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Abstract: The identification of hot spots, a small subset of protein interfaces that accounts for the majority of binding free energy,
is becoming increasingly important for the research on protein–protein interaction and drug design. For each interface residue or
target residue to be predicted, the authors extract hybrid features which incorporate a wide range of information of the target
residue and its spatial neighbor residues, that is, the nearest contact residue in the other face (mirror-contact residue) and the
nearest contact residue in the same face (intra-contact residue). Here, feature selection is performed using random forests to
avoid over-fitting. Thereafter, the extreme learning machine is employed to effectively integrate these hybrid features for
predicting hot spots in protein interfaces. By the 5-fold cross validation in the training set, their method can achieve accuracy
(ACC) of 82.1% and Matthew’s correlation coefficient (MCC) of 0.459, and outperforms some alternative machine learning
methods in the comparison study. Furthermore, their method achieves ACC of 76.8% and MCC of 0.401 in the independent
test set, and is more effective than the major existing hot spot predictors. Their prediction method offers a powerful tool for
uncovering candidate residues in the studies of alanine scanning mutagenesis for functional protein interaction sites.
1 Introduction

Protein–protein interactions play a critical role in almost all
biological processes. The study of residues at protein–protein
interfaces has shown that only a small portion of all interface
residues is actually essential for recognition or binding [1].
These residues are termed as hot spots which contribute most
binding free energy in protein interfaces. The identification
of hot spots is a first step towards understanding the function
of proteins and studying their interactions. Furthermore,
several studies discovered small molecules bound to hot
spots in protein interfaces that can disrupt protein–protein
interactions [2]. Uncovering hot spots and revealing their
mechanisms may provide promising prospect for medicinal
chemistry and drug design [3, 4].
Alanine scanning mutagenesis is a popular technique to

identify hot spots by evaluating the change in binding free
energy when substituting interface residues with alanine.
However, this traditional experimental approach is expensive
and time-consuming, and only a limited number of
complexes are deposited in public databases of experimental
results such as the Alanine Scanning Energetics Database
(ASEdb [5]) and the Binding Interface Database (BID [6]).
Quest for the characteristics of hot spot has been carried out

by several works. Studies on the composition of hot spots and
non-hot spots show that Trp, Arg and Tyr rank the top three,
whereas Leu, Ser, Thr and Val are often disfavoured [7].
Structural analysis of the protein–protein surface shows that
structurally conserved residues tend to be hot spots, and
distinguish between binding sites and exposed surface
residues [8]. The O-ring theory reveals that the hot spot at a
protein interface is surrounded by a ring of residues that are
energetically less important for binding, whose role is to
occlude water molecules from the hot spot (‘water
exclusion’ hypothesis [9]). Furthermore, ‘double water
exclusion’ hypothesis refines the O-ring theory by assuming
the hot spot itself is water-free [10].
Based on the existing studies on the characteristics of hot

spots, several methods have been developed for the
prediction of hot spots. These methods can be roughly
categorised into four groups: molecular dynamics (MD)
simulations, energy-based methods, knowledge-based
methods and the other methods of predicting hot spots.
MD simulations [11] simulate alanine substitutions and

estimate the corresponding changes in binding free energy.
These molecular simulation methods have good
performance on identifying hot spots from protein
interfaces, however, they suffer from enormous
computational cost. Energy-based methods make a hot spot
prediction based on an estimate of the energetic
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contribution to binding for every interface residue. Robetta
[1] used a free energy function to calculate the binding
free energy of alanine mutation in a protein–protein
complex. FOLDEF [12] provided a fast and quantitative
estimation of the importance of the interactions
contributing to the stability of proteins and protein
complexes. Knowledge-based methods try to learn the
complex relationship between hot spots and various
residue features in training data and predict new hot spots.
Ofran and Rost [13] proposed neural networks based on
sequence to predict hot spots. Darnell et al. [14] applied
decision trees to predict hot spots with features such as
atomic contacts, physicochemical properties, shape
specificity and computational alanine scanning. Tuncbag
et al. [15] presented an intuitive efficient method to
determine computational hot spots based on conservation,
solvent accessibility and statistical pairwise residue
potentials of the interface residues. Cho et al. [16], Xia
et al. [17], Zhu and Mitchell [18] and Xu et al. [19]
proposed support vector machines (SVMs) to predict hot
spots with features of both sequence and structure. Assi
et al. [20] predicted hot spots by Bayesian networks with
features incorporating structural, evolutionary and
energetic information. Recently, we proposed random
forests (RFs) to predict hot spots with focus on using
structural neighbourhood properties [21].
In recent years, other methods of hot spot prediction have

also been developed. Shulman-Peleg et al. [22] performed
spatial comparisons of physicochemical interactions
common to different types of protein–protein complexes,
and showed that major of these interactions correspond to
known hot spots. del Sol and O’Meara [23] used
small-world network representation of protein complexes,
and showed that the central residues correlate with
experimental hot spots. Li and Liu [10] represented protein
complexes as bipartite graphs. Maximal biclique subgraphs
were subsequently identified from the bipartite graphs to
locate biclique patterns which are rich of hot spots.
Tuncbag et al. [24] analysed residue contact networks of
protein interfaces as minimum cut trees where the highest
degree nodes tend to be hot spots.
Although a variety of methods, especially machine

learning-based methods, have obtained relatively good
performance on the prediction of hot spots. There are still
some problems waiting to be solved in this area. For each
interface residue (target residue), existing machine
learning methods mainly extract features only from the
target residue. However, hot spots were found to be
clustered within locally and tightly packed regions [8].
How to effectively utilise the information of spatial
neighbour residues should be considered. Moreover,
although many features have been generated and used in
the previous studies, effective feature selection methods
and useful feature subsets have not been proposed yet. To
deal with the problems mentioned above, in this work, we
extract various features from the target residue and its two
neighbouring residues, that is, the nearest contact residue
in the other face (mirror-contact residue) and the nearest
contact residue in the same face (intra-contact residue),
and employ RFs to generate an effective feature subset.
Then, we propose an extreme learning machine
(ELM)-based approach to effectively integrate these
hybrid features for hot spot prediction. Finally, we
evaluate the proposed method by 5-fold cross validation
and an independent test set, which demonstrate the
performance advantage of our approach over several
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 184–190
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existing hot spot predictors, such as Robetta, FOLDEF,
KFC [14], HotPoint [15], MINERVA [16] and KFC2
[18], and some alternative machine learning methods,
such as SVM, naive Bayes (NB) and RF.
2 Materials and methods

2.1 Datasets

Interface residues (contact residues across the interface) are
defined as in Wang et al. [21]. Briefly, two residues are
considered to be in contact across the interface if there is at
least a pair of contact atoms, one from each residue. Here
we describe the atomic contacts between residues by using
CSU program [25], which is based on inter-atomic
distances and the extent of crowding in the environment.
Alanine mutated complexes were extracted from ASEdb
and the published data by Kortemme and Baker [1]. To
eliminate redundancy, we used the PISCES sequence
culling server [26] with the sequence identity less than
35%. As a result, the training set consists of 318
alanine-mutated interface residues derived from 20 protein
complexes. The interface residues with binding free energy
(ΔΔG) ≥ 2.0 kcal/mol are defined as hot spots [14, 15, 21].
Thus these interface residues were divided into 77 hot spots
and 241 non-hot spots. In addition, the dataset from BID
was used as an independent test set. We ensured that these
proteins in the test set are not homologous to those in the
training set in the similar fashion to the training set. BID
categorises the effect of mutations as strong, intermediate,
weak or insignificant. The residues having strong interaction
strengths are considered as hot spots in this study. This test
set consists of 18 protein complexes containing 125
interface residues, of which 38 residues are hot spots and
87 residues are non-hot spots. Details of training set and
independent test set are listed in Tables 1 and 2, respectively.
2.2 Features of description

In our experiment, a wide variety of descriptors for interface
residues were designed for the hot spots classification, and
they were combined into five groups based on their sources
and properties.
2.2.1 Atom contacts and atom contact areas: Two
atoms α and β are defined to be in contact using CSU
program [25]. Furthermore, we filtered out the
non-attractive contact such as hydrophobic–hydrophilic
contact, and the remaining types of atom contacts were
used in the following calculation. Atom contacts of a
residue i were calculated by summing these atom contacts
between the residue i and any other residue j in the protein–
protein interface, that is,

atom contacts(i) =
∑
j

{∑
a[i

∑
b[j

atom contact(a, b)
}

(1)

where atom_contact (α, β) is equal to 1 if atoms α and β are in
contact, otherwise, it is equal to 0. Atom contact areas
between the residue i and its neighbour residues in the other
face of the interface were computed by summing these
185
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Table 1 Details of training set

PDB First molecule Second molecule H NH

1a22 human growth
hormone

human growth
hormone binding
protein

7 46

1a4y angiogenin ribonuclease inhibitor 3 21
1ahw immunoglobulin

Fab 5G9
tissue factor 1 7

1brs barnase barstar 9 3
1bxi colicin E9 immunity

Im9
colicin E9 DNase 6 11

1cbw BPTI trypsin
inhibitor

chymotrypsin 1 5

1dn2 engineered peptide Fc fragment of human
immunoglobulin G

2 0

1dvf idiotopic antibody
FV D1.3

anti-idiotopic antibody
FV E5.2

7 7

1f47 bacterial
cell-division protein
zipA

FtsZ fragment 3 5

1fc2 Fc fragment fragment B of protein
A

1 2

1fcc Fc (IGG1) protein G 4 4
1jck T-cell receptor

beta-chain
superantigen 5 13

1jrh antibody A6 interferon-gamma
receptor

8 18

1vfb mouse monoclonal
antibody D1.3

hen egg lysozyme 3 22

2ptc BPTI trypsin 1 0
3hfm hen egg lysozyme lg FAB fragment

HyHEL-10
11 12

1gc1 envelope protein
GP120

CD4 0 17

1jtg beta-lactamase
inhibitor protein-II

TEM-1 beta-lactamase 2 8

1nmb NC10 antibody influenza virus
neuraminidase

1 1

1dan blood coagulation
factor VIIA

tissue factor 2 39

H – hot spot; NH – non-hot spot

Table 2 Details of independent test set

PDB First molecule Second molecule H NH

1cdl calcium-bound
calmodulin

peptide of the kinase 6 6

1dva coagulation Factor
VIIA

peptide exosite inhibitor
E-76

5 18

1dx5 serine proteinase
alpha-thrombin

thrombomodulin 3 13

1ebp EPO receptor EPO mimetics peptide 1 4 5
1es7 bone

morphogenetic
protein-2

bone morphogenetic
protein receptor IA

1 3

1fak soluble tissue
factor

blood coagulation factor
VIIa

2 19

1fe8 von willebrand
factor

immunoglobulin IGG
RU5

0 5

1foe Rac1 tiam1 protein 1 1
1g3i HslV protease HslU ATPase 5 0
1gl4 nidogen-1 immunoglobulin-like

domain 3 of perlecan
5 2

1ihb p18INK4C p18INK4C 0 4
1jat Mms2 Ubc13 2 0
1jpp beta-catenin adenomatous polyposis

coli
2 5

1mq8 intercellular
adhesion
molecule-1

integrin alpha-L 1 0

2hhb hemoglobin (alpha
chain)

hemoglobin (beta chain) 0 1

1nfi NF-KAPPA-B I-KAPPA-B-ALPHA 1 1
1nun FGF10 FGFR2b 0 3
1ub4 MazF protein MazE protein 0 1

H – hot spot; NH – non-hot spot
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atom contact areas across the interface, that is,

atom contact areas(i)

=
∑

j[ the other face

{∑
a[i

∑
b[j

atom contact area(a, b)
} (2)

where atom_contact_area (α, β) is the contact area between
two contact atoms α and β, and was obtained by CSU
program.

2.2.2 Residue contacts and physicochemical
features: The contact between two residues is defined
when at least one atom contact exists between the two
residues. Residue contacts of a residue i were computed by
summing these residue contacts between the residue i and
other residues in the interface, that is,

residue contacts(i) =
∑
j

residue contact(i, j) (3)

where residue_contact (i, j) is equal to 1 if residues i and j are
in contact, otherwise, it is equal to 0.
Thereafter, six physicochemical features of a residue were

also generated as the descriptors, including hydrophobicity,
hydrophilicity, mass, isoelectric point, polarity and
polarisability. The parameters of hydrophobicity were
referred from Fauchere and Pliska [27], whereas the
186
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parameters of other properties were referred from the
AAindex database [28]. Here, the physicochemical features
of a residue are defined by itself and its contact
residues. For example, the hydrophobicity of the residue i is
defined as

hydrophobicity (i) = hydrophobicity param(i)

+
∑
j

hydrophobicity param (j) (4)

where hydrophobicity_param (i) and hydrophobicity_param
( j) are the hydrophobicity parameters of the two contact
residues i and j, respectively.

2.2.3 Depth index: The depth of an atom α is defined as
the distance between atom α and the closest solvent
accessible atom β. Local interactions formed in protein
interfaces are usually created by the deeply buried hot spots
[7]. For an interface residue i, based on depth index four
descriptors can be derived by PSAIA program [29],
including average depth index (ave_dpx, mean value of all
atom values), standard deviation of depth index (sd_dpx,
standard deviation of all atom values), side-chain average
depth index (s-ch_ave_dpx, mean value of all side-chain
atom values) and standard deviation of side-chain depth
index (sd_s-ch_dpx, standard deviation of all side-chain
atom values). We also calculated relative depth index
(rel_dpx) and relative side-chain depth index (rel_s-ch_dpx)
of the residue i upon binding as

rel dpx(i)

= ave dpxbound(i)− ave dpxunbound(i)

ave dpxbound(i)

(5)
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 184–190
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Fig. 1 Feedforward network architecture adopted by ELM
algorithm
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rel s− ch dpx(i)

= s− ch ave dpxbound(i)− s− ch ave dpxunbound(i)

s− ch ave dpxbound(i)
(6)

2.2.4 Relative accessible surface area (ASA) and
relative side-chain ASA: The ASA is the surface area
of a biomolecule that is accessible to a solvent. Key
functional properties of proteins and active amino acid sites
strongly correlate with the ASA of residues. The relative
change of ASA between the unbound and bound states of
the residues was found to be crucial for the hot spot
prediction [16]. Here, we computed the relative ASA
(rel_ASA) and relative side-chain ASA (rel_s-ch_ASA) of
an interface residue i by the equations as follows

rel ASA(i) = ASAunbound(i)− ASAbound(i)

ASAunbound(i)
(7)

rel s− ch ASA(i)

= s− ch ASAunbound(i)− s− ch ASAbound(i)

s− ch ASAunbound(i)
.

(8)

2.2.5 Secondary structure and category of
residues: We used residue secondary structure (including
three types, that is, helix, strand and loop) as a descriptor,
and it was obtained by DSSP [30]. In addition, the
categorical attribute of a residue was used as another
descriptor. Based on their dipoles and volumes of the side
chains, 20 amino acids were clustered into six classes, that
is, Class 1: D, E; Class 2: R, K; Class 3: A, G, V; Class 4:
Y, M, T, S, C; Class 5: I, L, F, P and Class 6: H, N, Q,
W. For the above categorical descriptors, that is, secondary
structure and category of residues, we assigned numeric
indices such as 1 through K (i.e. the number of possible
enumerated types) for them, respectively.
Totally, 19 descriptors were generated for each interface

residue. For every target residue that we were predicting,
the features were encoded from its descriptors and those of
its two spatially neighbouring residues, that is, the nearest
contact residue in the other face (mirror-contact residue)
and the nearest contact residue in the same face
(intra-contact residue). Here we define the distance between
two residues by the shortest Euclidean distance between
their atoms. Consequently, we extracted 57 features for
every target residue. Furthermore, we normalised these
features into the range [−1, 1].

2.3 Feature selection

Feature selection is an important step in training classifiers
and is often utilised to improve the performance of a
classifier by removing redundant and irrelevant features. In
this work, 57 features were generated initially. Such a
feature set may cause over-fitting of the model. Therefore,
we employed RFs [31] to find important features, with
which to obtain better discrimination of hot spot residues
and non-hot spot residues.
A RF is an ensemble classifier that operates by constructing

a multitude of decision trees to reduce the output variance of
individual trees and thus improves the stability and accuracy
of classification [31]. Typically, each tree is created in the
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 184–190
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following way: from the original sample a bootstrap sample
is drawn, and an unpruned tree is fitted to the bootstrap
sample. For each split in the tree, RF randomly chooses a
constant number of features and the one with the maximum
decrease in Gini index is selected. A RF model is generally
made up of tens or hundreds of trees. After training, the RF
prediction is determined by a majority voting scheme of
individual trees. RF returns several measures of variable
importance. The most reliable measure is based on the
decrease in classification accuracy when the values of a
particular feature are randomly permuted on these
out-of-bag (OOB) samples. We used this measure to
evaluate the importance of various features. In this work,
the randomForest R package [32] was used for feature
selection.
2.4 Classification algorithm

ELM for single-hidden layer feedforward neural networks
(SLFNs) randomly chooses hidden nodes and analytically
determines the output weights of SLFNs [33]. Fig. 1
presents the SLFN architecture adopted by ELM algorithm.
Compared with conventional machine learning methods,
ELM has the advantages of short learning time and high
accuracy.
Given a training set ℵ = {(xj, tj)|xj∈ Rn, tj∈ Rm, j = 1, …,

N}, hidden node output function G(a, b, x) = F(aTx + b),
where F() is an activation function, and the number of
hidden nodes L, the ELM algorithm consists of the
following steps:

† Assign randomly hidden node parameters (ai, bi), i = 1,…,
L, where ai and bi are input weight and bias of hidden node i,
respectively.
† Calculate the hidden layer output matrix H, where

H(a1, . . . , aL, b1, . . . , bL, x1, . . . , xN )

=
G(a1, b1, x1) · · · G(aL, bL, x1)

..

. · · · ..
.

G(a1, b1, xN ) · · · G(aL, bL, xN )

⎡
⎢⎣

⎤
⎥⎦

N×L
187
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Table 3 Results of 5-fold cross validation by various machine
learning methods

Method PR,% SE,% SP,% ACC,% MCC

ELM 70.8 44.2 94.2 82.1 0.459
RF 61.2 53.3 89.2 80.5 0.446
NB 52.0 67.5 80.1 77.0 0.439
SVM 69.1 37.7 94.6 80.8 0.408

Fig. 2 Feature importance generated by RFs

The top-20 features were picked out and used for the hot spot prediction
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where G(ai, bi, xj) is the output of hidden node i for input
vector xj under hidden node parameter (ai, bi).

† Calculate the output weight β:β =H†T.

where H† is the Moore–Penrose generalised inverse of
hidden layer output matrix H, and T = [t1, …, tN]

T.
The output of SLFNs for input vector x is

fL(x) =
∑L

i=1 biG(ai, bi, x). In our work, for EML the
activation function was taken as sigmoid function, and the
number of hidden nodes was set as 5. To select the proper
hidden node parameters (ai, bi), i = 1, …, L, to obtain the
better prediction performance, we repeated the 5-fold cross
validation in the training set for 1000 times with different
hidden node parameters. The hidden node parameters that
obtain the best prediction result were used as the final
parameters for further analysis and prediction.

2.5 Measurements of prediction performance

To evaluate the classification performance of the ELM method
proposed in this study, we adopted somewidely used measures,
including prediction accuracy (ACC), sensitivity (SE), precision
(PR), specificity (SP) and Matthew’s correlation coefficient
(MCC). These measurements are defined as

ACC = TP+ TN

TP+ FP+ TN+ FN
(9)

SE = TP

TP+ FN
(10)

PR = TP

TP+ FP
(11)

SP = TN

TN+ FP
(12)

MCC = TP× TN− FP× FN����������������������������������������������
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

√ (13)

where TP, FP, TN and FN denote the number of true positives
(correctly predicted hot spot residues), false positives (non-hot
spot residues incorrectly predicted as hot spots), true
negatives (correctly predicted non-hot spot residues) and false
negatives (hot spot residues incorrectly predicted as non-hot
spot residues), respectively.

3 Results and discussions

3.1 Evaluating the feature importance

The RF was implemented to estimate the importance of a
specific feature. It was evaluated by calculating the average
decrease of classification accuracy on the OOB samples when
the values of a particular feature are randomly permutated.
Fig. 2 shows the mean decrease of accuracy of these
particular features when it is greater than 15%. We found that
the features extracted from target residues and their
mirror-contact residues play an important role in the
prediction of hot spots. This finding is consistent with
previous studies that revealed hot spots contributing most of
the conserved physicochemical interactions across the
interfaces [22]. In the following, we selected the top-20
features whose values of importance are significantly higher
than those of the others, and then tested the prediction
performance using ELM algorithm.
188
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3.2 Cross validation in the training set

We tested the ELM classifier by 5-fold cross validation in the
training set. The dataset was divided into 5-folds randomly
with almost the same size. The 4-fold was used as a training
set and the remaining 1-fold was used as a test set. The
process was repeated five times for each fold as a test set. It
predicted these hot spots with ACC of 82.1% and MCC of
0.459. The overall prediction performance is listed in
Table 3. Furthermore, the performance of our ELM method
was compared with three existing machine learning methods,
including SVM, NB and RF, using the same selected
features. The ACC values are 80.8, 77.0 and 80.5% for
SVM, NB and RF, respectively. The MCC values are 0.408,
0.439 and 0.446 for SVM, NB and RF, respectively. These
results indicate the effectiveness of the proposed ELM
method of predicting hot spots with selected features.
To further analyse the importance of these selected features

for the prediction of hot spots, we categorised them into four
groups (listed in Table 4) according to their sources, and
estimated prediction performance of the 5-fold cross
validation by subtracting one of the groups individually.
The results are presented in Table 5. After subtracting each
group in describing these interface residues, we found that
the MCC of prediction was decreased than that of using all
groups.

3.3 Prediction in the independent test set

We compared our ELM method with several related works
that include alanine scanning methods such as Robetta [1]
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 184–190
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Table 4 Four feature groups clustered from the top-20 features

No. Features

1 atom_contact_areas_target, atom_contacts_target
2 mass_target, polarisability_target, isopoint_target,

polarity_target, hydrophobicity_target,
residue_contacts_mirror, polarisability_mirror, mass_mirror

3 s-ch_ave_dpx_target, ave_dpx_mirror,
s-ch_ave_dpx_mirror, rel_dpx_mirror, sd_dpx_mirror,
s-ch_ave_dpx_intra

4 rel_s-ch_ASA_target, rel_ASA_target, rel_s-ch_ASA_mirror,
rel_ASA_mirror

Table 5 Predictive results by subtracting each feature group

Without the following
group

PR,
%

SE,
%

SP,
%

ACC,
%

MCC

group 1 70.7 37.7 95.0 81.1 0.418
group 2 62.2 36.4 93.0 79.3 0.360
group 3 68.3 36.4 94.6 80.5 0.396
group 4 69.6 41.6 94.2 81.5 0.435
with all groups 70.8 44.2 94.2 82.1 0.459

Table 6 Comparison of different hot spot prediction methods
in the independent test set

Method PR,% SE,% SP,% ACC,% MCC

Our method 71.4 39.5 93.1 76.8 0.401
MINERVA 65.4 44.7 89.7 76.2 0.390
KFC2 58.1 47.4 85.1 73.6 0.345
HotPoint 49.0 63.2 71.3 68.8 0.324
Robetta 52.0 34.2 86.2 70.4 0.235
KFC 48.0 31.6 85.1 68.8 0.191
FOLDEF 47.6 26.3 87.4 68.8 0.168

Fig. 3 Interaction between peptide E-76 (PDBID:1dva, chain X,
coloured by red) and coagulation factor VIIa (PDBID:1dva,
chain H, colored by tan)

HIS76:H, LEU2:X, TRP11:X, TYR12:X and PHE15:X (represented by
VDW spheres) are experimentally determined hot spots in the 1dvaHX
interface. In these five residues, TRP11:X, TYR12:X and PHE15:X
(coloured by green, blue and cyan, respectively) were correctly predicted
by our method

Fig. 4 Interaction between calcium-bound calmodulin
(PDBID:1cdl, chain A, coloured by tan) and a peptide of
smooth-muscle myosin light chain kinase (PDBID:1cdl, chain E,
coloured by red)

The defined hot spot residues are PHE92:A, TRP800:E, GLY804:E, ILE810:
E, ARG812:E and LEU813:E (represented by VDW spheres) in the 1cdlAE
interface. PHE92:A, TRP800:E, ILE810:E and LEU813:E (coloured by
green, blue, cyan and purple, respectively) are the hot spots which were
correctly predicted by our method
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and FOLDEF [12], decision tree methods such as KFC [14],
SVM methods such as MINERVA [16] and KFC2 [18] and
empirical methods such as HotPoint [15]. The detailed
measures of these different predictors are listed in Table 6.
Performance results of the compared methods were
obtained from their corresponding web servers. The trained
ELM achieved the ACC of 76.8% and MCC of 0.401, and
presents the best prediction performance compared with
other methods in the independent test set.

3.4 Case studies

3.4.1 Complex between the peptide exosite inhibitor
E-76 and coagulation factor VIIa.: The peptide E-76
(PDBID:1dva, chain X) binds to an exosite on the factor VIIa
(PDBID:1dva, chain H) protease domain, and
non-competitively inhibit activation of factor X and
amidolytic activity [34]. Five hot spots (HIS76:H, LEU2:X,
TRP11:X, TYR12:X and PHE15:X, indicated in Fig. 3) and
18 non-hot spots have experimentally been determined in the
1dvaHX interface. In these 23 alanine-mutated residues, our
method identified three residues (TRP11:X, TYR12:X and
PHE15:X) as hot spots and the rest as non-hot spots. Three of
the five hot spots and all the non-hot spots were correctly
predicted. In contrast, MINERVA predicted four residues
(LEU73:H, LEU2:X, ASP9:X and PHE15:X) as hot spots
and the others as non-hot spots. MINERVA can correctly
predict 2 of the 5 hot spots and 16 of the 18 non-hot spots.
IET Syst. Biol., 2014, Vol. 8, Iss. 4, pp. 184–190
doi: 10.1049/iet-syb.2013.0049
3.4.2 Complex between calmodulin and a peptide of
smooth muscle myosin light chain kinase:

Calcium-bound calmodulin (Ca2+-CaM) (PDBID:1cdl,
chain A) binds to a peptide analogue of the CaM-binding
region of chicken smooth muscle myosin light chain kinase
(PDBID:1cdl, chain E), and can relieve the autoinhibition
of smooth muscle myosin light chain kinase [35].
Experimentally found hot spot residues at 1cdlAE interface
are PHE92:A, TRP800:E, GLY804:E, ILE810:E, ARG812:
E and LEU813:E (indicated in Fig. 4). Furthermore,
PHE12:A, PHE19:A, LYS799:E, LYS802:E, ARG808:E
and GLY811:E were found experimentally to be non-hot
spots. Our method correctly predicted four out of the six
hot spot residues, that is, PHE92:A, TRP800:E, ILE810:E
and LEU813:E, and five out of the six non-hot spots, that
is, PHE12:A, PHE19:A, LYS802:E, ARG808:E and
GLY811:E. As a comparison, MINERVA correctly
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predicted four out of the six hot spots and four out of the six
non-hot spots.

4 Conclusion

In this study, we proposed a new effective computational
method to identify hot spots in the protein interfaces. We
extracted various features from target residues,
mirror-contact residues and intra-contact residues, and
selected the most important features by RFs. Then we
employ the ELM algorithm to effectively integrate these
features for predicting interaction hot spots at the protein
interfaces. Experimental results indicate that our ELM
method is more effective than the alternative machine
learning methods and the major existing hot spot prediction
methods. Owing to the time consumption and labor
intensity in experimental determination of binding free
energy for alanine-mutated residues, hot spots are available
only for a very limited number of complexes. Our
prediction model can help to uncover candidate residues for
further alanine-scanning mutagenesis.
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