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Abstract: The cells’ ability to adapt to changes in the external environment is crucial for the survival of many organisms. There
are two broad classes of signalling networks that achieve perfect adaptation. Both rely on complementary regulation of the
response by an external signal and an inhibitory process. In one class of systems, inhibition comes about from the response
itself, closing a negative feedback (NFB) loop. In the other, the inhibition comes directly from the external signal in what is
referred to as an incoherent feedforward (IFF) loop. Although both systems show adaptive behaviour to constant changes in
the level of the stimulus, their response to other forms of stimuli can differ. Here the authors consider the respective response
to various such disturbances, including ramp increases, removal of the stimulus and pulses. The authors also consider the
effect of stochastic fluctuations in signalling that come about from the interaction of the signalling elements. Finally, the
authors consider the possible effect of spatially varying signals. The authors show that both the NFB and the IFF motifs can
be used to sense static spatial gradients, under a local excitation, global inhibition assumption. The results may help
experimentalists develop protocols that can discriminate between the two adaptation motifs.
1 Introduction

The ability to adjust behaviour in response to changes in the
environment is one of the hallmarks of living organisms. In
many cases, this requires the capacity to filter out the mean
level of signal, thereby allowing the response to focus on
the change from these set points. This property, known as
adaptation, has long been an area of great interest to
biologists.
Adaptation can be partial – for example, in our eye’s ability

to adjust its sensitivity to changes in ambient light [1] – or
perfect. The latter is observed in the chemotactic response of
a number of cells, including Escherichia coli bacteria [2, 3]
and Dictyostelium discoideum amoebae [4, 5]. Adaptation to
chemoattractant stimuli is also perfect in some, though not
all, cells of the mammalian immune system. For example,
neutrophils exhibit perfect adaptation to step changes in
concentration of chemoattractant Formyl-Methionyl-Leucyl-
Phenylalanine [6] but the response of fibroblasts to
stimulation by PDGF (platelet-derived growth factor)
displays only partial adaptation [7]. Interestingly, chemotaxis
in these cells shows much lower efficiency than that of cell
types that do show perfect adaptation, and this reduced
efficiency is recreated in chemotaxis models that do not
include adaptation [8].
Adaptation is related to homeostasis, the ability for systems

to remain at constant operating points in response to external
perturbations, which is usually associated with negative
feedback (NFB) regulation. In fact, it is a well-known fact
in control engineering that if the strength of a NFB loop is
increased then the precision of adaptation increases. In
particular, if the disturbance is in the form of a step change
in magnitude, perfect adaptation is achieved if the gain
is infinite. Although this is clearly not possible in general, it
can be achieved at steady-state by implementing an
integrator in the feedback loop [9]. Such as a system is the
basis of a now widely accepted model, originally proposed
by Barkai and Leibler, used to describe the chemosensory
system of E. coli [10].
Not all adaptive schemes require NFB. In 1977, Koshland

proposed a scheme that achieved perfect adaptation based on
complementary feedforward regulation of a response
regulator [11]. This scheme, which is usually referred now
to as an incoherent feedforward (IFF) loop [12], has been
used to describe the regulation of a number of biological
systems [13–16].
Since the ubiquitous nature of the adaptive response, recent

years has seen a particular focus on the mechanisms by which
adaptation can be achieved by simple signalling motifs. By
carrying out extensive simulation of all possible three node
enzymatic networks, Ma et al. showed that the two schemes
described above are essentially the only two that achieve
perfect adaptation to step changes in the simulus [17].
However, though the two schemes show adaptive behaviour
to step changes in stimulus, their response to other signals
can vary. Only now are these differences being appreciated
with a particular eye using them to distinguish between
these systems experimentally [18, 19]. The goal of this
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paper is to contrast the relative properties of these two
signalling motifs with particular emphasis on the ways that
the two systems differ. Our hope is that these differences
may be used by experimentalists to design protocols that
would help to elucidate the particular nature of the
underlying adaptive system.
The rest of the paper is arranged as follows. We first

introduce generic forms of the two signalling motifs and
study their respective responses to a number of temporal
stimuli, including step and ramp changes and their response
to the removal of stimuli. We then consider stochastic
effects. Finally, we assume that the motifs form part of a
spatial signalling scheme. We show that both motifs can be
used to detect spatial gradients in the external stimulus
under assumptions that that the excitation and inhibition
process are local and global, respectively.

2 Results

2.1 Preliminaries: Adaptation to step changes in
stimulus levels

We begin by introducing specific forms of the two motifs
that we will consider in the analysis. As illustrated in Fig. 1,
both schemes take an external signal, whose level (e.g.
concentration of a signalling molecule) is denoted by U(t), as
the input. Both involve excitation and inhibition signalling
processes that are in both inactive (E and I, respectively) and
active (E★ and I★, respectively) forms. We consider the
level of E★(t) as the output of the system. In both systems,
the external signal activates the excitation process

E(t) −−−−�U (t)
Ew(t) (1)

In the NFB system, excitation activates the inhibitory
signal

I (t) −−−−�Ew(t)
Iw(t) (2)

which in turn provides NFB on the excitation

Ew(t) −−−−�Iw(t)
E(t)

In the case of the IFF loop, the starting point is the same: we
assume a system consisting of excitation (as in (1)) and
inhibition signals, driven by an external signal. The main
Fig. 1 Motifs considered in the analysis

a NFB loop
b IFF loop. Both systems involve complementary regulation of an excitation
(E) signal by an external signal (U ) and an inhibitory signal (I). The only
difference is the way that the inhibition is activated. In the NFB topology,
this comes from the excitation. In the IFF loop, this is direct from the
external stimulus
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difference is that the external signal activates the inhibitor

directly: I −−�U Iw.

2.2 Mathematical description

To describe these two motifs mathematically requires that
we make assumptions regarding the various processes and
their interactions. In practice, the motifs may represent the
action of various regulatory processes, which may even be
mechanical or electrical rather than biochemical [20]. For
simplicity, we will assume that the various signals refer to
concentrations of interacting enzymes and that the action of
these enzymes follow Michaelis–Menten kinetics. In this
case, the concentrations of the active forms of the excitation
and inhibition processes are dictated by the differential
equations

SNFB =

dEw

dt
= K1UE

KM1
+ E

− K2I
wEw

KM2
+ Ew

dIw

dt
= K3E

wI

KM3
+ I

− K4I
w

KM4
+ Iw

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where the different terms (e.g. S, E, I, E★ and I★) all denote
the concentrations of the various species. These equations can
be simplified considerably.
First, rather than using absolute concentrations, we can

write equations describing normalised concentrations. That
is, we replace the absolute concentrations (E, E★, I and I★)
with terms describing the fractions of the enzymes in the
respective states (e.g. e = E★/(E + E★) etc.) with a similar
normalisation for the external signal (from U to u).
Second, we make some assumptions regarding the enzyme

concentrations relative to the various Michaelis–Menten
terms. In particular, we assume that the two reactions
regulating the inhibitor are near saturation and the two
reactions regulating the excitation process are both in the
linear regime. As shown in Appendix 1, these assumptions
lead to the following differential equations

de

dt
= u− ie (3)

di

dt
= e− k

i

e+ i
(4)

We will usually assume that e≪ i so that the fraction in the
right-hand side of (4) is one.
We emphasise that there is a difference in the two steps

undertaken here. The first, normalisation, is one purely of
mathematical convenience that allows us to reduce the
number of variables in the differential equations. It has no
effect on the results that follow. The second step makes
specific assumptions that guarantee perfect adaptation. If we
relax these assumptions, then perfect adaptation will be lost
in general.
Proceeding in a similar manner with the IFF motif, we

obtain differential equations for the excitation and inhibition
processes

SIFF =

dEw

dt
= K1UE

KM1
+ E

− K2I
wEw

KM2
+ Ew

dIw

dt
= K3UI

KM3
+ I

− K4I
w

KM4
+ Iw

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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As shown in Appendix 1, after normalisation, and assuming
that the forward reactions (E→ E★ and I→ I★) are both at
saturation and the reverse reactions (E← E★ and I← I★)
are both linear, these equations can be can be replaced with
the system described by

de

dt
= u− ie (5)

di

dt
= k(u− i) (6)

In this case, the variable k should be smaller than one. If it were
not, then the inhibitor concentration would reach steady-state
faster than the excitation. Hence, the equation for the
excitation process would lead to i(t) ≃ u(t), which would
mean that e(t) would never move far from its equilibrium
value. However, if k is small, then e(t) ≃ u(t)/i(t). In this
case, an increase in u(t) leads to a large transient [21],
allowing the system to detect any change in the
concentration of the external signal.
Our simulations will assume that k = 1 in both (4) and (6)

and that the stimulus is u = 1. This makes the steady-state of
the excitation processes the same for both systems and also
makes sure that the two time scales are comparable.
2.3 Demonstrating perfect adaptation

The property of perfect adaption is usually defined in terms of
the response to a step change in the concentration of the
external signal. To show that both systems adapt perfectly
to constant changes in the concentration of the stimulus, we
assume that u(t)≡ u0≠ 0, a constant. In this case, if the
Fig. 2 Adaptation to step changes

Shown are the excitation and inhibition signals following an increase from u = 0.1 to
(c) The excitation response for the IFF in which the inhibitor acts as an enzyme in
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NFB system reaches steady state, then

ess =
2k

1+ �������������
1+ 4ke/u0

√ ≃ k

1+ ke/u0
≃ k

and iss = u0/k. Thus, the steady-state level of activity is constant
and, following a change to a different constant value of u, the
system eventually settles to the same level of e; see Fig. 2a.
Note that we require that kε≪ u0 hold for our assumption
that ε≪ i be valid. In particular, if u0 = 0, then the system
has a unique equilibrium (with ess = iss = 0) that differs from
that which arises from non-zero values of the external signal.
In the case of the IFF, the analysis is similar. If u0 ≠ 0

is constant, then at steady-state, iss = u0 and ess = u0/iss = u0/
u0 = 1. Thus, the steady-state level is also constant; see
Fig. 2b. In this motif, if the input signal is zero, then the
inhibitor drops to zero and (5) does not have a unique
equilibrium.
2.4 Uniqueness

Although the two sets of equations given above satisfy the
requirements of the two schemes of Fig. 1, they are by no
means the only way of implementing these systems
guaranteeing perfect adaptation. For example, the IFF
considered here ((5) and (6)) makes no distinction between
response regulator and excitation processes though these are
usually assumed to be distinct elements [11, 17, 21–23].
In fact, the process of information from external signal to E

and I could take a number of different paths. For example, in
the IFF, instead of a direct connection from U to E and I, a
number of intermediate steps can exist, which could lead to
1 (dashed), 3 (dotted) and 9 (solid) lines for the NFB (a) and IFF (b) motifs.
hibitor; see (7)
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the following differential equations

de1
dt

= u− e1

dej
dt

= e j−1 − ej, j = 2, . . . , n− 1

den
dt

= en−1 − imen

di1
dt

= k1(u− i1)

dij
dt

= kj(i j−1 − ij), j = 2, . . . , m

These changes do not affect the property of perfect
adaptation, but do affect the nature of any transients and
other features of the response, such as noise propagation.
Similar modifications can be made to the NFB motif.
We also note that, in both motifs, the inhibitor is implemented

as an enzyme that accelerates the down-regulation of the
excitation process. An alternative formulation is to assume that
the inhibition process acts as an enzyme inhibitor (either
competitive or allosteric). In this case, the effect of inhibition
appears as

de

dt
= u

e+ i
− e (7)

instead of (3) or (5). This change also has no effect on the
steady-state response of the system but does affect the
transient behaviour. In particular, in the original formulations,
the speed at which the transient response decays depends on
the magnitude of the change in the level of the stimulus, with
larger stimuli leading to greater peaks but faster decays
(Figs. 2a and b). This follows from the fact that in both (3)
and (5), the variable i acts as the rate constant that dictates the
response of the system. Since the steady-state level of i
depends on the concentration of the external signal, greater
signals lead to faster decays of the transient. However, if we
implement the inhibition as in (7), then the rate constant does
not depend on the level of the stimulus; see Fig. 2c.
Other changes are possible. For example, in the NFB or

IFF, the sign of the interconnections could be switched by
having U inhibit I and I positively regulate E. Once again,
these modifications do not change the steady-state
behaviour, but do affect transient behaviour. Faced with this
large number of possibilities, we will keep the analysis
tractable and restrict ourselves to the simplest formulations
((3)–(6)).

2.5 Adaptation to ramps and other signals

Having established that both systems achieve perfect
adaptation to steady (non-zero) signals, we now consider
other stimuli. An alternative way of viewing the adaptation
properties of the system is to consider the transfer function
between the stimulus and response after linearisation [24].
This approach assumes that changes in the stimulus and the

ensuing signals are sufficiently small that they do not deviate
much from the steady-state [24]. Thus, in the non-linear
differential equation, any second order or higher deviations
are ignored, resulting in a linear differential equation. In
particular, assume that the different signals are given by
changes away from their equilibria: u(t) = u0 + δu(t), e(t) =
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
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ess + δe(t) and i(t) = iss + δi(t). In both motifs, the linearised
equation for the excitation process is

dde
dt

= du − essdi − issde

Whereas the linearised inhibitor equation (assuming e = 0) for
the NFB is

ddi
dt

= de

for the IFF, the equation is already linear. In terms of the
deviation variables, it is

ddi
dt

= k(du − di)

These equations describe the temporal evolution of the
variables. A common technique for studying such linear
differential equations is by taking Laplace transforms of the
linearised variables [24]. In this case, the ratio between
the Laplace transforms of the response and stimulus is
termed the transfer function and is a measure of how the
system transforms dynamic stimuli. In this case, we obtain
the following two transfer functions

GNFB(s) =
s

s2 + (u0/k)s+ k
,

and

GIFF(s) =
s

(s+ u0)(s+ k)

where the variable ‘s’ is the Laplace-transform variable. It is
clear that both systems exhibit a ‘zero’ at zero – that is, the
variable s appears alone in the numerator of both transfer
functions and GNFB(0) =GIFF(0) = 0. This is a hallmark of
integral control mechanisms [9, 22, 25] and shows that the
system is performing temporal differentiation. Thus, perfect
adaptation can be viewed as differentiation of constant
perturbations or disturbances in the input which leads to
zero perturbations away from the steady-state output.
Moreover, the presence of a quadratic polynomial in the
denominator of both transfer functions shows that this
differentiation is accompanied by low-pass filtering. This
low-pass filtering is an important signal processing element
in a number of adaptive signalling systems [26–28].
Continuing with the linear view of the system, it is well

known that if a ramp signal is applied to transfer functions
with a zero at zero (such as GNFB and GIFF), the output will
eventually settle to a constant non-zero value that reflects the
rate of increase in the stimulus. This follows because the
derivative of a ramp is a step. To examine whether this is the
case for these two systems, we considered the response of
the two systems of non-linear differential equations to
linearly increasing concentration of: u(t) = αt, where the
variable α denotes the rate of increase. As shown in Fig. 3,
the two schemes led to considerably different responses. In
both cases, the systems settled to a constant level of activity
(concentration of e). However, in the NFB, the level differed
depending on the rate of growth of the stimulus. In the IFF,
this was the same for all rates considered.
To explain the origin of this discrepancy, we analyse the

different equations. We first consider the response of the
NFB motif. Suppose that the system settles onto a constant
271
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Fig. 3 Response of linearly growing stimuli for the NFB (a) and IFF (b) motifs

Initial concentration has u = 0.1 and, after t = 0, grows as αt where α = 1 (dashed), 3 (dotted) and 9 (solid) lines

www.ietdl.org
level of excitation, that is, e(t) = e0. From the equation for the
inhibitor

di

dt
= e0 − k

which, after integration, results in i(t) = (e0− k)t. Replacing
this into the equation for the excitation yields

de

dt
= at − (e0 − k)e0t

and this is zero, since e(t) is constant. Thus, solving for e0
yields

e0 =
1

2
(k +

���������
k2 + 4a

√
)

It follows that as the system settles to a constant, the level of
activity must depend on the input signal, implying that the
system does not adapt perfectly to ramp inputs, as seen
in Fig. 3a. If we consider input signals of higher order,
for example, u(t) = αt2, we can quickly see that e(t) cannot
settle into a constant value, but rather must grow
unboundedly. These results are consistent with the
transfer-function (linear) view of the system.
In contrast, the IFF system does adapt to ramps and higher

order signals [29]. To see this, note that the equation for the
inhibitor is linear, so that it can be easily solved. In the case
of the ramp

i(t) = a t − 1

k
(1− e−kt)

( )
= u(t)− a

k
(1− e−kt)

This can be replaced into the equation for e(t) to obtain a
general solution. However, as this equation is also linear
(with time-varying coefficients) and we are only interested
in the long-term behaviour, the equation for e(t) simplifies to

de

dt
≃ s(1− e) (8)

for large t and this has steady-state solution with e = 1 – the
same level of activity obtained in response to constant
stimuli! The analysis can be carried out for more complex
signals. In particular, if the input is given by u(t) = αtn,
then, on long time-scales, i(t)≃u(t) and (8) still holds.
272
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There is another way of understanding why the IFF but not
the NFB adapts to non-constant signals without explicitly
solving the equations. In the IFF, excitation approaches
the ratio of the external stimulus over the inhibition, which
itself approaches the stimulus; that is, e(t) ≃ u(t)i(t) and
i(t) ≃ u(t). The linear nature of the inhibition equation
guarantees that the latter will hold for signals that grow.
Hence e(t) ≃ ‘constant’. The NFB inhibitor equation does
not have this flexibility.
The fact that the transfer function GIFF does not accurately

predict the response of this motif to ramp inputs should not be
surprising as the linearlisation is carried out about a constant
operating point – an assumption that is clearly violated with
these stimuli.
2.6 Response to the removal of signal

We next seek to determine what happens to the systems if the
stimulus is removed – does the system de-adapt? That is, does
the system return to the same steady-state value irrespective of
the starting point?
We assume that, at time t = 0, the systems are at an adapted

state assuming a constant level u0. Thus, the NFB has e(0) = k
and i(0) = u0/k and the IFFL has e(0) = 1 and i(0) = u0. At this
point in time, the stimulus is removed, so that u(t) = 0 for
t > 0. Simulations of the two motifs show quite similar
responses. In both schemes, the inhibitor decreases from its
steady-state value; Fig. 4. In the NFB, this decrease is
approximately linear, at least while i≫ e. In the IFF, the
decay is exponential. In both systems the excitation appears
to reach zero steady state when the initial condition had
large inhibitor concentration (u0 = 3 or 9), but appears to
plateau when the original stimulus was small (u0 = 1).
To explain this behaviour, we consider the equation for the

excitation in the absence of stimulus

de

dt
= −ei, e(0) = k

Clearly, the only possible equilibria have e(t) = 0 and/or i(t) = 0.
Consider first the IFF motif. In this case, the inhibitor
concentration obeys the differential equation

di

dt
= −ki, i(0) = u0

which has the solution i(t) = u0exp(−kt). Thus, the excitation
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
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Fig. 4 De-adaptation following complete removal of the stimulus

Initial condition assumes that the system was at steady state for an external concentration u = 1 (dashed), 3 (dotted) and 9 (solid) lines for both the NFB (a) and IFF
(b) motifs
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concentration follows

de

dt
= −u0 exp(−kt)e, e(0) = u0

whose solution is

e(t) = u0 exp
u0
k
(exp(−kt)−1)

( )
Note that, as t increases, the response approaches ess = u0 exp
(−u0/k), thus, the system does not de-adapt perfectly after
complete removal of the signal. Rather, its steady-state
value is a biphasic function of u0 peaking when u0 = k.
For the NFB, as i(t) the assumption i(t)≫ e will eventually

be violated. For this reason, we no longer assume that e≪ i
and work with a non-zero e in (4). The presence of e≠ 0
ensures that, if i(t) approaches zero, then the right-hand
term goes to zero. Moreover, if e(t) approaches zero, then
i(t) cannot cross zero. In fact, it can be shown analytically
that e(t) does go to zero; see Appendix 2. In particular, this
analysis shows that the system settles to a unique
equilibrium with ess = iss = 0 which does not depend on the
starting point. However, because the inhibitor concentration
acts as the rate constant for decay of e(t), this decay can be
quite slow. In our simulations, the concentrations of e(t)
and i(t) were approximately 0.15 and 10−4, respectively,
after 10,000 s. Thus, though the system decays to zero, the
vanishingly slow rate at which this decay takes place makes
it impractical for distinguishing between the two motifs.
We now consider the situation in which, following initial

stimulation, the system is not allowed to reach steady state
before the stimulus is removed. In this case, the stimulus can
be seen as a pulse [30]. Here we consider two possibilities.
In the first, the system starts and ends at a small
concentration u0 = 0.1 and a pulse of size u1 = 1 is applied
for varying length before returning the stimulus to u0; see
Figs. 5a and c. The second case assumes that u0 = 0; see
Figs. 5b and d. In both systems, the u0 = 0.1 stimulus ensures
that the systems return to steady state. Interesting, the NFB
shows oscillatory behaviour in its return to the prestimulus
level of activity. In contrast, the recovery of the IFF is
monotonic. In both systems, but particularly for the IFF, the
recovery of the system to longer pulses is slower. This can
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
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be explained by the higher level of inhibition reached in both
systems following longer stimulation.
The appearance of oscillatory behaviour in the pulse

response of the NFB motif, but not in IFF, can be explained
by the form of the denominators of the two transfer functions
given above. In GNFB, the denominator will have roots that
are complex when u0 is small, which is the case when the
stimulus is removed. The complex roots lead to oscillatory
behaviour [25]. In GIFF, both roots are real regardless of the
value of u0, and this prevents oscillatory behaviour.
When considering the complete removal of the stimulus

(u0 = 0) following the pulse, we see that neither system
appears to return to the starting point (although, as
mentioned above, we would expect that the NFB would
eventually do so). In both cases, longer stimuli lead to
greater recovery towards the initial point. This can be
explained by the lower level of accumulation of the inhibitor:
short pulses lead to low accumulation of i, which means that
the rate constant for e is smaller and hence recovery is slower.

2.7 Effects of stochastic signalling

In practice, deterministic models such as those considered here
are adequate for describing chemical reactions in which the
number of interacting molecules and the reaction volume is
large. In other situation, stochastic models are needed [31].
There are a number of ways of describing such systems.
Here we use the Langevin approach [32, 33]. In this case, the
deterministic equations above can be replaced by

de

dt
= u− ei+

���������
(u+ ei)

√
ne(t)

di

dt
= e− k +

��������
(e+ k)

√
ni(t)

for the NFB and, for the IFF

de

dt
= u− ei+

���������
(u+ ei)

√
ne(t)

di

dt
= k(u− i)+

���������
k(u+ i)

√
ni(t)
273
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Fig. 5 Pulse responses

In the left column, the stimulus goes from u = 0.1, changes to u = 1 at time 0 and returns to 0.1 after T = 1 (dashed, blue), 2 (dotted, green) and 4 (solid, red)
seconds. The right column assumes that the ‘low’ signals are at u = 0. Panels a and b use the NFB motif; panels c and d use the IFF motif

www.ietdl.org
We see that the first terms in the right-hand side of these
equations are the same as in the deterministic equations. The
functions ne(t) and ni(t) represent independent, zero-mean
Gaussian white noise processes. Thus, then square root terms
in front of these signals dictate the variance in the
fluctuations around the mean (which are given by the
solutions of the deterministic equations.)
We carried out a series of stochastic simulations of the step

responses for both systems; Fig. 6. For simulations in which
the size of the signal change was small, the mean level of the
response matched that of the deterministic equations, showing
perfect adaptation. The standard deviation was in the order of
15–20%. In these cases the two systems behaved quite
similarly. However, as the size of the step increased, the
size of the fluctuations increased. This was also true of the
mean level of signal for sufficiently large stimuli (u0 > 20,
not shown). These increases were more accute in
simulations of the IFF motif than those of the NFB.
Moreover, in the IFF, the excitation process appeared to
undergo a series of fast oscillations. These may represent
stochastic resonances, a frequently observed behaviour of
non-linear stochastic systems [34].
Analysis of the equations suggests a possible reason for the

different behaviours. In the NFB, the variance in the inhibitor
equation depends on e + k = k + k = 2k which is independent
of the level of the external signal. In the IFF, however, the
274
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variance depends on k(u + i) = k(u + u) = 2ku which does
depend on the level of the external signal. When u = 1, the
difference is not observed. However, as u is increased, the
difference between the two motifs becomes more significant.

2.8 Response to spatially graded signals

Finally, we assume that two motifs are part of a spatial sensing
mechanism. This is motivated by models used to describe the
chemotactic signalling mechanism of eukaryotic cells [21, 35,
36]. Stimulation by spatially uniform signal triggers a transient
response before the systems setttle to their homogeneous
steady-state behaviour. This adaptation behaviour is identical
to that described above. However, application of a spatially
graded signal eventually leads to a persistent signal with
higher activity facing the side of the gradient [35, 37].
To achieve this behaviour, a number of local-excitation,

global-inhibition (LEGI) models have been proposed based
on the IFF framework [21, 36, 38]. The idea is that the
excitation process is local, and obeys the same equation as
above, but indexed by the spatial dimension, which we
assume to be θ∈ [−pi, π) in a periodic, one-dimensional
model of the environment

∂e

∂t
= u− ei
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
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Fig. 6 Stochastic response to step changes

In the left column, the stimulus goes from u = 0.1, changes to u0 = 1 or u0 = 9 at time 0. The time traces show individual responses from 20 simulations for each
case. The bar graph shows the mean level and standard deviations at steady state (t = 20 s) for 10,000 simulations at various signalling levels. The equations were
solved assuming a noise variance of σ2 = 0.01 with a step size of 0.2 s using the Euler-Maruyama algorithm [33]
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The term ‘local’ refers to the fact that the excitation does not
diffuse and hence its steady-state value reflects the local level
of the external signal. In contrast, the inhibitor is global, by
which we mean that it is free to diffuse in the enviroment
with diffusion coefficient D

∂i

∂t
= u− i+ D

∂2i

∂u2

The ‘global’ designation assume that diffusion is sufficiently
large that, at steady-state, the inhibitor concentration does not
depend on the angle θ. In practice, both molecules can
diffuse. All that is needed is that the dispersion of the
inhibitor is greater than that of the excitation. It is also
worth pointing out the mechanism does not depend on the
spatial dimension or particular boundary assumptions [39].
For simplicity, we assume periodic boundary conditions.
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
doi: 10.1049/iet-syb.2014.0026
Suppose that the external gradient satisfies a simple
sinusoidal relationship

u(u) = u0 + u1 cos u, −p ≤ u ≤ p

where u0 > u1 > 0 to ensure that the concentration is positive
everywhere. As shown previously [21, 39], the steady-state
behaviour can be obtained by solving the steady-state
diffusion equation using a Fourier series decomposition of
the inhibitor. In particular, it has only zeroth and first
cosine modes

iss(u) = u0 +
u1

1+ D
cosu
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At steady-state

ess(u) =
u(u)

iss(u)
= u0 + u1 cos u

u0 + (u1/(1+ D)) cos u

A truly global inhibitor (D→∞) leads to a spatially invariant
inhibition signal iss = u0 and response

ess(u) = 1+ u1
u0

cosu

Note how the response depends on the ‘ratio’ of local
signalling over mean level of signal. This fact can be used
to test for the presence of a LEGI mechanism. In particular,
if the two components of the gradient (u0 and u1) are
altered independently, the model predicts that the response
should depend on the ratio between these two variables.
This experiment was carried out by measuring the
chemoattractant-induced response of D. discoideum cells
and the results agreed with the LEGI prediction [37].
We next considered the possible use of the NFB motif as a

basis for a LEGI mechanism. In particular, we assume that the
NFB scheme has a spatial profile mimicking that above

∂e

∂t
= u− ei (9)

∂i

∂t
= e− k + D

∂2I

∂u2
(10)

We would expect that, if i is truly global, the divergence will
be zero in which case e would track k. This would make the
steady-state values of both e and i spatially homogeneous,
which would make it impossible to satisfy the first
equation. However, as shown in Appendix 3, we can show
that both ess(θ) and iss(θ) follow the external gradient, but
that the dependence of ess is greater than that of iss(θ)
leading to a persistent signal facing the gradient.
To contrast the spatial behaviour of the two motifs, we

simulated the systems, as shown in Fig. 7. In both systems
the concentration of the excitation and inhibition processes
formed gradients that point in the direction of the external
gradient. Moreover, the gradient sensing mechanism
improved as the diffusion coefficient increased and the
concentration of the inhibitor became spatially homogeneous.

3 Discussion

A common refrain heard by theoretical biologists from their
experimental brethren is: ‘how do I test your model?’ In the
case of systems achieving adaptation, where two different
classes of systems appear to achieve the same goal, this
presents a particularly challenging problem. However, as
shown here, the systems’ responses to other stimuli can
help to differentiate between the two classes of systems and
also among different manifestations of the two networks.
The response of the two classes of systems to step changes

of different magnitude led to similar results, in which the
height of the transient was largely determined by the size of
the stimulus. As such, experiments by which the magnitude
of the stimulus is changed would not help to discriminate
between the two systems. However, these experiments can
help to differentiate between implementations of the
networks that differ as to how the inhibitor acts; compare
Eq. 2 b,c. Experimenally, this fact was used to elucidate the
276
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nature of the chemotactic signalling network of
D. discoideum cells. Takeda et al. stimulated D. discoideum
cells using varying chemoattractant concentrations and
observed that the rate of decay increased with the
concentration of chemoattractant [40]. In doing so, they
concluded that the form of (3) rather than (7) more closely
matched their experimental results.
The contrasting behaviours of the two motifs when

responding to ramp inputs could be used to differentiate
between the two motifs [18]. Such experiments have been
carried out for the chemotactic responses of bacteria and
amoebae. In particular, whereas E. coli was found not to
adapt to ramps [41, 42], D. discoideum cells do [43]. These
experiments suggest that E. coli uses a signalling
mechanism based on the NFB motif to adapt (as previously
postulated [10]), but D. discoideum relies on an IFF
mechanism (as suggested previously [21, 35, 40]). It should
be noted that, in the case of E. coli, the ramps are not
linearly increasing as considered here, but exponentially
increasing so as to compensate for the non-linear effect of
receptor signalling [28].
Biologically, the ability to distinguish between ramps of

different rates would be advantageous to E. coli cells, which
rely on a temporal sensing mechanism to guide their
movement. These cells require the ability to discern whether
the concentration of chemoattractant that they are
encountering is increasing or decreasing and, if so, by how
much. Thus, temporal differentiation affords them a measure
of the temporal gradient and the adaptation observed in the
non-physiological conditions of step changes is but a
consequence of this differentiation. Were they to rely on an
IFF mechanism to sense chemoattractants, the cells would
not be able to distinguish between chemoattractant gradients
of varying strength, reducing the effectiveness of their
chemotactic ability. In contrast, D. discoideum cells do not
rely on a temporal sensing, but rather use adaptation to adjust
the sensitivity of their spatial sensing mechanism so that the
response depends on the relative, not absolute gradient [37].
Thus, the ability to discern among ramps of varying
steepness is not particularly advantageous to these cells.
The stochastic behaviour of both systems points to a

potential problem in studying adaptive systems: in practice,
the adaptive behaviour is seen only in the mean signalling
level. This is especially important if the number of
signalling molecules is small so that large relative variances
away from the mean are to be expected. Moreover, if the
adaptive mechanism feeds into a non-linear system that may
include thresholds [8, 21, 43–45], the greater variance could
lead to higher probability of crossing the threshold, causing
the overall response to depend on the level of stimulus. As
an example, the adaptation mechanism in D. discoideum
and neutrophils is believed to signal to an excitable network
which eventually triggers actin polymerisation [8, 44, 46,
47]. Our analysis suggests that, as the concentration of the
external signal increases, the mean level of response will
adapt, but fluctuations will rise. This increase would lead to
more frequent firings of the excitable network resulting in
more actin polymerisation and hence greater motility. This
klinokinesis, or increase in random migration in response to
increases in stimulus intensity has been reported in
neutrophils and D. discoideum cells [48, 49].
As noted above, within the two motif classes, there is no

unique system representation and that certain aspects of the
response depend on the particular choice made. It is worth
asking whether our conclusions would hold if we consider
other forms of the IFF and NFB motifs. We expect that
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
doi: 10.1049/iet-syb.2014.0026



Fig. 7 Response to graded signals

Stimulus, initially at u = 1, changed to u = 1 + 0.1cos(θ) at time t = 0. Shown are the responses at θ = 0 (solid line) and θ = π (dotted line). The different curves
represent the responses for varying diffusion coefficients, from D = 100, 200, 400, 800 to 1600. The arrow points towards the simulations with increasing
diffusion coefficient. The panels on the right show the steady-state concentration across θ = [−π, π). To simulate the spatial component, the system was
spatially discretised using 90 grid points
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steady-state responses would not show much difference. Thus,
other NFBmodels would still not adapt to ramp inputs, but IFF
models would. However, properties related to the transient
behaviour – including the noise response – would be greatly
influenced by the particular implementation of the motif.
One such property is fold-change detection (FCD), in which
the complete response (transient and steady-state) depends
only on the relative rather than absolute change in the
stimulus concentration. There are examples of NFB and IFF
circuits that achieve FCD, and others that do not [50–52].
Moreover, the difference can be as subtle as changing the
nature of the inhibition . For example, the IFF described by
(5) does not achieve FCD, but when modified to (7), does [51].
In this paper, we have focused on changes that can be

effected through the external stimulus. However, powerful
new experimental techniques are being developed that can
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
doi: 10.1049/iet-syb.2014.0026
alter the systems components directly can also shed some
light [19]. For example, changing the feedback component
directly would affect the NFB, but not the IFF system. We
also not that, in interpreting these results, it is important to
understand that the particular biosensor used may not
properly represent the system whose properties we wish to
investigate. For example, in D. discoideum, chemoattractant
receptor signalling is mediated through a G-protein coupled
receptor, which shows no sign of adaptation [53]. The first
element downstream of the G-proteins that shows an
adaptive behaviour appears to be Ras [40]. However, it is
also known that Ras takes part in the excitable system, with
non-linear dynamics including all-or-nothing responses and
a refractory period [44, 46, 47]. Thus, equating the response
of Ras with that of the adaptive network may lead to
incorrect interpretations about this system.
277
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5 Appendix

5.1 Appendix 1: Deriving the equations describing
both motifs

5.1.1 NFB motif: We begin by performing simple
normalizations. Our starting point is the enzymatic
equations that assume Michaelis–Menten kinetics. We first
define the total amount of enzymes, and variables ê and ı̂
that describe the fraction of total enzymes that are in the
active state

ET = E(t)+ Ew(t), IT = I(t)+ Iw(t)

ê = Ew/ET , î = Iw/IT

Second, we normalise each of the Michaelis–Menten
constants relative to their respective enzyme concentrations

km1
= KM1

/ET , km2
= KM2

/ET

km3
= KM3

/IT , km4
= KM4

/IT

Note that since the constants have dimensions of
concentration, these new variables are all non-dimensional.
Third, we normalise the various enzymatic rates (K2, K3

and K4)

k2 = K2IT/ET , k3 = K3ET/IT , k4 = K4/IT

Finally, we normalise the stimulus concentration:
û = K1U/ET .
Making these substitutions in the differential equations for

∑NFB, leads to the following non-dimensional equations

dê

dt
= û(1− ê)

km1
+ 1− ê

− k2 ı̂ê

km2
+ ê

dı̂

dt
= k3ê(1− ı̂)

km3
+ 1− ı̂

− k4 ı̂

km4
+ ı̂

We now look for conditions in which perfect adaptation is
achieved – that is, when the steady-state of ê is independent
of the level of the external signal. This can be
accomplished when the two reactions regulating the
inhibitor are near saturation. That is, km3

≪ 1− ı̂ and
km4

≪ ı̂. In this case

dı̂

dt
≃ k3ê− k4

which guarantees that, at steady-state, êss = k4/k3, a constant.
Note that in this case

ı̂ss = û× (1− êss )

km1
+ 1− êss

× km2
+ êss

k2 êss
/ û

That is, the steady-state level of the inhibitor is proportional to
the external signal. It is important to note that if the saturation
assumptions are violated, then perfect adaptation does not
hold. In particular, if the external signal is zero, then ı̂ = 0
in which case the assumption is violated. In what follows,
we also assume that the reactions regulating the excitation
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
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are both linear

km1
≫ 1− ess, and km2

≫ ess

These assumptions are not necessary for achieving perfect
adapation, but they simplify the analysis below.
We carry out one last simplification. If we define

e = k2k3
km2

ê, i = k2
km2

ı̂, u = k2k3
km1

km2

û

and k = k2k4/km2
, then

de

dt
= u− ie

di

dt
= e− k

We use this formulation in the main text.
5.1.2 IFF motif: Proceeding as above, we write

dê

dt
= û(1− ê)

km1
+ 1− ê

− k2 ı̂ê

km2
+ ê

dı̂

dt
= k ′3û(1− ı̂)

km3
+ 1− ı̂

− k4 ı̂

km4
+ ı̂

where k ′3 = k3/K1. As above, we make some assumptions that
guarantee perfect adapation. Assume that the forward
reactions are both at saturation: km1

≪ 1− ê and
km3

≪ 1− ı̂. In contrast, the reverse reactions are both
linear: km2

≫ ê and km4
≫ ı̂ leading to

dê

dt
≃ û− k2

km2

ı̂ê

di

dt
≃ k ′3û−

k4
km4

ı̂

At steady state

êss =
km2

k2
× û

ı̂ss
, and ı̂ss =

k ′3km4

k4
û

which leads to

êss =
k4km2

k2k
′
3km4

once again showing that the steady-state value is independent
of the level of the external signal. As above, note that if the
external signal is zero, the assumptions will not be satisfied.
In particular, ı̂ss = 0, but there is no unique equilibrium for êss.
We can simplify the system by defining

e = k2k
′
3km1

km4

km2
km3

ê, i = k2
km2

ı̂, u = k2k
′
3km4

km2
km3

û
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and k = k4/km4

; then

de

dt
= u− ie

di

dt
= k(u− i)

We use this formulation of the IFF in the analysis.

5.2 Appendix 2: Stability analysis of the NFB
system in the absence of stimuli

To show that that NFB system reaches steady-state in the
absence of an external stimulus we use LaSalle’s invariance
principle [54]. We define the function V = (1/2)e2. Its
derivative along the differential equations is given by

dV

dt
= e

de

dt
= −e2i ≤ 0

since e(t)≥ 0 and i(t)≥ 0. If V̇ ; 0, then either e≡ 0 or i≡ 0.
If the latter, then di/dt≡ 0 in which case e(t)≡ 0 as required.

5.3 Appendix 3: Derivation of the LEGI response of
the NFB motif

To carry out the analysis, we let the steady-state
concentrations of the excitation and inhibition processes be
given by

ess(u) = e0 +
∑
n≥1

en cos (nu)+ ên sin (nu)

and

iss(u) = i0 +
∑
n≥1

in cos (nu)+ ı̂n sin (nu)

respectively. At steady-state, (10) simplifies to

k = e0 +
∑
n≥1

en cos (nu)+ ên sin (nu)

( )

− D
∑
n≥1

n2in cos (nu)+ n2 ı̂n sin (nu)

( )

Because the cosine and sine terms are orthogonal, if follows
that e0 = k, en =Dn2in and ên = Dn2 ı̂n, for n≥ 1. Note that
this means that the coefficients of the inhibitor must decay
at least n2 times faster than those of the excitation. We can
now solve for these coefficients using (9), evaluated at
steady state. In particular

u0 + u1 cos u = ess(u)iss(u)

= e0 +
∑
n≥1

en cos (nu)+ ên sin (nu)

( )

× i0 +
∑
n≥1

in cos (nu)+ ı̂n sin (nu)

( )

In general, an analytic solution of this equation is impractical.
However, we take advantage of the fact that the terms are
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decreasing rapidly. Using the identities

cos2 u = 1

2
(1+ cos 2u)

sin2 u = 1

2
(1− cos 2u)

sin u cos u = 1

2
sin 2u

and dropping higher order terms leads to the following

u0 + u1 cos u ≃ e0i0 +
1

2
[e1i1 + ê1 ı̂1 ]

+ [e0i1 + e1i0] cos u+ [e0 ı̂1 + ê1 i0] sin u

= ki0 +
D

2
[i21 + ı̂21 ]+ [ki1 + Di0i1] cos u+ [k ı̂1 +Di0 ı̂1 ] sin

From orthogonality of the sinusoidal terms, we have three
(non-linear) equations in three unknowns

u0 = ki0 +
D

2
i21 + ı̂21
[ ]

(11)

u1 = ki1 + Di0i1 (12)

0 = k ı̂1 +Di0 ı̂1 (13)

Note that the last equation can be rewritten as

(k + Di0) ı̂1 = 0

from which it follows that either k +Di0 = 0 or ı̂1 = 0. If the
former is true then, by (12)

u1 = (k + Di0)i1

is impossible. Thus, ı̂1 = 0 and we are left with two
equations, which we write in terms of e1 and i0

u0 = ki0 +
1

2D
e21

u1 =
k

D
e1 + i0e1

Isolating i0 in the equations and equating the two expressions
leads to the following equation for e1

e31 − 2(k2 + Du0)e1 + 2Dku1 = 0 (14)

Equation (14) is a cubic equation. In general, the number of
real solutions is dictated by the discriminant

D = 32(k2 + Du0)
3 − 27(2Dku1)

2

If Δ is less than zero, then there is only one real solution for
(14) but this is negative by the law of Descartes. When Δ > 0,
there are three real roots, of which one is negative and two
positive. Note that this imposes limits on the size of u1
relative to u0 or on the size of D relative to k. In particular,
if u1 = 0, we obtain three solutions. The first, e1 = 0 matches
our spatially homogeneous case. Of the other two, one is
negative, and hence not physical. The other is positive and
equals e1 =

��������������
2(k2 + Du0)

√
. However, for i0 > 0 to hold we
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
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require that

e21 , 2Du0

which is violated by this second positive equation. Thus, only
one solution is physically valid. Similarly, in the limit
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 268–281
doi: 10.1049/iet-syb.2014.0026
D→∞, the cubic equation simplifies to the linear case, and

e1 = k
u1
u0

implying that the system reflects the local/global ratio of the
spatially graded stimulus.
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