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Abstract

Purpose of Review: Controlling T cell activity through metabolic manipulation has become a 

prominent feature in immunology and practitioners of both adoptive cellular therapy (ACT) and 

hematopoietic stem cell transplantation (HSCT) have utilized metabolic interventions to control T 

cell function. This review will survey recent metabolic research efforts in HSCT and ACT to paint 

a broad picture of immunometabolism and highlight advances in each area.

Recent Findings: In HSCT, recent publications have focused on modifying reactive oxygen 

species, sirtuin signaling, or the NAD salvage pathway within alloreactive T cells, and to a lesser 

extent on modulating regulatory T cells. In ACT, metabolic interventions that bolster memory T 

cell development, increase mitochondrial density and function, or block regulatory signals in the 

tumor microenvironment (TME) have recently been published.

Summary: Metabolic interventions control immune responses. In ACT, efforts seek to improve 

the in vivo metabolic fitness of T cells, while in HSCT energies have focused on blocking 

alloreactive T cell expansion or promoting regulatory T cells. Methods to identify new, 

metabolically targetable pathways, as well as the ability of metabolic biomarkers to predict disease 

onset and therapeutic response, will continue to advance the field towards clinically applicable 

interventions.
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Introduction

Controlling T cell activity has become the Holy Grail of clinical immunology and 

reliance on oxidative versus glycolytic metabolism exerts significant influence over T cell 

fate. However, to make metabolic control a clinical reality, it is crucial to understand 

metabolism within specific environmental contexts. We will begin by reviewing the 
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influence of metabolism on T cell activation and differentiation, then cover recent advances 

in understanding T cell metabolism during graft-versus-host disease (GVHD), metabolism-

based methods to improve adoptive cellular therapies (ACT), and a role for metabolic 

biomarkers following hematopoietic stem cell transplantation (HSCT).

The role of T cell metabolism in differentiation and activation

In broad strokes, T cell metabolism can be divided into oxidative phosphorylation 

(OXPHOS), which uses the proton gradient established by the electron transport chain 

(ETC) to generate ATP, and glycolysis, where glucose is converted into lactate in the 

absence of oxidation. OXPHOS generates ATP more efficiently, but glycolysis supports 

one carbon metabolism, a necessity during rapid T cell expansion[1]. Naïve and memory 

cells are metabolically quiescent, while effector T cells (Teff) aggressively increase their 

metabolism to support proliferation and effector functions. In the classic paradigm, naïve 

and memory T cells adopt an oxidative phenotype, while Teff rely more heavily on 

glycolysis[2]. Regulatory T cells (Treg) adopt their own unique metabolic signature[3]. 

However, these categories were largely established in vitro and it is increasingly clear that 

in vitro metabolic pathways do not necessarily reflect those utilized by T cells in vivo[4,5], 

with ample evidence that Teff can adopt an oxidative phenotype[6–8]. In allogeneic HSCT, 

the intent is to inhibit Teff while promoting Treg, while the goal for ACT is to do the 

opposite. Despite these opposing objectives, common ways to understand and manipulate T 

cell metabolism link these fields together and much can be learned from understanding the 

techniques and targets employed by the other side.

Cellular Metabolism in GVHD

The challenge facing T cell manipulation during allogeneic HSCT is how to mitigate 

GVHD-causing T cells while still preserving graft-versus-tumor (GVT) responses. One way 

to achieve this goal is by improving the Treg/Teff ratio, either by decreasing allogeneic Teff 

numbers or increasing the number or stability of the Treg population[9–11].

Metabolic control of alloreactive T cells

Reactive oxygen species (ROS) propagate several aspects of T cell-mediated immunity 

including intracellular signaling downstream of the T cell receptor (TCR)[12,13]. High 

levels of ROS were found in the liver, spleen, and bone marrow during acute GVHD 

[14,15] and promotion of ROS scavenging, through T cell overexpression of thioredoxin-1 

(Trx1), reduced GVHD development [14]. Systemically limiting ROS with apocynin, a 

pharmacologic NADPH oxidase inhibitor, similarly reduced GVHD clinical scores and 

improved recipient survival [15]. Interestingly, Trx1 overexpression decreased glutamine 

uptake in liver T cells, but not those recovered from the spleen [14], suggesting metabolic 

reliance based in part on cellular location. Intracellular ROS levels are controlled by 

redox pathways, and the transcription factor Nuclear factor erythroid 2–related factor 

2 (Nrf2) controls expression of an array of antioxidant genes. Transplantation of Nrf2-

deficient T cells reduced GVHD clinical scores and improved post-transplant survival [16]. 

Interestingly, systemic treatment with arsenic trioxide, which upregulates NRF2 globally, 
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minimized GVHD pathogenesis [17], highlighting the need for further study of Nrf2’s role 

in the post-transplant environment.

Sirtuins are class III histone deacetylases (HDACs) and Sirtuin 1 (SIRT1) controls cellular 

metabolism by deacetylating a broad range of transcription factors and transcriptional 

co-regulators. SIRT3 is a mitochondrially-associated HDAC which inhibits intracellular 

ROS generation. Transplantation of SIRT1-deficient T cells decreased GVHD by limiting 

CD4+ cell division and minimizing interferon gamma (IFN-γ) production. Transplantation 

of SIRT3-deficient T cells also decreased GVHD severity and improved post-transplant 

mortality [18], but ROS levels actually decreased in these cells, a likely consequence 

of reduced T cell activation. Sirtuins and T cells both require nicotinamide (NAD) as 

a co-factor for their function, making them dependent upon the NAD salvage pathway, 

a process catalyzed by nicotinamide phosphoribosyl-transferase (NAMPT) and intricately 

linked to glucose metabolism [19]. Serum NAMPT levels increased in acute GVHD models 

and pharmacologic blockade of NAMPT limited liver- and spleen-associated donor CD4+ 

and CD8+ T cell numbers, with improved clinical scores and reduced post-transplant weight 

loss [20]. Interestingly, NAMPT inhibition exerted anti-leukemia effects independent of its 

impact on GVHD T cells, while SIRT1, SIRT3, and NRF2-deficient donor T cells mitigated 

GVHD while still preserving GVT responses [18,21].

Metabolic augmentation of Treg

Both genetic and pharmacologic downregulation of ROS favored FoxP3 expression, the 

transcription factor synonymous with Treg generation. T cell overexpression of Trx1 

increased Foxp3 levels in recipient spleens [14] and recipients of Nrf2 knock-out (KO) 

cells had greater Treg percentages with increased expression of Helios, a marker of thymus-

derived Tregs [16]. Inhibition of the NAD salvage pathway also improved Treg/Teff ratios 

[20] and transplantation of SIRT1 KO T cells increased Foxp3 percentages, with fewer Treg 

converting into INF-γ producing Th1 cells [21]. A caveat to interpreting studies where the 

gene is knocked out in all T cells is whether the metabolic intervention directly impacts 

Tregs themselves, or simply lessens systemic inflammation, which improves Treg stability.

Treg administration can improve the post-transplant Treg/Teff balance and adoptive transfer 

of Treg lacking vimentin mitigated GVHD to a greater degree than WT Treg, a consequence 

of enhanced oxidative metabolism and concomitant increase in suppressive capacity [22]. 

Infusion of CD4CD8 double negative (DN) Treg cells also prevented xenogeneic GVHD 

[23] and levels of DN Treg correlated with chronic GVHD (cGVHD) severity [24]. Teff 

co-cultured with DN Treg decreased mammalian target of rapamycin (mTOR) signaling 

[25], but whether this decrease was simply a consequence of reduced Teff proliferation is 

unclear.

Metabolic control in non-T cells

Retinoic acid (RA), a metabolite of Vitamin A, is critical for development of committed 

CD4 and CD8 T cells and during GVHD, RA is pro-inflammatory and high levels correlate 

with more severe disease. A lack of RA synthesis in host DCs impaired Teff function, 
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increased donor Treg frequency, and improved survival [26]. These changes were not seen 

if intestinal epithelial cells (IECs) lacked RA synthesis, suggesting that RA metabolism in 

host DCs (> donor DCs) is critical to regulate Treg/Teff ratios. Previous studies have also 

described salutary effects of butyrate on intestinal epithelial cells (IECs) [27]. Expression of 

the G-protein coupled receptor GPR43 was necessary for butyrate’s protective effects and 

epithelial repair was secondary to secretion of local cytokines and subsequent activation of 

the inflammasome [28].

Metabolic challenges in adoptive cellular therapy

Repurposing a patient’s own immune system to combat cancer is a unique form of ACT and 

includes expansion of tumor infiltrating lymphocytes (TIL) and creation of chimeric antigen 

receptor (CAR) T cells. While these methods seek to reinvigorate underperforming immune 

responses, they face many metabolic challenges. T cells obtained from tumor sites or the 

peripheral blood are often terminally differentiated or “exhausted” and require significant 

activation in vitro. Unfortunately, this stimulation drives terminal differentiation, leading to 

poor activity and limited persistence upon return to the host [29]. After transfer, T cells need 

to survive the harsh metabolic landscape of the in vivo environment, made worse in fighting 

leukemia because leukemic cells block T cell acquisition of glucose [30]. Furthermore, 

there is a clear correlation between loss of cancer-targeting T cells and relapse [31]. Thus, 

techniques to support or encourage the metabolic health of tumor-specific T cells are critical.

Memory T cells (Tmem) adopt a phenotype skewed towards oxidative metabolism and 

encouraging T cells to become metabolically more “memory-like” gives them a critical 

adaptation upon in vivo transfer. For example, CAR T cells bearing the CD28 co-stimulatory 

domain adopt a glycolysis-driven phenotype, with aggressive early activation followed by 

poor in vivo persistence. In contrast, CAR T cells bearing the 4–1BB co-receptor relied 

on oxidative metabolism, with a slower early expansion but improved overall persistence 

[32]. Promoting a more oxidative phenotype can be addressed in two main ways. The 

first utilizes metabolic inhibitors, nutrient withdrawal/supplementation, cytokine addition, 

and checkpoint blockade to alter the environment in which T cells expand or ultimately 

function. The second approach genetically modifies T cells to delete unwanted mediators, 

block ineffective metabolic signaling, or promote advantageous metabolic pathways.

External Manipulation: Targeting the T cell Environment

T cell expansion is classically glycolysis-driven. Thus, growing T cells in 2-deoxyglucose 

(2DG), an inhibitor of hexokinase, increased the percentage of memory-like cells and 

improved their tumor clearance in a mouse model of melanoma[33]. In addition, the 

IL-2 used during in vitro expansion induces glycolysis by upregulating expression of 

lactate dehydrogenase (LDH), the terminal step in glycolysis. Expansion in IL-21 reduced 

LDH induction and increased shuttling of pyruvate into the mitochondria. Simultaneous 

pharmacological blockade of LDH enhanced memory formation with reduced expression 

of exhaustion markers.[34] Glutamine blockade similarly restricted T cell differentiation 

and improved anti-tumor function post-transfer, with enhanced generation of memory 

cells[35]. ROS levels also impacted in vitro differentiation of ACT T cells. Addition of 
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the anti-oxidant N-acetylcysteine during expansion produced less-differentiated stem and 

central memory cells which were more functional [36,37], while ROS induction conversely 

increased the percentage of more differentiated effector memory cells.

Targeting T cells in the TME is another potential opportunity to metabolically augment T 

cell activity Targeting programmed death 1 (PD-1) improves T cell function in the TME[38]. 

Recently, it has become clear that PD-1 signaling is intricately linked to cellular metabolism. 

The majority of transcripts altered by PD-1 ligation involved metabolic pathways, with 

blunting of both glycolysis and oxidative metabolism[39]. In other work, T cells expressing 

an oncolytic vaccinia virus increased influx of T cells into the TME, however these cells 

showed poor activity and decreased mitochondrial reserve. This metabolic dysfunction was 

reversed through enhanced leptin signaling as leptin delivered to the TME via vaccinia virus 

expression improved T cell mitochondrial density and enhanced spare respiratory capacity 

(SRC), ultimately resulting in more efficient tumor clearance[40]. Other factors, including 

the balance between CD4+ and CD8+ T cells, influence CD8+ T cell subset formation 

and function. These factors could also improve the effectiveness of ACT. Recent evidence 

from a viral model suggests that CD8+ T cells generated with adequate CD4+ T cell help 

enhance their cytolytic capacity, SRC, and proliferation upon secondary activation exposure 

compared to cells without adequate CD4+ help [41]. Thus, improving CD4+ T cell yields 

during in vitro expansion may be the best guarantee of functional CD8 T cells in vivo.

Internal Manipulation: Genetically Modifying T cells

Blockade of specific metabolic pathways can be done externally as discussed above, but 

a more permanent way to alter T metabolic choice is through genetic manipulation. For 

example, T cells can be modified to ignore messages of metabolic dysfunction transmitted 

by transforming growth factor-beta (TGF-β), which in the TME blocks both T cell 

glycolysis and oxidative metabolism [42]. As expected, deletion of the TGF-β receptor 

in adoptively transferred cells improved overall anti-tumor activity.[43] Alternatively, 

oxidative proteins can be overexpressed to promote advantageous metabolism. Targets 

for this endeavor include the mitochondrial fusion protein Opa1 and those controlling 

mitochondrial biogenesis, like peroxisome proliferator activated receptor co-activator 1-

alpha (PGC1α). These metabolic interventions are modeled after characteristic changes in 

Tmem mitochondrial density and organization and Opa1 overexpression in ACT generated 

more memory-like T cells with improved in vivo efficacy [44]. Similarly, increased 

expression of PGC1α enhanced central memory T cell formation with characteristic 

increased SRC and augmented proliferation upon antigen re-challenge[45]. In addition 

to these well-described targets, additional methods to screen for metabolically influential 

proteins have been developed. Using a CRISPR/Cas9 library screen to knock down 

candidate genes, REGNASE-1 was identified as playing a key role in metabolic exhaustion. 

Previously known as an RNAse with RNA binding activity, REGNASE-1 depleted T 

cells showed enhanced anti-tumor activity[46]. This finding synergized with simultaneous 

knockdown of additional proteins from the same screen, indicating that further targets may 

continue to be identified through this method.
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Metabolism-based biomarkers

While metabolic manipulation has shown promising results in GVHD and ACT, identifying 

patients who would benefit most from specific interventions remains an area of active 

investigation. Allogeneic transplantation in humans is followed by major changes in 

recipient serum metabolic profiles through a combination of microbial dysbiosis [47] 

and transplantation-related alteration of host metabolism. Patient samples experienced a 

significant decrease in tryptophan metabolites at the onset of acute GvHD, including a 

large decrease in microbiota-produced compounds such as 3-indoxyl sulfate (3-IS) [48]. 

Previous studies correlated low urinary 3-IS levels with GVHD severity, while increased 

indole intake improved GVHD-associated weight loss and extended post-transplant survival 

[49]. Dietary intake of choline has an effect opposite of indoles and oral administration 

of the choline derivative Tri-methylamine N-oxide (TMAO) worsened GVHD, an effect 

driven by inflammasome activation, enhanced M1 macrophage polarization, and production 

of IL-1β [50]. Conversely, treatment of allogeneic recipients with arsenic trioxide decreased 

macrophage M1 polarization and improved GVHD [51]. These data suggest that reducing 

choline-mediated macrophage inflammation, while providing protective indoles or short-

chain fatty acids, could synergistically protect against GVHD.

Amino acids levels also have predictive value post-transplant. Metabolomic analysis on day 

0 (prior to HSCT infusion) identified 20 metabolites associated with GVHD [52], among 

them a decrease in 2-aminobutyric acid. In addition, total plasma amino acids decreased 

on day +7 in patients who later developed severe acute GVHD [53], while decreased 

levels of the branched chain amino acids leucine and isoleucine on day 100 predicted 

cGVHD development [54]. It is hypothesized that amino acids are consumed as tissues are 

damaged and immune cell activation programs (including cytokine production) are initiated. 

In contrast to amino acids, complex lipid products including medium- and long-chain fatty 

acid (FA), polyunsaturated FA, diacylglycerol, and primary/secondary bile acids increased 

in patients destined to develop or already experiencing acute GvHD [48,52]. FA levels also 

increased in future cGVHD patients [54]. A separate approach combining lipidomics and 

transcriptomics revealed a robust increase in glycerophospholipid (GPL) metabolism and 

allowed construction of an aGvHD risk score with both diagnostic and prognostic value 

[55]. Together these data suggest that serum metabolic profiles can function as indirect 

indicators of T cell activation and thus serve to both gauge GVHD as well as evaluate 

responses to therapeutic interventions.

The use of biomarkers to predict success in ACT has focused mainly on expression of 

inhibitory ligands in the TME and serum cytokine production. Monitoring tumors for 

PDL1 expression is a potential marker for the utility of checkpoint inhibition, although 

this approach does not guarantee successful therapy [56]. Similarly, measurement of 

inflammatory cytokines such as IL-6 have been used to indicate CAR-T cell activity [57]. 

Assessments of true metabolic intermediates may help shed light, as it has in GVHD, on the 

metabolic activity of tumors and suggest therapies to best target them.
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Conclusion

The study of T cell metabolism has opened many doors for understanding and controlling 

T cell immunity. During GVHD, defining metabolic pathways in Treg and alloreactive 

Teff will allow for GHVD-specific interventions with preservation of physiologic and graft-

versus-tumor responses. In ACT, recognizing the metabolic dysfunction caused by in vitro 
T cell expansion and the TME can direct interventions to specifically augment metabolic 

health during key times to improve anti-tumor efficacy. Despite promising preclinical work, 

the clinical utility of many interventions continues to fall short. Thus, research focusing on 

predictive biomarkers may identify patients at risk for GVHD, those who will benefit most 

from specific interventions (e.g. checkpoint inhibitor therapy), or better predict treatment 

efficacy in both HSCT and ACT. Overall, our ongoing gains in understanding T cell 

metabolism will increase the ability to manipulate metabolic pathways to clinical advantage 

and deliver exciting new therapies to patients who are most at-risk.
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Key Points

1. In HSCT, modulation of ROS levels, sirtuin signaling and the NAD salvage 

pathway were used to decrease Teff and increased Treg post-transplant.

2. In ACT, augmentation of oxidative metabolism and a decrease in inhibitory 

signaling (e.g. TGF-β) overcame metabolic dysfunction caused by in vitro 
expansion and influences of the TME

3. Metabolic biomarkers could be used to predict the onset of GVHD as well as 

the potential response to therapy in both HSCT and ACT.
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