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Abstract: As a shortcut for drug development, drug repositioning draws more and more attention in pharmaceutical industry to
identify new indications for marketed drugs or drugs failed in late clinical trial phase. At the same time, the abundant high-
throughput data pushes the computationally repositioning drugs a hot topic in the area of systems biology. Here, the authors
propose a general framework for repositioning drug by incorporating various functional information. The framework starts with
the identification of differentially expressed gene sets under disease state and drug treatment. Then the disease and drug are
associated by the overlap of these two gene sets via biological function. The authors provide two strategies to assess the
functional overlap. In the first strategy, functional relevance are evaluated by leveraging genes’ lethality information to reveal
drug’s potential of curing diseases. In the second strategy, biological process perturbation profiles are identified by mapping
differentially expressed genes into pathways and gene ontology (GO) terms. Their associations are assessed and used to rank
drugs’ potential of curing diseases. The preliminary results on prostate cancer demonstrate that our new framework improves the
drug repositioning efficiency and various function information could complement each other. Importantly, the new framework
will enhance the biological interpretation and rationale of drug repositioning and provide insights into drug action mechanisms.
1 Introduction

The high incidence of complex diseases, such as cancer,
diabetes, calls for much more effective drugs. However, the
cost and time to develop a new drug increase annually and
the number of drugs approved by US Food and Drug
Administration (FDA) declined steadily [1]. One way to fill
in this gap is drug repositioning, which makes full use of
marketed drugs or drugs failed in late clinical trial phases to
explore their new indications. Since the safety profiles and
pharmacokinetics profiles of these drugs are generally
available [2], drug repositioning has the advantage to
reduce the costs and risks in early development stage [3],
which will shorten routes to approval for therapeutic
indications [3]. Given these advantages, drug repositioning
has been an important strategy for drug development.
Successful examples of drug repositioning include but not
limit to the indication of sildenafil for erecile dysfunction
and pulmonary hypertension, thalidomide for severe
erythema nodosum leprosum [3, 4].
Most of the above-mentioned successful examples were

occasionally discovered in clinical observation. The unclear
underlying molecular mechanisms hinder the repositioning
drugs in large scale. Fortunately, the rapidly accumulated
high-throughput data for drugs greatly facilitate cellular
systems modelling and molecular mechanisms uncovering.
Thus, many computational approaches have been proposed
to reposition drugs against various diseases from the
perspective of systems biology [5].
Based on the strategies utilised, these methods mainly fall

into two categories. The first category transfers the known
indications of two drugs having a sufficient high similarity
measured from various data sources. For example the
overlap or sequence similarity among drugs’ targets
(primary target plus off-target) was used for transferring
indication among drugs [6–13]. Besides, the similarity
between drugs’ side effect profiles was utilised for
transferring indications among drugs [14]. Different from
the above-mentioned methods, Jin et al. [15] proposed a
network-based method to facilitate drug repositioning for
cancer therapy by leveraging transcriptional data. In their
work, the similarity between drugs’ strength of perturbing
the active network underlying disease state was measured.
Those measures were further exploited to guide indication
transferring among drugs. With many types of drug related
data available, integrating drug–drug similarities and
disease–disease similarities are in pressing need. For
example, various similarities between drugs and diseases
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Fig. 1 Flowchart of our framework

Star denotes EG and pi denotes pathway or a set of biological process
ontologies
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were mined and integrated to infer novel drug–disease
associations indirectly [16].
The aim of drug treatment is to restore the cellular disease

state to normal state. To this end, the methods in the second
category aim to measure the degree of reverse for predicting
new drug–disease associations. Therefore many efforts
started to measure the degree of reverse. In Lamb et al.’s
work, metric based on gene set enrichment analysis was
employed to measure the anti-correlation of drug and
disease at transcriptional level [17]. In this framework,
different modified versions of gene set enrichment analysis
were used to measure the association between the
transcriptional expression profiles under drug administration
and disease state [3, 18]. In Hu and Agarwal’s work, simple
Pearson correlation coefficient was employed to quantify
the anti-correlation between the gene expression signatures
[19] under two conditions and the overlap between opposite
regulated gene sets was quantified as the anti-correlation
[20]. Besides, the relevance of molecular basis or molecular
activities of drugs and diseases were identified and used for
measuring the relevance of biological processes perturbed
in these two conditions [5, 21–23].
Taken together, similarities in molecular basis or molecular

activities are used as the surrogate of molecular mechanisms
relevance underlying disease development and drug
treatment. However, molecular activities only indicate the
main players in a specific biological process related to drug
treatment and disease. In other words, this information
alone lacks the biological interpretation. Fortunately, gene
ontology and pathway provide higher level functional
information and will greatly enhance the interpretability to
associate drug and disease. It is believed that interplay
between disease state and drug perturbation could be
inferred more accurately by combining functional
information. As a result, the drug–disease association
strength could be assessed more accurately. With this in
mind, we propose a general framework for repositioning
drugs by leveraging cellular function information. In
addition to various functional information, the molecular
activity profile at transcriptional level is integrated as well.
The preliminary results demonstrate that various functional
information could complement each other and are effective
in repositioning drugs against prostate cancer.

2 Methods and materials

2.1 Materials

In this work, the expression data of prostate cancer was
downloaded from gene expression omnibus database [24]
with accession number GDS1439. This dataset comprises of
six benign samples and 13 disease samples. Subsequently,
GDS1439 in soft format were re-annotated with latest
corresponding general public license (GPL) annotation file
downloaded from AILUN’s website [25]. We averaged the
expression values when multiple microarray probes mapped
to the same Entrez GeneID.
Expression profiles of 1741 gene from human PC3 cell

lines treated with drugs were obtained. More specifically,
we fetched the treatment/control expression ratio matrix
from Connectivity Map 02 (CMAP) [17]. Then, we
annotated each profile with latest corresponding GPL
annotation file downloaded from AILUN’s website [25].
The geometric mean of ratios for multiple probes was
designated as the ratio of that Entrez Gene. This two
annotated matrices were merged into a new matrix named
IET Syst. Biol., 2013, Vol. 7, Iss. 5, pp. 188–194
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PC ratio matrix by removing absent genes. We retained
those common genes when the disease expression dataset
and drug induced expression profiles were from different
microarray platforms.
In this work, the human essential gene (EG) list was

obtained from DEG database [26]. Subsequently, symbols
of EGs were transformed into Entrez GeneID by R package
named biomaRt [27, 28]. The human-specific filtered GO,
gene_association.goa_human were downloaded from GO
database [29]. Subsequently, gene2go file was downloaded
from NCBI ftp site. We extracted the mapping between
genes with Entrez ID and human-specific filtered biological
processes. As a result, 1698 GO terms were used for gene
annotation. In addition, we fetched 1452 human canonical
pathways from MsigDB (version 3.1) [30]. Finally, we got
a list of drugs approved by FDA or under clinical trial for
prostate cancer from the supplementary materials of Jin
et al.’s work [15]. We took it as the gold standard dataset
for prediction.

2.2 Methods

We assume that a cell is a complex networked system. When
some key components are perturbed under certain conditions,
some biological processes will be further perturbed, and
mediate activities of downstream components. Therefore
microarray data that snapshots genes’ transient
transcriptional level is an important clue for inferring
underlying mechanisms. The perturbed biological processes
that dictate disease state and drug response can be revealed
as well. On the other hand, functional annotations of
biological molecules is partially known. Distinct sets of
cellular biological molecules are known to coordinate each
other to form a biochemical pathways. These knowledge
could be leveraged for supervising the inference process for
underlying mechanisms that dictate disease state and drug
response. Therefore we can measure the relevance of
inferred molecule mechanisms to predict drug’s new role of
treating diseases. Fig. 1 illustrates the strategy of our
framework and the details are addressed in the following.

2.2.1 Evaluating drug–disease associations based on
gene’s lethality: We compiled the list of aberrantly
regulated genes by comparing disease samples to control
189
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samples with R package named limma [31] and further ranked
them by absolute value of t-statistic. Similarly, ranked list of
genes for each drug treatment were generated through ranking
the genes by the absolute value of logarithm of treatment/
control expression ratio.
Similar to Lamb’s work [17] and Shigemiu’s work [20], the

top k% genes with positive t-statistic were defined as
up-regulated genes in prostate cancer (shortened as PCU),
and the top k% genes with negative t-statistic were defined
as down-regulated genes in prostate cancer (PCD). In the
latter category, we defined the top k% genes with treatment/
control expression ratio higher than 1 as up-regulated genes
by bioactive compounds (DU), and the top k% genes with
treatment/control expression ratio smaller than 1 as down-
regulated genes by bioactive compounds (DD). Here k
ranges from 10 to 30 in increments of 5.
The overlap or similarity between DU and PCD was

measured by Jaccard index [32] as efficacy score named
score1up, that is

score1up =
|DU> PCD|
|DU< PCD| (1)

Similarly, we also employed Jaccard index to evaluate the
overlap between set of genes that fall in DU, whereas
outside PCD and set of EG as side effect score named
score2up, that is

score2up =
|(DU\PCD)> EG|
|(DU\PCD)< EG| (2)

Further, drug effect in the up-regulated genes was measured
as scoreup, which combines score1up and score2up with a
balancing factor λ varying from 0 to 1

scoreup = l score1up − (1− l)score2up (3)

In a similar procedure, the overlap or similarity between DD
and PCU, the overlap between set of genes that fall in DD and
outside PCU and set of EG were measured by Jaccard index
as score1down and score2down, respectively

score1down =
|DD> PCU|
|DD< PCU| (4)

score2down =
|(DD\PCU)> EG|
|(DD\PCU)< EG| (5)

Further, drug effect in down-regulated genes was measured as
scoredown, which combines score1down and score2down with a
balancing factor α

scoredown = a score1down − (1− a)score2down (6)

Finally, the association strength between drug and prostate
cancer was evaluated by combing scoreup and scoredown,
that is

S = scoreup + scoredown (7)

With fixed k, λ and α, the strength of association between
prostate cancer and all compounds in PC ratio matrix were
measured and ranked by S.
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2.2.2 Evaluating drug–disease associations based on
gene’s general functional information: With ranked
lists of genes under disease state and drug treatment, we
further introduced a score to formally measure the
differential expression degree of each gene under two
conditions. Suppose there are M genes and ri is the rank of
genei under disease state or drug treatment, then differential
expression score of genei was defined as DEi = ((M − ri +
1)/M ).
Next, we extracted functional perturbation profile by

mapping genes onto pathways or annotating them with GO
terms. We employed the score that originally developed by
Pham et al. in [33] to evaluate the perturbation degree of
pathways and GO terms. For the ith pathway/biological
process Pi, it’s perturbation degree under disease state was
measured as

PERO
i = JGk , Pi

×med DEx|x [ Gk

⋂
Pi

{ }
(8)

where JGk ,Pi
= |Gk

⋂
Pi|

( )
/ |Gk

⋃
Pi|

( )( )
is the Jaccard

index between top k% differential expression genes Gk and
ith pathway/biological process Pi and med{DEx|x∈Gk ∩ Pi}
is the median of DE score over all genes in Gk ∩ Pi.
Collectively, a vector PERo was formulated to measure all
the pathway/biological process’s perturbation degree, that is

PERO = PERO
1 , PERO

2 , . . . , PERO
H

( )
(9)

where H is the number of canonical pathways.
On the other hand, we defined functional perturbation

profile that dictate dth drug’s response, that is

PERd = PERd
1, PERd

2, . . . , PER
d
H

( )
(10)

Finally, the association strength between disease and dth drug
was measured as the sum of dot product of functional
perturbation profiles underlying disease development and
drug response, that is

ASd =
∑H
j=1

PERO
j × PERd

j (11)

2.2.3 Score collapsing: Each instance in PC matrix
corresponds to a score measured by S or AS. It is
noteworthy that multiple instances may correspond to the
same drug and with the same dose. As a result, we offer
three options for such cases. The first option is to simply
keep the scores of multiple instances. The second option is
to calculate the maximum of individual instances’s score
that correspond to the same drug with specified dose as the
repositioned score of specified drug–dose pair. The last
option is to calculate the maximum of individual instances’s
score that correspond to the same drug as the repositioned
score of specified drug.

2.2.4 Prediction assessment: Whether S defined in (7)
or AS defined in (11) is used to measure the strength of
association between drug and prostate cancer, the F1 score
defined below [34] was adopted as repositioning
performance index

F1 = 2precision× recall

precision+ recall
(12)
IET Syst. Biol., 2013, Vol. 7, Iss. 5, pp. 188–194
doi: 10.1049/iet-syb.2012.0064



www.ietdl.org

where precision is the ratio of true positives in predicted
positives and recall is the ratio of true positives that can be
predicted correctly. The threshold used to make future
prediction is chosen when the highest F1 score is achieved.
Then a drug was repositioned against prostate cancer if its
score is above the threshold. Subsequently, the values of
parameters that give maximum F1 score were determined in
a similar way.
3 Results and discussion

After evaluating and ranking the strength of association
between drug and prostate cancer by S defined in (7), we
performed drug repositioning experiments with different
choices of collapsing score. The repositioning efficiency
was measured by F1 score defined in (12). With three
options of score collapsing, the drug repositioning
experiments were performed with 105 combinations of
Fig. 2 F1 scores for repositioning experiments based on gene’s lethalit
Here, X-axis represents the value of λ, and Y-axis represents the highest F1 score

Fig. 3 F1 scores for repositioning experiments based on gene’s lethalit
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parameters. In this parameter settings, k varies from 10 to
30 by 5 and λ equals to α and ranges from 0 to 1 by 0.05.
All the experiments’s F1 scores under each option were
summarised in Figs. 2–4, respectively. Besides, the AS
defined in (11) was also applied to evaluate the strength of
association between drug and prostate cancer. The
repositioning efficiency was still measured by F1 score. All
the experiments’s F1 scores under different combinations of
parameters and options of score collapsing were
summarised in Supplementary Tables 1–6. Collectively, all
the F1 scores are higher than 0.1. This means that parts of
FDA approved or clinical trial drugs for prostate cancer
were identified successfully. The moderate F1 scores show
that considerable drugs or compounds were newly
repositioned against prostate cancer. As in Sirota et al.’s
work [3], these predictions may be followed by experiments
on animal models and clinical models. We took a close
look at Fig. 4. It summarised repositioning effort with
score-collapsing option 3. The global optimal F1 score was
y and under score-collapsing option 1, in which p = (k/100)

y and under score-collapsing option 2, in which p = (k/100)

191
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Fig. 4 F1 scores for repositioning experiments based on gene’s lethality and under score-collapsing option 3, in which p = (k/100)

Table 2 Drugs in the gold-standard set are repositioned with
k = 10 and under score-collapsing option 3, utilising pathway
information

Drug name Status

alprostadil clinical trial
fulvestrant clinical trial
rofecoxib clinical trial
valproic acid clinical trial
tamoxifen clinical trial
tanespimycin clinical trial
paclitaxel clinical trial

www.ietdl.org
obtained with k = 10 and λ = α = 0.2. Under this parameter
setting, we detected 132 unique bioactive compounds for
prostate cancer. Sixteen of these are FDA approved or
undergoing clinical trial, which were summarised in
Table 1. That means we recovered 16 of the 45 FDA
approved or clinical trial compounds for prostate cancer in
PC ratio matrix.
It can be seen from these figures that parameters and

score-collapsing choices indeed affect the repositioning
efficiency. Comparatively, the parameter λ has more
pronounced effect. Optimal F1 score was obtained with
0 < λ = α < 1 with fixed k. λ = α = 1 or λ = α = 0 means only
efficacy score or side effect was utilised to measure drug–
disease association. Therefore this result demonstrated the
necessity of measuring drug–disease association with
integrated efficacy and side effect information to some extent.
To demonstrate the superiority of repositioning drug by

integrating both measures, we took a close look at Fig. 4. It
summarised repositioning effort with score-collapsing
option 3. The global optimal F1 score was obtained with
k = 10 and λ = α = 0.2. Under this parameter setting, we
detected 16 FDA approved or clinical trial drugs for
prostate cancer. On the contrary, 9 of these 45 compounds
Table 1 Drugs in the gold-standard set are repositioned under
score-collapsing option 3, utilising gene’s lethality information

Drug name Status

sirolimus clinical trial
paclitaxel clinical trial
phentolamine clinical trial
tanespimycin clinical trial
doxorubicin clinical trial
methylprednisolone clinical trial
estradiol clinical trial
vinblastine clinical trial
valproic acid clinical trial
metformin clinical trial
theophylline clinical trial
diethylstilbestrol clinical trial
tamoxifen clinical trial
azacitidine clinical trial
dexamethasone clinical trial
fulvestrant clinical trial
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were among the top 132 compounds sorted by drug–disease
score with k = 10 and λ = α = 0. With k = 10 and λ = α = 1,
10 of these 45 compounds were among the top 132
compounds. Besides, five drugs, azacitidine,
dexamethasone,estradiol, metformin, and tamoxifen were
repositioned against prostate cancer successfully with k = 10
and λ = α = 0.2. Whereas they could not be repositioned
under the other two parameter settings. This implies the
superiority of repositioning drug by integrating both
efficacy and side effect measures.
To demonstrate that the two strategies are complementary,

we took a close look at a special case. After mapping genes
into pathways, 47 unique bioactive compounds for prostate
cancer were identified under score-collapsing option 3 with
k = 10. In the 47 compounds, seven drugs were FDA
approved or undergoing clinical trial (Table 2). That also
means 7 of 45 FDA approved or clinical trial compounds
for prostate cancer were recovered. In the seven
compounds, two drugs alprostadic and rofecoxib, could not
be repositioned based on gene’s lethality.

4 Conclusions and future work

A cellular system is a complex networked system.
Perturbation will propagate through this networked system.
Therefore disease development and drug treatment will
induce complicated effects. Microarray data could be used
to infer molecular mechanisms or perturbed biological
processes that dictate disease state and drug response.
IET Syst. Biol., 2013, Vol. 7, Iss. 5, pp. 188–194
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However, microarray data or differential expression alone
could not reflect the overall functional consequence or
phenotype variation. Functional annotations could be
leveraged to supervise the inference process. In this paper,
we developed a new framework for identifying such
repositioned drugs against prostate cancer based on
functional information. In our framework, molecular
activity profile at the transcription level is utilised by
incorporating various functional information. In the first
strategy, functional relevance of differentially expressed
genes under disease state and drug treatment is evaluated by
leveraging genes’ lethality information, and then drugs are
ranked by their diseases curing potential. In the second
strategy, biological process perturbation profiles under
disease state and drug treatment are identified by mapping
differentially expressed genes into pathways and GO
annotations. Associations of biological process perturbation
profiles are assessed and used for ranking drug’s potential
of curing diseases.
Two drugs may induce the same number of genes to make

expression changes. If one drug induces more EG, its side
effect may be more severe. Our first strategy could address
this situation and prioritise more safe candidates. The
repositioning experiments verified this point to some extent.
During disease development, some biological processes will
be perturbed and only subset of the related genes are
abnormally regulated. Then, a drug may perturb the same
set of biological processes but target different genes. In this
case, the relevance of differentially expressed genes under
disease state and drug treatment is very small and some
differential expression profile-based methods may fail. Our
second strategy could address this case. To some extent, the
repositioning experiments show that the second strategy
indeed could predict candidates missed by the first strategy.
Collectively, our preliminary results show that various
functional information could complement each other and
our new framework works well in repositioning drugs
against prostate cancer.
However, there are several issues that limit the

repositioning performance. First, the number of
differentially expression genes that constitute disease
signature or drug signature were chosen empirically, which
cannot guarantee the resulted signature’s biological
relevance. Second, the directions in which biological
processes perturbed under disease state and drug treatment
were not fully taken into account. We will develop
parameter optimisation model and design new scheme to
measure the degree and direction of functional profile
simultaneously. In addition, it is promising to evaluate
functional relevance from other aspects and improve the
performance in the near future. Finally, the framework is
general by only relying on differential expression genes
and functional annotations. As long as high quality
molecule activity data for diseases is available, it could be
employed to reposition drugs against other diseases. In
addition, it is also a future topic to integrate information of
not only network [35–41] but also dynamics [42, 43] of
biomolecules for improving the effectiveness and efficiency
of drug repositioning.
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