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Abstract: Hepatitis C blood born virus is a major cause of liver disease that more than three per cent of people in the world is
dealing with, and the spread of hepatitis C virus (HCV) infection in different populations is one of the most important issues in
epidemiology. In the present study, a new intelligent controller is developed and tested to control the hepatitis C infection in the
population which the authors refer to as an optimal adaptive neuro-fuzzy controller. To design the controller, some data is
required for training the employed adaptive neuro-fuzzy inference system (ANFIS) which is selected by the genetic algorithm.
Using this algorithm, the best control signal for each state condition is chosen in order to minimise an objective function. Then,
the prepared data is utilised to build and train the Takagi–Sugeno fuzzy structure of the ANFIS and this structure is used as the
controller. Simulation results show that there is a significant decrease in the number of acute-infected individuals by employing
the proposed control method in comparison with the case of no intervention. Moreover, the authors proposed method improves
the value of the objective function by 19% compared with the ordinary optimal control methods used previously for HCV
epidemic.

1Introduction
The hepatitis C virus (HCV) is the main cause of acute and chronic
hepatitis as an infectious liver disease, with the scientific name of
ribonucleic acid (RNA) and is becoming a major and growing
global health problem [1, 2]. Hepatitis C is neither like hepatitis A
nor B and first was recognised as a completely distinct disease
from other types of hepatitis [2, 3]. According to the World Health
Organisation statistics, about three per cent of the world's
population estimated nearly 180 million people have been infected
by HCV [1, 4]. Acute hepatitis C is hard to diagnose due to its lack
of symptoms [5].

The chronic stage of hepatitis C will appear if HCV RNA
persists in the blood at least six months after the acute infection
starts. HCV spontaneously recurred in only 15–25% of patients.
The HCV is not cleared in ∼75–85% of patients by 6 months, and
the disease progresses to the chronic stage. In individuals infected
by chronic HCV, about 10–15% within the first 20 years will
advance to cirrhosis [4]. Fatigue and jaundice are common
symptoms of HCV, but in most cases, it is asymptomatic and very
difficult to discover. Due to that, HCV epidemic is called ‘the silent
epidemic’ [6]. The chief source of HCV transmission is blood
transfusion. Contacts with insufficiently sterilised or unsterilised
equipment and needle-sharing among drug-users could be
mentioned as other ways of transmission for HCV. Some other
sources of HCV infections may be ear and body piercing, tattooing,
circumcision and other percutaneous procedures [3].

Although treatment of acute HCV infection plays an important
role in preventing the progression to chronic infection, many
surveys show that acute infection is very sensitive to treatment [4].
Moreover, although HCV exists in most parts of the world, it has
different rates of prevalence in different places. Some countries
located in Africa and Asia have the highest rate of prevalence.
China, whose citizens’ account for one-fifth of the world's
population, has a reported seroprevalence around three per cent [4].
Therefore to well control the HCV, it is necessary to know about
the epidemic conditions [2].

Vaccination is one of the most effective means of controlling
the disease. The immunity that keeps safe against infection cannot
be induced, so developing an effective HCV vaccine is very
challenging [4]. Despite these difficulties, seven genotypes and 67

subtypes of HCV have been found around the world [7] and
scientists are trying to produce a vaccine for controlling the disease
[8]. However, the current drug therapies are ineffective in
completely eradicating the disease, but treatment for hepatitis C
does exist [3] and rapid developments in therapeutic regimens
could make significant changes in the treatment of HCV infection
over the next few years [9].

The rest of this paper is organised as follows. Previous
researches are investigated in Section 2. In Section 3, the dynamic
model of the HCV epidemic is presented and all parameters and
variables are described. In Section 4, the optimal adaptive neuro-
fuzzy (OANF) controller is explained. In Sections 4.1 and 4.2, we
discuss the genetic algorithm (GA) and the optimum data selection
via GA. In Section 4.3, the adaptive neuro-fuzzy inference system
(ANFIS) structure and the learning methods are described, and the
controller design is explained in Section 4.4. Numerical
simulations are presented in Section 5, and the conclusive remarks
are stated in Section 6.

2Literature survey
Martcheva and Chavez [3] discussed a general susceptible, acute
infected and chronic infected (SIV) disease prevalence model with
the varying population. The authors model the effect of the chronic
infectious stage on the long-term dynamics of HCV in the
governing ordinary differential equation and demonstrate the
existence of a threshold as a criterion for stability analysis of the
disease. A compartmental model of the diseases is considered in
[10] to investigate the dynamic behaviour of a susceptible,
exposed, acute infected and chronic infected (SEIV) model with
acute and chronic stages. Yuana and Yang [6] proposed another
SEIV model for the transmission of HCV with acute and chronic
stages, with the difference that the disease-induced death rate was
removed from the model because of its low value. Also, since the
acute stage of the infection is short and often asymptomatic, there
is no possibility for treatment during this state. Zhang and Zhou [4]
considered a general form of the SEIV model for the spread of
HCV and investigated the analytical stability of its equilibria. This
model is used to predict the spread of HCV in China and its
validity is verified using yearly data between 2003 and 2010. Shi
and Cui [7] developed a mathematical system of HCV epidemic
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and analysed its stability. What makes this work distinct from the
previous literature is its realistic features such as partial immunity
and reinfection of HCV transmission. Shen et al. [2] proposed an
epidemiological model for the prevalence of HCV infection in
China including treatment and immunity. A threshold called
reproduction number R0 is derived from the theoretical analysis
which is a criterion that indicates whether the disease vanishes or
not. Furthermore, the global asymptomatic stability of the disease
equilibria has been proven.

A few studies have been done for the control of HCV epidemic.
Oare [11] considered a susceptible, acute infected, treated and
chronic infected (SITV) multipatch HCV which was a modified
and extended version of the HCV model presented in Yuan and
Yang [6] and included a treatment class, movement of susceptible,
infective, treated and chronic infected individuals between patches
and time-dependent strategies, to optimally control the disease.
Cost-effectiveness was also analysed to find the most efficient
control strategy. Zhang and Xu [9] investigated an epidemiological
model for hepatitis C. In this work, they considered screening and
treatment as two control inputs to the model that is determined by
an optimal control approach. To study the possible impacts of
treatment and public concern on the HCV, a model was formulated
with treatment and reduction of susceptibility due to publicity.
Okosun and Makinde [12] considered a susceptible, exposed, acute
infected, treated and chronic infected (SEITV) model for HCV
epidemic and screening rate, drug efficacy for acute and drug
efficacy for chronic stages as the control inputs. Pontryagin's
maximum principle was used to solve the optimal control problem
and constant control inputs were introduced for that purpose. Ainia
et al. [13] established a mathematical model for HCV by
considering infected immigrants and introduced a Lyapunov-based
analysis for the model. Stability analysis of disease free and
endemic equilibrium cases was done and sensitivity of model
parameters was investigated.

There exist another set of works that address the control of
epidemics other than HCV. An optimal control theory is used in
[14] to prevent the spread of the disease with different strategies
and study the effect of the available resources in the health system
on the spread and control of the dengue fever. Sharifi and Moradi
[15] developed a non-linear robust adaptive sliding mode control
that controls the influenza epidemic model with five compartment-
divided populations. The goal of this control strategy was to
decrease the number of susceptible and infected individuals in a
population dealing with influenza, in the presence of model
uncertainties.

In the present study, an intelligent controller for the HCV
epidemic is presented for the first time. The objective of this
control strategy is to decrease the number of exposed, acute-
infected and chronic-infected compartments with minimal control
inputs. Three control inputs including screening rate and two drug
efficacies for acute-infected and chronic-infected individuals are
considered for this purpose. Contributions of this study can be
summarised as follows:

i. Unlike the controller presented in [12] that suggests constant
extremum control inputs for the whole duration of the
treatment process, our method uses different control inputs
each day based on the initial conditions of different HCV
compartments at the beginning of that day.

ii. The constant control inputs (recommended in a previous study
[12]) are considered as some initial candidates in the GA-based
optimisation process in order to investigate the optimal control
inputs.

iii. The proposed intelligent controller is model-free and does not
require the exact dynamics of the HCV epidemic. Although the
mathematical model is used to obtain the HCV response, this
data could be obtained from the empirical data and without the
need for a model.

3HCV epidemiological model
To capture the dynamics of the HCV spread in a population, a
mathematical model is employed with five compartments,
susceptible individuals S(t), exposed individuals with hepatitis
symptoms E(t), individuals with acute infection I(t), individuals
undergoing treatment T(t) and individuals with chronic infection
V(t). Let N(t) denote the total population [12], as

N t = S t + E t + I t + T t + V t . (1)

The non-linear epidemiological model of HCV is given by the
following system of coupled differential equations [12]:

dS

dt
= 1 − 1 − u1 ∑

i = 1

3

δi λ + ρT + αV − Γ − μS,

dE

dt
= 1 − u1 δ1λ + Γ − ϵ + μ E,

dI

dt
= 1 − u1 δ2λ + ϵE − u2κ + μ I,

dT

dt
= u2π1κI + u3π2V − ρ + μ T ,

dV

dt
= 1 − u1 δ3λ + 1 − π1 u2κI − u3π2 + α + μ V ,

(2)

where Γ is defined as

Γ =
β1I + β2V + β3T S

N
. (3)

In (2), susceptible individuals (S) decrease by the rate of
(δ1 + δ2 + δ3)λ and join the exposed (E), acute-infected (I) and
chronic-infected (V) compartments with the rates of δ1λ, δ2λ and
δ3λ, respectively. Susceptible individuals will be infected by the
patients in I, V and T classes at rates of β1 = ϕ1η1, β2 = ϕ2η2 and
β3 = ϕ3η3, respectively, where ϕi is the effective contact rate, and ηi

is the transmission probability. It is reasonable that the acute stage
(I) is more infectious than the chronic stage (V) and the treated
individuals (T) have the lowest infectiousness, so it is assumed that
β1 > β2 > β3. Once infected, the individuals move into the exposed
class (E) and then progress to the acute stage (I) at a rate of ε. The
progression rate from the acute-infected (I) compartment to both
treated (T) and chronic-infected (V) compartments is denoted by ț.
µ is the death rate that decreases the population of classes. The
chronic stage (V) of the disease will appear if HCV RNA persists
in the blood for six months [4]. The rates of natural recovery from
chronic-infected population (V) to susceptible population (S) are α,
and for the case that there is no cure or natural recovery, the
disease will develop cirrhosis or liver cancer [1]. The treatment rate
from the treated population (T) to the susceptible population (S) is
ρ. The variables and parameters are described in Tables 1 and 2,
respectively. 

4Adaptive neuro-fuzzy controller optimised by
GA
4.1 Genetic algorithm

In the 1950s and 1960s, several computer scientists studied
evolutionary systems independently of the idea that evolution
could be used as an optimisation tool in engineering problems. The
main idea in these systems is to obtain a population of candidate
solutions in a given problem, using some operators inspired by
natural genetic variation and natural selection [16]. The GA was
invented by John Holland in the 1960s. The main goal of his work

Table 1 Variables of the HCV epidemiological model [12]
Variable Description
S(t) susceptible population
E(t) exposed population
I(t) acutely infected population
T(t) treated population
V(t) chronically infected population
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was not to design algorithms to solve specific problems, but rather
to formally study the adaptation phenomenon as it occurs in the
nature [17]. Natural selection is the process that organisms with
better adaption to their environment tend to survive and produce
more offspring which has been used as the basis of GA.

The GA starts by defining the optimisation variables, and the
cost function and ends by testing the convergence [18]. The main
steps in GA are as follows:

i. Create initial population randomly.
ii. Validate created population using the cost function and sort

them from the smallest to the largest values.
iii. Remove half of the population with the larger values and create

the appropriate population for the next steps.
iv. Select parents from the remaining population and create

offspring using a crossover method. In this method, coefficient
β is selected randomly and offspring are created as

Offspring1 = β ∗ Parent1 + 1 − β ∗ Parent2 , (4)

Offspring2 = 1 − β ∗ Parent1 + β ∗ Parent2 . (5)
v. Create a new appropriate population from the remaining

members and newly created offspring.
vi. Apply the mutation operator to the population members.
vii
.

Validate the prepared appropriate population and sort them
based on the cost function.

vii
i.

If the best member satisfies convergence criteria, the
optimisation process is finished, otherwise, go to Step iii.

4.2 Selection of optimum data

The control objective is to minimise the normalised number of the
exposed E /N , acute-infected I /N , and chronic-infected V /N
individuals using minimum control effort (u1, u2, and u3)

J = ∑
i = 1

n

∫
ti − 1

ti

C1
E

N

2

+ C2
I

N

2

+ C3
V

N

2

+ D1u1
2 + D2π1u2

2

+ D3π2u3
2

dt,
(6)

where ti − 1 is the initial time of the ith stage of the HCV treatment,
N is the total population and C1, C2, C3, D1, D2, and D3  are

weighting coefficients that specify the relative importance of the
terms.

To obtain optimum data needed to train the ANFIS, the GA
(described in Section 4.1) is utilised where three control signals u1,
u2, and u3 are defined as the GA variables and (6) is considered as
the GA cost function. The GA has been used for different values of
states, and the optimum values of control signals are collected to be
used as the input data for the ANFIS. The optimum control inputs
for some random initial conditions of the states and the time
duration of ti − t i − 1 = 1 day for each stage of treatment are
presented in Table 3. 

4.3 Adaptive neuro-fuzzy inference system

ANFIS was developed in the 1990s [19] and has two main parts:
neural network and fuzzy logic principles. Since the fuzzy logic
has the capability of approximating non-linear functions and the
neural network has the capability of learning, integrating these
tools creates a new method that can approximate a non-linear
function by learning from the input data.

4.3.1 ANFIS structure: To clarify the employed ANFIS structure,
let us consider a Takagi–Sugeno fuzzy inference system with two
inputs and one output. For this system, the ‘if–then’ rules are
presented as [20–22]

if x is A1 and y is B1 then f 1 = p1x + q1y + r1, (7)

if x is A2 and y is B2 then f 2 = p2x + q2y + r2, (8)

where A1, B1, A2, and B2 are membership functions considered to
make the ANFIS structure as shown in Fig. 1 [20]. 

Then, the output of the fuzzy inference system is defined as

f =
w1 f 1 + w2 f 2

w1 + w2
= w̄1 f 1 + w̄2 f 2 . (9)

A typical equivalent ANFIS architecture is shown in Fig. 2. 
Five different layers of this structure are explained as follows.

The membership values for inputs are determined in layer 1 based
on the selected type of membership function. The incoming signals
from the previous layer are multiplied and the firing strength of
each rule is calculated in layer 2. Then in layer 3, the normalised

Table 2 Parameters of the HCV epidemiological model [12]
Parameter Description
δ1 increase rate of exposed (E) immigrants
δ2 increase rate of acute-infected (I) immigrants
δ3 increase rate of chronic-infected (V) immigrants
λ recruitment rate
μ natural death rate
κ rate of progression from acute-infected (I) class to other classes
ϵ rate of progression to acute-infected (I) class from exposed (E) class
β1 transmission rate of acutely infected (I) population
β2 transmission rate of chronically infected (V) population
β3 transmission rate of treated (T) population
π1 rate of progression from acute- infected (I) population to treated (T) population
π2 rate of progression from acute- infected (I) to chronically infected (V) population
ϕ1 effective contact rate of individuals with acute HCV
ϕ2 effective contact rate of individuals with chronic HCV
ϕ3 the effective contact rate of individuals undergoing treatment but not cured yet
η1 transmission probability of individuals with acute HCV
η2 transmission probability of individuals with chronic HCV
η3 transmission probability of individuals undergoing treatment but not cured yet
ρ treatment rate
α natural recovery rate from chronic infection (V)
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firing strength of each rule w̄i  is computed. The contribution of
each rule in the model output is obtained in layer 4 based on
Takagi–Sugeno rules ( f i as presented in (7) and (8)). Finally, in
layer 5, the weighted global output of the system is calculated
using (9) [20].

4.3.2 ANFIS learning process: There are two kinds of
parameters (premise and consequent) in the ANFIS structure that
should be modified using a learning process. Premise parameters
are the coefficients of membership functions and their number
varies based on the considered type and number of membership
functions. Consequent parameters are coefficients of Takagi–
Sugeno rules that are presented in (7) and (8).

The hybrid learning method is used for the training process.
This method utilises two approaches, gradient descent and least
square. In the feed forward pass, the consequent parameters are
updated using the least square method. Then, in the backward pass,
the difference between the output data and the ANFIS output
(error) is used to update premise parameters using the gradient
descent method.

4.4 Control strategy

The data obtained from the GA is used as the input for ANFIS.
Then, the premise and consequent parameters are obtained from
the ANFIS training process. These parameters are then used to
build the Takagi–Sugeno fuzzy system. In the HCV
epidemiological dynamics, the state variables are the input and the
three optimal control signals are the output of the fuzzy system.
This system is utilised as the controller in this study for the HCV
treatment. It should be mentioned that a high number of inputs for
the ANFIS, drastically increases the number of parameters that
should be trained. To address this issue, only exposed (E) and acute
infected (I) compartments are considered as inputs of the ANFIS.
Fig. 3 illustrates a schematic diagram of the employed control
strategy in the present work. 

5Result and discussion
In this section, the proposed OANF control strategy is evaluated in
the HCV epidemic control in a population by performing some
simulations. Three optimal control signals obtained using the
ANFIS are implemented to minimise the proposed objective
function (J) based on (6). Parameter values of the HCV
epidemiological model and coefficients of the objective function
(6) are adjusted and listed in Tables 4 and 5, respectively. 

Table 3 Selected optimum data for some random initial conditions and the time duration of 1 day, used for learning the ANFIS
E I u1 u2 u3
90 101 0.166178 0.712268 0.221954
70 86 0.133792 0.688855 0.261314
118 160 0.255202 0.990851 0.559585
176 199 0.057779 0.750785 0.233882
156 172 0.077962 0.702811 0.227881
144 164 0.091694 0.764312 0.232717
71 86 0.160284 0.709423 0.252288
160 178 0.084513 0.084513 0.150912
85 100 0.153675 0.702929 0.241235
123 138 0.101123 0.750422 0.232497
95 107 0.144684 0.736067 0.239888

 

Fig. 1 Takagi–Sugeno fuzzy inference system [20]
 

Fig. 2 ANFIS architecture with five layers [21]
 

Fig. 3 Schematic diagram of the control strategy
 

Table 4 Values for parameters of the HCV epidemiological
model [7, 12]
Parameter Value (1/day)
δ1 0.02
δ2 0.01
δ3 0.9
λ 10
μ 0.00024
κ 0.6
ϵ 0.5
β1 0.5
β2 0.15
β3 0.05
π1 0.23
π2 1
ρ 0.13
α 0.3
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The screening rate (u1), drug efficacy in the acute-infected
compartment (u2), and drug efficacy in the chronic-infected
compartment (u3) are considered as the normalised control inputs
that should be in the range of [0, 1].

5.1 Results for the first initial condition

The initial conditions of different states are considered to be S = 
360, E = 200, I = 200, T = 40, and V = 210. The response of the
HCV epidemiological system during 120 days is shown in Fig. 4.
As seen, in the case of no control signal (u1 = u2 = u3 = 0), after a
time period a large number of individuals are infected and
transmitted to the acute-infected (I) compartment. In this case (no
control), the final values of state variables after 120 days are S = 
20, E = 20, I = 2085, T = 0, and V = 30. However, using the
proposed OANF control strategy, the final values of different states
after the period of 120 days become S = 1432, E = 140, I = 146, T = 
327, and V = 110, as observed in Fig. 4. Accordingly, the
populations of the susceptible (S) and treated (T) compartments
increase considerably in comparison with the case of no control
input. Moreover, the susceptible (S) and treated (T) populations are
higher than the exposed (E), acute-infected (I), and chronic-
infected (V) populations in the presence of OANF control strategy. 

Due to (1), the dynamics of the total population (N) is obtained
by summation of all compartments’ dynamics in (2) as

Ṅ = λ − μN, (10)

Accordingly, the change rate of the total population (N) depends on
the recruitment rate (Ȝ) and death rate (ȝ). In other words, an
increase of the recruitment rate and decrease of the death rate will
increase the total population variation Ṅ . Based on the considered
values for these two parameters (Ȝ and ȝ) in Table 4, total
population increases and reaches 2155 individuals from the initial
population of 1010 people. Due to this increase, the population of
all compartments (five state variables) is normalised with respect to
the instant total population (N(t)) and represented in Fig. 5 during
120 days of treatment. 

Initial normalised values of different states used in previous
results are S = 0.356, E = 0.198, I = 0.198, T = 0.040 and V = 0.208.
For the case of no control input, the normalised state variables
converge to these final values: S = 0.009, E = 0.009, I = 0.968, T = 0
and V = 0.014, as seen in Fig. 5. As mentioned previously, about
97% of the total population transmits to the acute-infected
compartment (I) after 120 days, in the absence of medical
intervention (control inputs). By employing the proposed OANF
controller, the final values of different HCV compartments are
obtained as S = 0.664, E = 0.065, I = 0.068, T = 0.152 and V = 
0.051. In this case, the population of inappropriate compartments
(E + I + V) has 61% of the total population (N) at the first day,
which decreases to 19% of the total population (N) after 120 days
of using this control strategy.

The screening rate (u1), drug efficacy in the acute-infected
compartment (u2), and drug efficacy in the chronic-infected
compartment (u3) as the control inputs are illustrated in Fig. 6.
Note that higher control inputs are implemented at the first days
because the normalised exposed (E/N), acute infected (I/N) and
chronic infected (V/N) populations are higher at the first days in

Table 5 Objective function coefficients
Parameter Value (1/day)
C1 100
C2 120
C3 110
D1 0.1
D2 0.5
D3 0.5
 

Fig. 4 State values in the presence and absence of the proposed OANF control strategy
(a) Exposed population, (b) Acute-infected population, (c) Treated population, (d) Chronic-infected population
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comparison with their values after 10 days of epidemic control.
Fig. 7 shows the value of the objective function (6) during 120
days of a process for the proposed OANF controller and a previous
optimal controller [12]. In that optimal control strategy [12],
constant control inputs are considered as u1 = 0, u2 = u3 = 1. 

At the first days of HCV treatment, the values of control inputs
obtained by the suggested OANF strategy (Fig. 6) are
approximately close to the ones (u1 = 0, u2 = u3 = 1) used in the
optimal strategy [12]. Accordingly, the value of the objective
function using the proposed OANF and optimal strategies are close
to each other in Fig. 7 at initial days. However, after a period of
time (about 10 days) that lower control rates are commanded by the
proposed OANF strategy (Fig. 6), the objective function value is
smaller for the OANF controller in comparison with the one for the
optimal controller. This means that the constant extremum control
inputs (u1 = 0, u2 = u3 = 1) are not required after the first period of
the HCV epidemic control (after 10 days). The time integral of the
objective function for the optimal control method is 2.11 × 102;
however, using the OANF control method this value decreases to
1.72 × 102. Therefore, one can conclude that the proposed OANF
control strategy intelligently obtained required time-varying
control inputs unlike the previous optimal controller [12] that
suggested constant inputs.

5.2 Results for some different parameters with new initial
conditions

Based on the sensitivity analysis [12], Ȝ and β1 have the highest
sensitivity in comparison with the other parameters. Thus, in order
to investigate the effectiveness of the proposed strategy, some new
values are considered for the state conditions and mentioned
parameters. Initial conditions for different compartments are S = 
420, E = 250, I = 300, T = 80 and V = 250. For the first case,
recruitment rate (Ȝ) is considered to be 15 which was 10 in the

previous simulations. Fig. 8 depicts the population of the acute-
infected compartment (I) during 60 days of treatment. The initial
population of 300 (0.23 of the total population) has reached 2055
(0.95 of total population) after 60 days in the absence of control
inputs. However, employing the proposed controller, the population
will become 146 (0.067 of the total population). 

For the second case, 50% increase is considered for the
recruitment rate (Ȝ) and the transmission rate of acutely infected
population β1 . Therefore, Ȝ is changed to 15 and β1 is changed to
0.7. The corresponding simulation results are presented in Fig. 9.
The initial population of 300 for acute-infected individuals (I)
reaches 2055 and 146 in the absence and presence of the proposed
strategy, respectively. 

Based on the previous results and discussions, it could be
concluded that the HCV epidemic model with different parameter
values which represent different societies could be controlled using
the proposed strategy. Moreover, this control method can be
employed for other diseases and epidemics.

5.3 Statistical analysis of methods

In this section, statistical analysis is presented to compare results
between the proposed methods with previous one [12]. In statistics,
one-way analysis of variance (ANOVA-1) is commonly used to
compare means of two or more levels. These levels correspond to
different groups or conditions [23].

In the analysis for this study, two methods (OANF and optimal
controller [12]) are considered as two groups and the cost function
(6) is supposed to be the dependent variable. Results of ANOVA-1
analysis are presented in Table 6. 

The d.f. is defined as degrees of freedom. Some of the squares
exhibit variability between groups and within groups [24]. F ratio
represents the variance between the groups divided by the variance
within the groups [23]. The last column of Table 6 represents the
significance value (sig.) which is the main parameter for analysis.

Fig. 5 Normalised values of four state variables (compartment populations) with and without OANF control strategy
(a) Normalised exposed population, (b) Normalised acute-infected population, (c) Normalised treated population, (d) Normalised chronic-infected population
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For the case that Sig. value is >0.05, there the null hypothesis will
be confirmed. On the other hand, if this value is ≤0.05, the null
hypothesis will be rejected and there is a significant difference
among the mean score on the dependent variable for different
groups [23].

The results of Table 6 show that the value of the Sig. which is
equal to 0.001 and is <0.05. So, it could be concluded that there is
a significant difference in the mean scores of the cost function (6)
between the two mentioned methods.

6Conclusion
An OANF controller was designed to control the HCV spread in a
population with different compartments. GA was employed to
obtain the optimal control inputs based on the values of the
objective function. Output results of GA were used as the training
data for the proposed ANFIS. The output of the ANFIS is a

Takagi–Sugeno fuzzy structure used as an intelligent controller for
the HCV epidemic. Numerical results of this control strategy
showed that the population of the acute-infected compartment
decreased from 20% of the total population to <7% during 120
days of the treatment. However, in the absence of control inputs,
the acute-infected population increased and reached 97% of the
total population at the end of 120 days. Moreover, using the
proposed strategy, the value of the objective function decreased
19% in comparison with a previous optimal control method by
utilising smaller control inputs. Statistical analysis (ANOVA-1)
shows that there is a significant difference between the results of
the proposed method and the previous one. In addition, results with
different values of model parameters illustrate that the proposed
method could be effective for different societies.

Fig. 6 Control inputs during 120 days of the HCV epidemic control using the OANF strategy
(a) Screening rate (u1), (b) Drug efficacy for acute-infected (u2), (c) Drug efficacy for chronic-infected (u3)

 

Fig. 7 Value of the objective function for 120 days by employing the
proposed OANF strategy and the previous optimal strategy [12]

 

Fig. 8 Population of the acute-infected compartment in the presence and
absence of the proposed OANF control strategy for Ȝ = 15 for 60 days
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Fig. 9 Population of the acute-infected compartment in the presence and absence of the proposed OANF control strategy for Ȝ = 15 and β1 = 0.7 for 150 days
 

Table 6 Result of ANOVA-1 analysis
Sum of squares d.f. Mean square F Sig.

between groups 7.815 1 7.815 10.357 0.001
within groups 223.355 296 0.755 — —
total 231.170 297 — — —
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