR-206, miR-142-3p and miR-30e-5p dominated the
disease-specific subnetwork regulating the excessive number of
genes. The hub TFs HIF1A, TP53, EGR1, ETS1 and GATA3
have been implicated in tumorigenesis [62, 63]. Among them,
EGR1 and HIF1A [64, 65] were TFs specifically associated with
ovarian cancer. In addition, miR-21, miR-155, miR-200c and
miR-200b came into prominence as co-regulators of TFs. miR-21
and miR-200 induce mesenchymal-to-epithelial transition, in other
words, they have important regulatory functions at metastasis of
cancer cells [66, 67]. Upregulated expression of miR-155 at
tumour initiating cells was shown and this miRNA was associated
with cancer promotion [68]. These miRNAs and TFs have critical
impact on cancer progression and to an extent, cancer phenotype
as a result of a failure on cell cycle mechanisms.

The subgraphs of this network represent us several examples on
the lessons derived from motif analysis. For instance, the
regulation of cyclin E1 (CCNE1) gene in ovarian cancer was
mediated via the interactive cooperation of miR-195 and E2F TF 1
(E2F1). The TF (E2F1) and target gene (CCNE1) were both
up-regulated, whereas the expression of the miR-195 was
down-regulated. This result suggests that TF may positively
regulate the transcription of target gene; however, miRNA may
226
regulate gene expression as a repressor. This subgraph, named as
feed forwards loop, was detected in previous studies [22, 63]. On
the other hand, the regulation of PNISR gene encoding
PNN-interacting serine/arginine-rich protein was also mediated
through an interactive cooperation, but this time the gene and its
upstream regulator miR-424 were down-regulated whereas the TF
HIF1A was up-regulated (Fig. 6b). In this scenario, preference of
positive correlation between miRNA-target genes was shown and
TF may function as a repressor in gene regulation. The
transcriptional regulator EGR1 and miR-30a-5p cooperate in a
non-interactive manner in regulation of ABL1 and MTDH genes
(Fig. 6c ). Here, EGR1 and ABL1 were down-regulated, whereas
miR-30a-5p and MTDH were up-regulated in ovarian cancer. It
was observed that positive and negative correlations occur in the
active subnetwork, and therefore the expression profiles of
regulatory components should be evaluated to understand the
mechanism. The miRNA–TF–gene hierarchy was the dominated
strategy in gene regulatory network of ovarian cancer (Fig. 6d).
For example, the regulation of PKP3 gene in ovarian cancer was
mediated via hierarchical operation where several miRNAs were
the upstream regulators of the TF ZEB1. In addition, almost all
transcriptional regulatory components as well as target genes were
down regulated in this active subnetwork.

Both cooperation and hierarchical operation types were
determined in active subnetworks. Overall results provided that
TFs and miRNAs may mostly tend to co-regulate their target
genes (in an interactive manner) and transcriptional regulations of
target genes may occur through hierarchical mechanisms where
miRNAs were the upstream regulators of TFs. The important
discovery from this study is that TFs pick up signals from multiple
inputs (miRNAs) and provide positive signals for ensuring
IET Syst. Biol., 2016, Vol. 10, Iss. 6, pp. 219–228
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consistent activity in regulating a common gene like a sensor. TFs
and miRNAs in the transcriptional regulation mechanisms are
relevant components and their regulatory effect (activator or
supressor) are complicated depend on the mechanism robustness.

Our results provide a new perspective on analysing the possible
functions of miRNAs, as well as deeper understanding of
transcriptional regulatory mechanisms. Yu et al. [69] previously
reported two classes of miRNAs with distinct network topological
properties. The first class of miRNAs is regulated by a large
number of TFs, whereas the second is regulated by only a few
TFs. Recently, it is presented that extensive context dependency
are widespread in miRNA-mediated gene regulation, similar to
TF-mediated regulation, implying a much more complex
regulatory network than is currently known [70]. Also, studies
based on computational predictions mostly presented an
overestimation of the number of predicted miRNA regulators so
these perspectives may be added to the increasing complexity of
miRNA-mediated regulation. In this study, human transcriptional
regulatory network was curated with experimentally known data.
In addition, the necessary tools to illuminate transcriptional
regulation mechanisms need to be much more involved, and much
more experimentally validated data will be needed in order to
understand possible miRNA–TF regulation mechanism and
post-transcriptional regulatory network.
4 Conclusions

In this work, we aimed to examine the cooperation scenarios of
miRNAs and TFs, and for this purpose we mapped a
comprehensive transcription regulatory network in H. sapiens
comprised of interactome data concerning to TFs, miRNAs and
their target genes. The essential findings of this study may be
summarised as follows: (i) miRNA is an inseparable component of
the overall gene regulatory fabric; (ii) most of the TFs play general
roles in transcriptional regulatory mechanisms; however, miRNAs
take more specific duties; (iii) mutual TF–miRNA regulation
(interactive cooperation) and hierarchical operation where miRNAs
were the upstream regulators of TFs come into prominence in
transcriptional regulatory network; (iv) multiple inputs as
exemplified by TFs provide positive signals for ensuring consistent
activity in regulating a common gene; and (v) the hierarchical
operation where TFs were the upstream regulators of miRNAs was
represented by only pleiotropic motifs, employing single TF.

Whole results ensured that TFs and miRNAs may mostly regulate
their target genes in an interactive manner and gene expression
regulations of target genes may occur through hierarchical
mechanisms where miRNAs were the upstream regulators of TFs.
These findings may assist researchers in understanding complex
gene expression mechanism and miRNA functions toward system
biology studies. In the future work, it will be investigated the
various tissues or conditions specific transcriptional regulatory
networks depend on expression data and establishment of TFs and
miRNAs precise regulatory roles.
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