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Abstract

Accurate bone segmentation and anatomical landmark localization are essential tasks in computer-

aided surgical simulation for patients with craniomaxillofacial (CMF) deformities. To leverage 

the complementarity between the two tasks, we propose an efficient end-to-end deep network, 

i.e., multi-task dynamic transformer network (DTNet), to concurrently segment CMF bones 

and localize large-scale landmarks in one-pass from large volumes of cone-beam computed 

tomography (CBCT) data. Our DTNet was evaluated quantitatively using CBCTs of patients with 

CMF deformities. The results demonstrated that our method outperforms the other state-of-the-art 

methods in both tasks of the bony segmentation and the landmark digitization. Our DTNet features 

three main technical contributions. First, a collaborative two-branch architecture is designed to 

efficiently capture both fine-grained image details and complete global context for high-resolution 

volume-to-volume prediction. Second, leveraging anatomical dependencies between landmarks, 

regionalized dynamic learners (RDLs) are designed in the concept of “learns to learn” to jointly 

regress large-scale 3D heatmaps of all landmarks under limited computational costs. Third, 

adaptive transformer modules (ATMs) are designed for the flexible learning of task-specific 

feature embedding from common feature bases.
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1 Introduction

Cone-beam computed tomography (CBCT) scans are routinely used in quantifying 

deformity and planning orthognathic surgery for patients with jaw deformity. The planning 

pipeline starts from accurately segmenting the bones from the background and digitizing 

(localizing) anatomical landmarks onto three-dimensionally (3D) reconstructed models [18]. 

In current clinical practice, surgeons have to manually segment the bones and soft tissues, 

and digitize the landmarks. This task is very time-consuming and highly depends on 

surgeons’ experience. Thus there is an urgent need, from surgeons, to develop reliable and 

fully automatic method for segmentation and landmark digitization.

Automated CMF bone segmentation and landmark localization are practically challenging. 

This is mainly because that CBCT scans typically have severe image artifacts (e.g., caused 

by amalgam dental fillings, and orthodontic braces), significant appearance variations, and 

a large volume (typically around 600 × 600 × 500 voxels, 0.4 mm3 isotropically per 

voxel). Most of the traditional methods, including atlas- [15], model- [3], and learning-

based methods [17], formulate the segmentation and the localization as two independent 

tasks, despite of the fact that the bony landmarks are the anatomically meaningful points 

located on the skeletal surface—both tasks are naturally associated [20]. Recently, deep 

learning methods leveraging fully convolutional neural networks (FCNs) [7,8,10,14] have 

been proposed to perform CMF bone segmentation and landmark localization in a unified 

framework. Torosdagli et al. [16] applied a dense variant of the U-Net [14] to segment 

mandible, based on which they designed another U-Net to regress the geodesic maps 

revealing landmark locations. Zhang et al. [21] designed a different cascade of two 3D 

U-Nets, where the first U-Net provides contextual guidance (i.e., voxel-wise displacements 

to landmarks) to assist the training of the second U-Net with two parallel outputs for the 

concurrent segmentation of bony structures and regression of landmark heatmaps.

To a degree, these methods did achieve the performance in both segmentation and 

localization. However, they still have a number of technical limitations that hampered 

them to be used in real clinical settings. First, they are typically implemented using small 

image patches (e.g., 96 × 96 × 96) sampled from a large CBCT volume to compensate 

the bottleneck of the memory size of graphic processing unit (GPU). It can significantly 

sacrifice the global view of the whole bony structure, which is important for both semantic 

segmentation [2] and discrimination between different landmarks [22]. Second, while the 

efficacy of heatmap regression has been verified in other landmark detection tasks [12,19], 

these methods can only jointly localize a limited number of CMF landmarks (e.g., 15 

landmarks in [21]), due to the heavy memory consumption for the respective 3D heatmaps. 

That problem greatly limits its capability of efficiently addressing the realistic demand 

of large-scale landmarks (e.g., more than 60 on the mandible) for orthognathic surgical 

planning. Third, both [16] and [21] consist of multiple steps (or networks) implemented 

in an isolated fashion, while potential heterogeneity between different steps may lead to 

suboptimal results.

In this paper, we propose an end-to-end deep learning method, called multi-task dynamic 

transformer network (DTNet), for concurrent bone segmentation and landmark localization 
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from CBCT images. Once a large clinical CBCT volume is directly input into DTNet, it 

can efficiently output the segmentation result and large-scale heatmaps for the landmarks in 
one-pass (Fig. 1).

The main technical contributions of our work are: First, our DTNet contains two 

collaborative branches, i.e., a light-weight branch to capture the local image details from the 

high-resolution input, and another deep branch to learn the global context from the down-

sampled input. Second, we design a regionalized dynamic learner (RDL) in the “learning-

to-learn” framework to leverage the stable dependency between spatially neighboring 

landmarks. The RDL first localizes a meta-level landmark in each predefined anatomical 

region by regressing the high-resolution heatmap. Based on that, it further predicts region-

specific dynamic convolutional kernels to efficiently localize other neighboring landmarks 

in the down-sampled image space. Third, as an end-to-end network, our DTNet extends the 

state-of-the-art multi-task architecture (i.e., MTAN [9]) by introducing adaptive transformer 

modules (ATMs) to jointly learn task-oriented feature embedding from common feature 

pools.

2 Multi-task Dynamic Transformer Network

Our DTNet contains three important components, i.e., collaborative local and global 

branches, adaptive transformer modules, and regionalized dynamic learners besides the 

fundamental convolutional (Conv), deconvolutional (DConv), pooling, and upsampling 

operations. The schematic diagram is shown in Fig. 1.

Collaborative Local and Global Branches:

Inspired by recent advances in real-time high-resolution segmentation [2,13], our DTNet 

designs a two-branch architecture to efficiently learn the local details and global context for 

high-resolution volume-to-volume predictions from a large 3D input (size: L × W × H). A 

light-weight local branch works on the original input to capture local details, while a deep 

global branch works on a significantly down-sampled input (size: L
5 × W

5 × H
5 ) to learn both 

shared and task-specific contextual representations.

Specifically, the local branch consists of only two general 3 × 3 × 3 Conv layers (both 

with unit stride and zero-padding) and a 5 × 5 × 5 depth-wise separable Conv layer [5] (5 

strides without padding) to control the number of learnable parameters. The second Conv 

layer outputs feature maps describing fine-grained image details, which are transferred by 

a long-range skip connection to the top of DTNet for high-resolution inference. The third 

Conv layer transfer these local features into the global branch to assist the learning of deep 

contextual feature representations from the down-sampled input.

The global-branch network adopts FCNs as the backbone to develop a multi-task 

architecture for concurrent bone segmentation and landmark localization. Inspired by [9], 

it consists of a single 3D U-Net to learn common feature representations shared between 

two tasks, based on which two light-weight subnetworks are further designed to learn 

adaptive feature embedding for each specific task. To begin with, the backbone applies 

two Conv layers to learn from the down-sampled input the local features, which are 
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further merged with the corresponding features from the local branch, forming multi-scale 

representations of image details to assist the construction of the subsequent Conv and 

DeConv blocks with residual connections [4]. Each Conv block in the encoding path 

contains two convolutional layers, where the first two of them are followed by pooling. 

Symmetrically, each DeConv block in the decoding path starts with bilinear up-sampling, 

followed by two Conv layers. Built upon the shared U-Net, task-specific subnetworks apply 

a series of adaptive transformer modules (ATMs) to learn from each Conv/DConv block the 

respective feature embedding.

Adaptive Transformer Modules:

We assume that the feature maps produced by each block of U-Net form a common feature 
pool shared across complementary tasks, upon which ATM learns task-oriented feature 
embedding in a “learning-to-learn” fashion [1]. According to the diagram shown in Fig. 

1, ATM in the encoding path combines task-specific features T(s−1) from the preceding 

scale and initial common features S1
(s) at current scale (e.g., from the 1st Conv layer of 

a Conv block) to predict a task adapter, which further applies on the following common 

features S2
(s) (e.g., from the 2nd Conv layer of a Conv block), yielding task-specific feature 

representations T(s) at current scale. The task adapter performs joint feature selection and 

transformation from S2
(s), using online predicted spatial attentions and dynamic Conv [1]. 

Specifically, T(s−1) is first processed by a general 3 × 3 × 3 Conv to obtain T(s)
, which is 

merged with S1
(s) via channel-wise concatenation, such as [T(s)

; S1
(s)]. The attention map A(s) 

in terms of the merged features is then defined as

AT
(s) = Wsigmoid

(s) * Wrelu
(s) * T(s); S1

(s) , (1)

where Wsigmoid 
(s)  and Wrelu 

(s)  are the kernel weights of two 1 × 1 × 1 Convs followed 

by sigmoid and ReLU activations, respectively, and * denotes the Conv operator. Since 

AT
(s) and S2

(s) have the same size, the task-relevant features are selected via element-wise 

multiplication, i.e., AT
(s) ⊙ S2

(s). Regarding AT
(s) ⊙ S2

(s) (with mi channels) as a set of bases, 

a dynamic 1 × 1 × 1 Conv is further learned for task-oriented transformation of the 

selected common features. Considering that predicting all learnable parameters W(s) is 

computationally infeasible even for 1 × 1 × 1 kernels, the dynamic Conv is factorized in an 

analog of SVD [11]. Therefore, the output T(s) (with mo channels) is defined as

T(s) = W(s) * AT
(s) ⊙ S2

(s) ⊕ T(s) ≈ U(s) * W(s) *c V(s) * AT
(s) ⊙ S2

(s) ⊕ T(s), (2)

where * and *c denote general and channel-wise Convs, respectively; ⊕ denotes the residual 

connection; U(s) and V(s) are the parameter matrices of two 1 × 1 × 1 Convs with mo 

and mi output channels, respectively; and W(s) is a diagonal matrix with only mi learnable 

parameters, which are one-shot determined by a light-weight kernel predictor in terms of 

[T(s)
; S1

(s)]. The kernel predictor has an architecture similar to squeeze-and-excitation [6], but 
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learns the output coefficients from distinct input sources. It starts with a 1 × 1 × 1 Conv, 

followed by global average pooling (GAP) and another two 1 × 1 × 1 Convs to predict W(s).

Notably, the encoding and decoding ATMs have similar structures, except that the former 

contains pooling while the latter contains bilinear up-sampling. In each of them, we set mo < 

mi, which effectively controls the number of learnable parameters and realizes task-oriented 

low-dimensional feature embedding.

Regionalized Dynamic Learners:

Since jointly regressing large-scale 3D heatmaps in high-resolution image space is memory 

infeasible, our DTNet integrates an efficient localization module by explicitly modeling the 

dependencies between spatially neighboring landmarks. To this end, we separate the 3D 

model of the jaw as several predefined anatomical regions, with each of them grouping a 

set of landmarks that have stable intra-region displacements. For each region, a meta-level 

landmark is first localized by regressing its high-resolution heatmap. Leveraging the strong 

guidance provided by this meta-level landmark, an RDL is further constructed to learn 

dynamically region-aware representations for the localization of other dependent landmarks 

under very limited memory costs.

Specifically, let F be a high-resolution representation, produced by fusing the localization-

related global-branch representation (i.e., T from the last ATM) and the local-branch image 

details. As shown in Fig. 1, a 1 × 1 × 1 Conv layer with sigmoid activations works on F to 

predict meta-level heatmaps Hr r = 1
R , corresponding to R different anatomical regions. To 

detect other dependent landmarks located within each (e.g., the r-th) region, the respective 

RDL combines Hr and F to learn a region-aware dynamic Conv layer, which applies on 

T to regressing the heatmaps of these dependent landmarks in significantly down-sampled 

image space. In more detail, a set of 3 × 3 × 3 channel-wise Conv kernels is first predicted 

as Wr = fr Hr ⊙ F; F , where Hr provides high-resolution regional attention, and fr(·) is a 

light-weight kernel adapter consisting of depth-wise separable Convs and general 2 × 2 × 2 

Convs with double strides. The region-aware representation Rr for down-sampled heatmaps 

regression is finally defined as

Rr = Ur * Wr *c Vr * T ⊕ T; Hr ⊙ F; F (3)

where Ur * Wr *c Vr * T ⊕ T denotes residual SVD-factorized Conv [11] of T, and Hr ⊙ F and 

F are meta-level feature representations after average pooling.

Implementation:

Following [16], we attempt to segment the mandible and localize the associated landmarks, 

as it is the most frequently deformed bony structure that needs orthognathic surgical 

correction. The respective DTNet was implemented with PyTorch on a general GPU (i.e., 

NVIDIA TITAN Xp, 12 GBytes). It takes as input a big CBCT volume (size: 160 × 160 

× 160), concurrently output in one-pass the segmentation map of the mandible and 64 

heatmaps of all landmarks located on the mandible, costing less than 40 seconds (including 
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loading data and saving results). Using the Adam optimizer, the network was trained by 

minimizing the combination of three Dice losses for jaw segmentation, high-resolution 

heatmap regression, and down-sampled heatmap regression, respectively. Dropout and group 

normalization were used in the network to accelerate training and improve generalization 

capacity. Training samples were mirror flipped for data augmentation.

3 Experiments

Dataset and Experimental Setup:

Our method was evaluated quantitatively using 77 sets of CBCT images of patients with 

non-syndromic CMF deformities, and 63 sets of CT images of normal subjects taken for the 

reason other than CMF deformities. All personal informations were de-identified. The study 

was approved by Institutional Review Board. The ground-truth of the segmented bones and 

digitalized landmarks were manually established by two experienced CMF surgeons. The 64 

landmarks on the mandible were divided to 6 groups based on anatomical regions, including 

Ramus Upper Right (RUR), Ramus Low Right (RLR), Ramus Upper Left (RUL), Ramus 

Low Left (RLL), Distal Mandible (DMand) and Lower Teeth (LT). For each anatomical 

region, one landmark was preselected as the meta-level landmark based on a surgeon’s 

experience, including SIG-R, Go-R, SIG-L, Go-L, Pg, and L0 (Fig. 2). All images were 

spatially normalized to the same resolution of 0.8 × 0.8 × 0.8 mm3, and the gray-scale values 

were also normalized using histogram matching to reach similar gray-scale distributions. 

The 3D heatmap of each landmark was generated using a Gaussian filter with the standard 

deviation of 3mm. We randomly split 20 CBCT images for performance evaluation, and 

used the remaining 57 patients’ CBCT and 63 normal CT images for network training.

Using the same settings in loss function and optimizer, our DTNet was compared to 

the other state-of-the-art methods, including MTAN [9], multi-task U-Net (MTU-Net) 
[21], and the original mono-task U-Net [14]. All competing networks were adjusted to 

a comparable number of learnable parameters. Specifically, we first replaced the global-

branch subnetwork of our DTNet with MTAN, MTU-Net and U-Net to evaluate the efficacy 

of the proposed ATMs and RDLs for adaptive multi-task learning and large-scale landmark 

localization, respectively. In addition, we compared DTNet to the U-Net implemented with 

smaller patches (size: 96 × 96 × 96), denoted as SU-Net, to evaluate the efficacy of 

the proposed collaborative two-branch architecture in capturing local details and global 

context for high-resolution inference. Finally, the segmented results of the mandible were 

quantitatively compared to the ground truth in dice similarity coefficient (DSC), sensitivity 

(SEN) and positive prediction value (PPV). The landmark localization results were also 

quantitatively evaluated by calculating the root mean squared error (RMSE, in mm) between 

algorithm-detected and ground-truth landmark coordinates.

Results:

Table 1 presents the quantitative results obtained by different automated methods for both 

mandible segmentation and landmark localization. From Table 1, we can have the following 

observations. First, compared with the mono-task U-Net, the three multi-task networks (i.e., 

MTU-Net, MTAN, and our DTNet) led to better segmentation and localization results in 
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most cases. It suggests that the two tasks are correlated and can provide each other auxiliary 

information for performance enhancement. Second, compared with the state-of-the-art 

multi-task architectures (i.e., MTU-Net and MTAN), our DTNet has superior performance 

with respect to all metrics, which implies that the proposed ATM modules are effective, and 

more powerful than simple task-specific attention, in extracting task-specific representations 

from shared feature bases for adaptive multi-task learning. Third, by performing intra-

method comparisons between the localization results of the meta-level landmarks and all 

landmarks, we can observe that there is no big differences in terms of RMSE. It indicates 

that the proposed RDL can generally work with different architectures for the efficient 

localization of large-scale landmarks. In addition to the quantitative comparisons, the 

representative examples of mandible segmentation and landmark localization are shown in 

Fig. 3 and Fig. 4 (a), respectively. These qualitative comparisons between our DTNet and 

other multi-task methods further justify the efficacy of our DTNet, especially in segmenting 

low-contract structures and localizing landmarks in challenging anatomical regions (e.g., on 

the lower teeth).

To evaluate the efficacy of the collaborative two-branch design in capturing both local 

details and global context from large CBCT images, our DTNet and the above two-branch 

U-Net were further compared with SU-Net, which was implemented with smaller image 

patches. The corresponding results of the mandible segmentation and meta-level landmark 

localization are summarized in Fig. 4 (b), from which we can see that both U-Net and our 

DTNet largely outperformed SU-Net. It implies that the integration of local image details 

and global context is important for high-resolution volume-to-volume inference, which also 

verifies the effectiveness of our collaborative two-branch design to this end.

4 Conclusion

In this paper, we have proposed a multi-task deep neural network, DTNet, for concurrent 

mandible segmentation and large-scale landmark localization in one-pass for large-volume 

CBCT images. Our DTNet uses a collaborative two-branch architecture to efficiently 

capture both local image details and global context for high-resolution volume-to-volume 

inference. Adaptive transformer modules are designed in the “learning-to-learn” framework 

to learn dynamically task-specific feature embeddings from a common feature pool. 

Regional dynamic learners are also proposed to leverage the local dependencies among 

the neighboring landmarks for efficient large-scale localization. The experimental results 

confirm the performance of our DTNet on real-patient CBCT data.
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Fig.1. 
End-to-end DTNet for concurrent jaw segmentation and large-scale landmark localization. 

For illustration simplicity, here we only show the landmarks from one anatomical region and 

the common part of all ATMs (i.e., pooling and up-sampling for the encoding and decoding 

path are ignored).
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Fig.2. 
An representative subject in our dataset, where (a) shows the slice-view of the ground-truth 

mandible segmentation, and (b) shows the 6 anatomical regions with different colors. The 

dilated points denote the meta-level landmarks for each region.
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Fig.3. 
Representative results obtained by our DTNet and other competing methods for the 

segmentation of mandible. The marks in red indicate the challenging bony structures with 

low-contrast boundary.
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Fig.4. 
(a) Representative localization results obtained by different multi-task networks, where 

blue and red points denote the detected and ground-truth landmarks, respectively. (b) A 

comparison between small-patch U-Net (i.e., SU-Net) and two-branch networks (i.e., U-Net 

and our DTNet).
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Table 1.

The segmentation and localization results (mean ± standard deviation) obtained by our DTNet and other three 

competing methods. The localization results were quantified in terms of RMSE for the 6 meta-level and all 64 

landmarks, respectively. Notably, all competing methods leveraged our two-branch architecture and RDLs to 

deal with large input CBCT volume and large-scale landmarks.

Method Mandible segmentation (%) Landmark localization (mm)

DSC SEN PPV Meta-level All

U-Net 92.49 ± 2.13 92.47 ± 5.13 93.32 ± 4.43 2.18 ± 0.54 2.99 ± 0.33

MTU-Net 92.34 ± 2.06 93.59 ± 4.42 91.53 ± 5.10 2.01 ± 0.55 2.85 ± 0.40

MTAN 92.66 ± 2.23 94.17 ± 4.16 91.43 ± 4.84 2.02 ± 0.51 2.91 ± 0.45

DTNet 93.95 ± 1.30 94.24 ± 1.37 93.68 ± 1.78 1.95 ± 0.43 2.52 ± 0.31
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