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Abstract

Functional magnetic resonance imaging (fMRI), a non-invasive and widely used human 

neuroimaging method, is most known for its spatial precision. However, there is a growing 

interest in its temporal sensitivity. This is despite the temporal blurring of neuronal events by the 

blood oxygen level dependent (BOLD) signal, the peak of which lags neuronal firing by 4 to 6 

seconds. Given this, the goal of this review is to answer a seemingly simple question – “What 

are the benefits of increased temporal sampling for fMRI?”. To answer this, we have combined 

fMRI data collected at multiple temporal scales, from 323 to 1000 milliseconds, with a review 

of both historical and contemporary temporal literature. After a brief discussion of technological 

developments that have rekindled interest in temporal research, we next consider the potential 

statistical and methodological benefits. Most importantly, we explore how fast fMRI can uncover 

previously unobserved neuro-temporal dynamics – effects that are entirely missed when sampling 

at conventional 1 to 2 second rates. With the intrinsic link between space and time in fMRI, this 

temporal renaissance also delivers improvements in spatial precision. Far from producing only 

statistical gains, the array of benefits suggest that the continued temporal work is worth the effort.
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Introduction

Functional MRI is one of the most common non-invasive brain imaging methods used to 

infer neuronal activity. By exploiting the coupling between neural responses and subsequent 

blood oxygenation changes (Logothetis et al., 2001), fMRI infers cortical activity by 

measuring local magnetic susceptibility changes via the Blood Oxygen Level Dependent 

(BOLD) signal (Ogawa et al., 1990). BOLD fMRI’s popularity is likely owed to its ease of 

use, high contrast to noise ratio, and the relatively high spatial precision of its functional 

measurements, which ranks highest amongst non-invasive in-vivo neuroimaging techniques. 

In fact, with the growing availability of ultra-high field magnets (e.g. >= 7T) and the 

development of ever more efficient acquisition software and hardware (Bollmann and Barth, 

2020), it is now routinely possible to acquire functional images with submillimeter spatial 

resolution (e.g. 0.8 mm isotropic; (Koopmans et al., 2010; Margalit et al., 2020; Olman et 

al., 2012; Siero et al., 2011), or even 0.5 mm isotropic; (Vizioli et al., 2020b)), allowing the 

investigation of some of the most fundamental units of neural computation, such as cortical 

layers and columns.

Despite the second to sub-second temporal resolutions with which we can acquire images 

with the BOLD fMRI technique, the vascular response lags neuronal events (Logothetis et 

al., 2001), blurring the temporal precision relative to neuronal responses. The temporal 

response of the BOLD signals follows a double gamma function, with a large signal 

increase peaking some 5 to 6 seconds after stimulation, and a less prominent undershoot 

far outlasting the positive peak with an overall duration of approximately 20 seconds 

(Glover, 1999). These numbers differ by many orders of magnitude in comparison to 

the occurrence of neural events, which span the millisecond range. Consequently, fMRI’s 

temporal dimension has traditionally been more neglected, with the vast majority of studies 

relying primarily on its spatial characteristics.

This is not to say that fMRI’s temporal information has not been studied or used to interpret 

neural activity. For example, in considering relative temporal differences on how stimuli 

and task demands drive differential responses, there have been a number of investigations, 

including how delayed decision making affects the BOLD signal (McGuire and Kable, 

2015), investigations into the variability in temporal dynamics in the non-human primate 

auditory pathways (Baumann et al., 2010), or into the variability in the context of visual and 

semantic processing (Avossa et al., 2003; Formisano and Goebel, 2003; Vu et al., 2016).

Substantial research efforts have produced more efficient hardware and software, decreasing 

fMRI’s repetition time (i.e. the time required to record a whole volume; TR). Recently, 

using these highly accelerated acquisition protocols, researchers have been able to acquire 

BOLD time series with unprecedented whole brain temporal resolutions (i.e. ~300–500 

ms; Lewis et al., 2016; Vu et al., 2016). However, as most of what we know about the 

temporal characteristics of the BOLD signal have been learned with supra-second temporal 

resolutions, the impact of such high temporal resolution remains to be determined. Further 

work is required to understand the full potential of faster sampling in enabling more 

precise insights into neuro-temporal dynamics, more accurate characterization of the BOLD 

response function, or potential gains in statistical power compared to more conventional 
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temporal resolutions. With faster TRs and improved signal to noise ratios (SNR) there is the 

exciting possibility of uncovering faster vascular dynamics, such as the initial dip (Menon et 

al., 1995).

In this work we aim to quantify the benefits of acquiring BOLD fMRI data with sub-second 

temporal resolutions. While the bulk of this work will focus on task-based fMRI, we will 

also touch upon the benefits of temporal resolution in the context of resting state fMRI, 

as resting state analyses are increasingly popular and widely used. We will review the 

literature and complement existing findings with empirical data to demonstrate the impact 

fast acquisitions have with regards to spatial and temporal information in fMRI. We will 

briefly touch upon the technical development that rendered fast (here defined as <1s) and 

ultra-fast (here defined as <0.5s) fMRI possible. We will also examine the challenges 

associated with collecting, analyzing and interpreting fast data and consider the cost vs. 

benefit trade-offs of rapid data acquisition. Finally, as the BOLD signal in space and time 

are intrinsically linked and precision in one domain could inform or give rise to precision 

in the other, we will examine whether the ability to acquire higher temporal resolutions 

allows us to simultaneously and more precisely consider the information content from both 

dimensions.

Early temporal work.

Interest in fMRI began very early, shortly after its inception, and built upon the prior 

literature of mental chronometry, which primarily used reaction time measures to examine 

the timing of cognitive processes (Posner, 1978). Despite temporal lag and blurring, the 

goal for fMRI in this context is to determine the relative order of neuronal events within 

and across brain regions. While it is likely to remain unattainable to precisely identify the 

absolute ordering or directionality of neuronal events with fMRI, uncovering the relative 
timing of these events is more within reach. Historical examinations of the BOLD signal 

noted that events with an 8 second interstimulus interval (ISI) were visibly separate in signal 

traces (Bandettini et al., 1993). Another study (Kim et al., 1997) was able to resolve 2s long 

blocks of finger tapping tasks separated by only 3 seconds. These early proof-of-principle 

studies showed that the BOLD signal could be used to examine temporal dynamics, but such 

slow experimental designs were not optimized for widespread usage.

Following developments in statistical analyses and fMRI methods, work in mental 

chronometry grew more advanced. One method, used by Menon and colleagues, involves 

performing a linear fit to the initial rising portion of the hemodynamic response (HDR; 

(Menon et al., 1998)). The point at which this best fit line intercepts the baseline BOLD 

signal is known as the time-to-onset (TTO). By comparing this onset time between regions, 

they uncovered latency differences between the primary visual cortex and the supplemental 

motor area in a visually cued motor task (Menon et al., 1998). Though the approach put 

forward by Menon et al. became a popular method for determining the relative timing of 

events, alternative approaches, such as fitting a single gamma function and deriving its onset 

(TTO) or the time-to-peak (TTP) (Miezin et al., 2000) have also been used. In general, 

these methods take advantage of the characteristic shape and relative consistency of the 

HDR in order to deconvolve sub-TR variability in neural timing. Studies like these, however, 
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often implemented very specific task designs, which are not broadly applicable or used 

substantially less than whole brain coverage in order to reduce the TR.

Later work attempted to provide a more comprehensive view of BOLD temporal effects, 

using complex sequential tasks (combining auditory perception, mental imagery, and motor 

responses) to measure the order of mental operations across larger areas of the cortex 

(Formisano et al., 2002). Formisano et al. (2002) for example were able to detect sub-TR 

and sub-second delays between multiple regions despite TRs on the order of 2 seconds. 

These studies show that even with longer TRs, it is possible to extract rich temporal 

information from BOLD responses due to the consistent nature of the HDR. Of course, 

this consistency only emerges under specific circumstances, that is, within the same area, in 

response to the same or very similar stimulus. Another method to derive sub-TR timing 

effects that builds on this consistency combines the canonical HDR with its temporal 

derivative in a general linear model (GLM) framework. By comparing the amplitude of 

the temporal derivative to the canonical response, one can determine the relative timing of 

events (Henson et al., 2002; Liao et al., 2002). Building on temporally shifted HDRs, an 

alternative approach entails evaluating model fits between the fMRI time signal and HDRs 

with different time lags, simulating different timings of neuronal events. This approach has 

been argued to potentially lead to a temporal precision spanning the 200ms (Hernandez et 

al., 2002) or even 100ms (Bellgowan et al., 2003) range. In an alternative approach, Sigman 

and colleagues manipulated the relative timing and duration of a series of sequential events 

to jointly consider the magnitude and phase of the BOLD response in order to determine 

timing with 100ms precision (Sigman et al., 2007). By taking advantage of repetition 

suppression effects, Ogawa and colleagues showed that fMRI could even detect modulations 

in the 10s of milliseconds differences when considering cross hemispheric inhibition or 

neural refractory processes due to short interstimulus intervals (Ogawa et al., 2000).

These studies highlight early interest in fMRI temporal dimension. However, in spite of 

these dramatic temporal findings, early reports present a number of limitations. These 

approaches are in fact limited in scope, as they are only applicable to a small subset of 

possible scientific contexts and questions. This limitation is related to a number of factors, 

including the necessarily constrained or highly specific experimental designs, the typically 

large voxel sizes, or very limited fields of view. As such, a clear need emerged for methods 

that allowed for faster sampling in conjunction with whole brain acquisition or, alternatively, 

a limited field of view with substantially higher spatial resolution.

Advancements in MRI

To date, most of the fMRI applications looking to exploit temporal information did 

not have the benefits of fast or sub-second temporal sampling combined with relatively 

high SNR/CNR and large, or even whole, brain coverage (e.g. de Zwart et al., 2005; 

Weilke et al., 2001). In recent years there have been substantial improvements in magnet 

hardware, including an increasing prevalence of ultrahigh field (>= 7 Tesla) strengths and 

improvements in transmit (Wu et al., 2019) and receive coil arrays (Uğurbil et al., 2019). 

The use of higher magnetic fields results in improved image SNR as well as increases 

in the CNR of the BOLD fMRI signal (De Martino et al., 2018; T. Vu et al., 2017). 
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These gains can be traded in for increased spatial resolution (as has historically been the 

case), increased temporal resolution, or some combination of both. The development in coil 

array technology has permitted the spatial encoding of signals via the sensitivity profile 

of the individual coils, with higher channel count coils allowing for more precise spatial 

encoding (Uğurbil et al., 2019). Spatial encoding using information from the RF coil arrays 

means less required spatial encoding from MRI gradient coils or ultimately the feasibility 

of accelerating conventional image acquisitions which rely on gradient encoding alone. 

Multi-channel array coils can be used to spatially encode information during the encoding 

of a single slice, which primarily facilitates the acquisition of higher spatial resolutions, or 

used to encode multiple slices simultaneously, which can significantly improve the temporal 

resolution of the acquisition (Larkman et al., 2001; Moeller et al., 2010).

Simultaneous multi-slice (SMS) or multiband (MB) imaging (Breuer et al., 2005; Feinberg 

et al., 2010; Larkman et al., 2001; Moeller et al., 2010) was introduced to reduce the 

total time needed to acquire a volume by collecting multiple slices simultaneously. This 

led to a revolution in the fMRI field for multiple reasons. While introduced to improve 

the temporal resolution or efficiency, this did not mean that it was only relevant to high 

temporal resolution applications. On the contrary, since higher spatial resolution studies 

were inherently temporally inefficient due to the many more slices required, the introduction 

of MB/SMS actually made higher spatial resolution studies feasible via much more tolerable 

TRs or allowing for increased coverage in field of view limited studies. The method is, of 

course, equally amenable to improving the temporal sampling for a given spatial resolution 

and coverage. By maintaining a constant resolution and coverage, entire volumes can be 

acquired in a fraction of the time – up to 6 or even 10 times faster, as was demonstrated by 

the Human Connectome Project (Uğurbil et al., 2013). Alternatively, MB has been exploited 

by auditory researchers to allow more “dead time” between TRs, enabling longer stimulus 

presentation time in the absence of hardware related acoustical noise (De Martino et al., 

2015). With typical 3T fMRI voxel resolutions (i.e. 2–3mm isotropic), it is possible to 

get whole brain images in less than a second or even under 500ms. Novel acceleration 

methods continue to be developed, pushing acquisition times for reasonable brain volumes 

well below 500 or 100 ms (Chang et al., 2013; Lin et al., 2011; Vu et al., 2018). Collectively, 

the increase in receiver coil elements, improved accelerated acquisition and reconstruction 

methods (Koopmans and Pfaffenrot, 2021), and higher field strengths, all provide an 

encouraging outlook for rapid temporal sampling in fMRI. However, as temporal resolution 

becomes finer, appropriate analytical strategies to deal with these super-fast acquisitions are 

required.

Statistical and Methodological Considerations

Hemodynamic response variability

The conventional HDR has served the fMRI community well and, through parametric 

manipulations and analyses strategies, it is possible to determine sub-TR shifts, even with 

relatively low temporal resolution. However, the shortcomings of the canonical HDR, 

derived from sensorimotor and auditory cortices at 1.5 Tesla with 2.2×2.2×5 mm3 voxels 

(Glover, 1999), are becoming increasingly clear. It has long been known that the HDR can 
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vary depending on the duration of the stimulus (Boynton et al., 1996; Glover, 1999), the 

precise stimulus presented (Boynton et al., 1996; Thompson et al., 2014), and the specific 

region studied (Gonzalez-Castillo et al., 2012; Handwerker et al., 2004; Taylor et al., 2018). 

Statistical approaches, such as adding more basis functions to the conventional HRF to 

account for temporal shifts and dispersion (Friston et al., 1998; Henson et al., 2001; Pernet, 

2014) have improved, but not eliminated, the impact of hemodynamic variability at typical 

sampling rates. Rapid sampling can also mitigate these effects, allowing the HDR to be 

better characterized (Lewis et al., 2018; Lin et al., 2018, 2013). Unbiased estimates of the 

HDR can also uncover elusive temporal features, such as the initial dip (Buxton, 2001), 

which is absent from canonical HDR models.

In modeling the HDR with insufficiently flexible basis functions, or inadequate temporal 

resolution, temporal differences can instead manifest as differences in amplitude, which 

can lead to incorrect inferences (Lindquist et al., 2009). This challenge increases as briefer 

stimuli (i.e. less than 1 second) are used. When stimuli are 1 second or longer, the BOLD 

response tends to add linearly, such that a response to a 2 second stimulus matches the 

summation of a pair of 1 second stimuli (Boynton et al., 2012, 1996). With rapid sampling 

and brief stimuli, the hemodynamic model requires further consideration and models may 

need to be updated to account for these differences. A discussion of the precise shape of the 

HDR under all possible stimulus types, durations and sampling regimes is beyond the scope 

of this paper (see Polimeni & Lewis in the current issue for further consideration of these 

points: Polimeni, and Lewis, 2021).

A potential pitfall for any indirect measure of neural response such as fMRI is the difficulty 

in differentiating between vascular and neuronal temporal dynamics (Bandettini, 2014; 

Drew, 2019). For example, there is the danger of interpreting vascular delays as meaningful 

temporal differences in neuronal responses. Findings that longer time-to-peak is correlated 

with larger FWHM responses appear to uncover venous effects that do not necessarily 

hold neuronal basis (de Zwart et al., 2005). That is, hemodynamic signaling delays and 

blood transit time lead to larger and sluggish responses in the superficial venous drainage, 

a factor that should be considered when averaging within regions of interest for example. 

As such, extracting neuronally relevant temporal information from BOLD fMRI data can be 

challenging.

Regional variability, as measured by breath holding induced hypercapnia experiments, 

suggest that vascular delays vary across the human brain (i.e. up to +−5 seconds; Chang et 

al., 2008; Moia et al., 2021), though this range values can reflect draining veins, such as the 

superior sagittal sinus (Chang et al., 2008). These effects can be measured, and potentially 

accounted for to reduce their deleterious impact (Erdoğan et al., 2016). Moreover, this 

variability is highly regional and experiments with reversed stimulus orderings suggest 

that fMRI can successfully capture interregional latency differences (Lin et al., 2013). 

Alternatively, one can examine ipsi- and contralateral activation, as the approximate left/

right symmetry of the brain yields similar responses at zero delay (Yeh et al., 2013) (though 

there is of course variability at finer scale Lin et al., 2018; Park et al., 2019).
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Beyond these effects, care must be taken to distinguish between delays due to the processing 

of stimuli within a region and delays in processing between regions. For example, even in 

a relatively simple visually cued button response task, there are a number of latencies to 

account for: the latency between visual input and neural firing in the visual cortex (~30ms), 

the onset of detectable BOLD signal changes (~2000ms), the conduction and processing 

time between V1 and the SMA and on to motor cortex, as well as the conduction time from 

M1 to the appropriate muscle groups (~120ms) (Menon et al., 1998). Additional latency 

differences can occur as stimuli take longer to process and identify, revealing putative 

increases in neural processing (Bellgowan et al., 2003).

While optimal experimental design for such techniques is beyond the scope of this 

manuscript, estimation of the HDR, and thus its actual parameters such as onset time 

and time-to-peak, is improved using short stimuli with jittered interstimulus intervals (Birn 

et al., 2002; Dale, 1999). In addition to improving estimations of the underlying HDR, 

there appear to be other reasons to prefer brief stimuli (<=1s), as these may be associated 

with fewer vascular artifacts and greater temporal precision (Hu et al., 1997; Menon and 

Kim, 1999). Analyses appear to benefit from a focus on a consistent onset and rise (such 

as time to half) of the fMRI response, as other measures such as time to peak or the 

post-peak portion of the response may reflect contributions from ongoing or prolonged 

activity, rather than initial response to the stimulus (Bellgowan et al., 2003; Menon et al., 

1998). Alternatively, differentiating the timing of neuronal processing across tasks and or 

stimuli can be performed in the typical GLM framework by using a canonical response in 

addition to derivatives (Henson et al., 2002).

Statistical implications of faster TRs in fMRI

Shorter TRs can extract timing information of cognitive processes (such as face processing 

(Gentile et al., 2017) and can lead to more precise parameter estimates, higher tSNR, and 

larger t-statistics (G. Chen et al., 2015; McDowell and Carmichael, 2019; Posse et al., 

2012), which can be loosely defined as the estimated amplitude of the BOLD response (or 

contrast) divided by the model’s standard error. Other works find more modest effects, with 

limited benefits due to faster sampling (Bhandari et al., 2020; Demetriou et al., 2018). These 

mixed results may suggest that faster sampling combined with typical analysis methods are 

unlikely to give large benefits, however this should not be a cause for concern. The primary 

issue at hand is that most comparisons between conventional BOLD fMRI and faster 

sampling MB based BOLD fMRI have not considered an exhaustive comparison of how 

the removal of structured noise (discussed below), could improve results. In addition, these 

papers use the canonical HDR rather than customizing the response for each participant, 

task or voxel. Finally, these papers consider, by and large, typical analyses strategies 

examining groups of subjects. While these analysis strategies are valid and widely used, 

they may miss or average out the effects that are most interest to rapid fMRI researchers. 

Unsurprisingly, the benefits of faster sampling may require additional processing steps or 

special considerations to fully gain the benefits or appropriately handle the corresponding 

tradeoffs.
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The increase in temporal samples is the most obvious benefit of faster sampling, which is 

typically equated with a one-to-one increase in degrees of freedom. However, individual 

volumes of fMRI data are not statistically independent, and instead exhibit a strong temporal 

autocorrelation, which must be accounted for in order to produce valid inferences (Bullmore 

et al., 1996) when using the typical t-statistic/p-value approach. Failure to do so will 

result in an artificial inflation of statistical power, especially for GLM related contrasts and 

associated p-values. In conventional fMRI, this problem is often addressed using relatively 

simple autoregressive models (i.e. AR(1)) (Friston et al., 2002), which attempt to estimate 

the amount of autocorrelation in the timeseries using only one preceding timepoint. While 

this appears to be valid for 2 to 3 second sampling rates, it is inadequate for second to 

sub-second TRs, leading to inflated t-statistics (see Figure 1D) and concerns about false 

positives (Bollmann et al., 2018; Chen et al., 2019; Lenoski et al., 2008; Olszowy et al., 

2019; Purdon and Weisskoff, 1998). On the other hand, beta values, reflecting BOLD 

response amplitude, are minimally changed by accounting for temporal autocorrelations (see 

Figure 1C). As sampling rates increase, the relative contribution of thermal noise increases 

(due to lower SNR from shorter TRs) and autocorrelation effects span more volumes (Chen 

et al., 2019). Modeling physiological noise using methods such as RETROICOR (Glover et 

al., 2000; Olszowy et al., 2019), can lead to whiter residuals, however it does not fully solve 

the autocorrelation issue (Bollmann et al., 2018), so these more advanced methods are still 

required.

In dealing with autocorrelation correction, estimating parameters on a voxel by voxel or 

tissue by tissue basis is preferred for accuracy (Eklund, Anders et al., 2012; Lenoski et 

al., 2008) This is due to variability in the amount of temporal autocorrelation across the 

brain (Kaneoke et al., 2012), particularly between grey and white matter (Worsley et al., 

2002). While the basic AR(1) is insufficient, there is not a clear answer as to what model 

order is required. AFNI uses a voxel-wise autoregressive moving average (ARMA(1,1)) 

(Chen et al., 2012), which combines the AR(1) model with a moving average (MA(1)) 

component to account for the presence of thermal noise in the fMRI timeseries. This 

relatively simple addition appears to perform well, even at sampling rates as low as 

645 milliseconds (Olszowy et al., 2019), though there is potential for improvement. In 

contrast to the default AR(1) model, SPM has recently implemented a method called FAST, 

which uses a collection of exponentially decaying functions and their derivatives to fit the 

timeseries autocorrelation, which also successfully reduces false positives (Corbin et al., 

2018; Olszowy et al., 2019). Fitting complex AR models for each voxel does raise statistical 

as well as computational concerns. While higher AR models (i.e. considering more time 

lags) can be used to effectively account for autocorrelation, estimating higher and higher 

model orders is computationally inefficient and may result in overfitting, leading to spurious 

estimates (Bollmann et al., 2018). A recently developed approach nicely handles both 

the voxel-by-voxel fitting and excessive model order concerns by using methods based in 

information theory to select the autoregressive model order, rather than using a modification 

of the AR(1) approach (Luo et al., 2020). Tested against resting state data with 300 and 

500ms TRs as well as simulated data they show that this method successfully controls false 

positives, though model orders as high as AR(10) may be required.
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Collectively these findings show that, as sampling rates increase, the field should consider 

autocorrelation approaches that estimate use higher model orders and perform estimates on 

a voxel-by-voxel basis. These concerns, which primarily relate to conventional GLM-based 

approaches for statistical inference, apply not only to fast TR data, but to fMRI in general, 

and become more apparent in extreme cases, such as that of ultra-fast fMRI.

One frequent approach, equally applicable to standard and fast fMRI, that effectively 

circumvents the above considerations related to the inflation of statistical power, is the 

implementation of independent 2nd order inferential statistical tests. When carried out across 

sufficiently large samples, straightforward group inferences may be minimally affected by 

inflated single subject statistics (Bhandari et al., 2020; Kirilina et al., 2016). For other cases, 

more advanced analyses can be performed at the within-subjects level, across, for example, 

single runs estimates of BOLD responses, which may benefit from denser time course 

sampling. Univariate (e.g. Dowdle et al., 2021) and multivariate (e.g. Kriegeskorte and 

Bandettini, 2007; Vizioli et al., 2020a) parametric tests using subjects or runs as independent 

observations are in fact routinely used. Nonparametric statistical approaches, such as 

bootstrap confidence interval that make fewer assumptions about the data distribution, thus 

avoiding many of these concerns, are also a valid alternative. In other words, the concerns 

about inflation of statistical power with ultra-fast fMRI are primarily rooted in GLM-based 

statistical inferences. These concerns can be mitigated by assigning statistical significance 

on the basis of empirical p-values that are derived from independent estimates of BOLD 

activation, such as different subjects or experimental runs, rather than using GLM contrast-

based p-values. When considering statistics derived from separate runs for example, it is 

also more straightforward to examine individual differences in space and time, which are 

necessarily blurred when many subjects are combined.

In summary, fMRI’s increased temporal resolution, which allows a better characterization 

of BOLD responses, also leads to a significant increase in the number of temporal samples, 

introducing an additional degree of complexity in analyzing and interpreting ultra-fast data. 

However, there are a number of more or less refined strategies to deal with these additional 

complexities, that can also be circumvented using non GLM-based inferential statistic, 

allowing exploitation of fast-TR data.

Empirical effects of faster sampling rates.

Though a number of questions remain about the best methods to use and how acquisition 

strategies will alter metrics such as tSNR, some of these effects can be readily demonstrated. 

Here we show evidence of these statistical considerations with a dataset collected at 7T, 

using visual stimuli consisting of faces at varying phase coherence levels.

Four (2 female) healthy right-handed subjects (age range: 18–31) participated in the study. 

All subjects had normal, or corrected vision and provided written informed consent. 

The local IRB at the University of Minnesota approved the experiments. In the scanner, 

participants were instructed to perform 2 tasks: face detection and fixation. In the former, 

we varied the phase coherence of the face stimulus from 0% to 40% coherence (10% step 

size) and participants were instructed to respond as quickly as possible by pressing one of 2 

buttons on a button box to indicate whether they perceived a face. In the latter, participants 
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were instructed to press one of the 2 buttons on the button box when the fixation color 

changed to red. Every 500 ms, the fixation changed to one of five colors (red, blue, green, 

yellow or cyan) in a pseudorandom fashion, avoiding consecutive presentations of the same 

color. The frequency of button presses was kept constant across tasks. Visual stimuli were 

identical across tasks in order to examine differences based only on attentional effects. Tasks 

were blocked by run and counterbalanced across participants.

We acquired 3 runs per task. Each run lasted approximately 3 mins and 22 secs and began 

and ended with a 12-second fixation period. Within each run, we showed 40 images (5 

phase coherence levels x 4 identities x 2 genders) presented for 2000 ms, with a 2000 ms 

interstimulus interval (ISI). Importantly, we introduced 10% blank trials (i.e., 4000 ms of 

fixation period) randomly interspersed amongst the 40 images, effectively jittering the ISI.

All functional MRI data were collected with a 7T Siemens Magnetom System using a 1 by 

32-channel NOVA head coil. BOLD fMRI data were collected using 4 unique sequences 

varying in TR from 1000 to 323ms (Table 1). For each sequence, parameters were adjusted, 

including spatial resolution, in order to produce images with comparable signal to noise 

ratios (SNR) despite changes in TR. The flip angle was chosen to match the Ernst angle 

independently for participant and sequence. The dataset with a 1s TR dataset was used to 

create the visual cortex regions of interest used in the following sections, using the contrast 

to non-zero faces, and adjusting the threshold until voxels that were in early visual cortex 

were isolated. These maps were then resampled for the more rapid acquisitions. While it 

would be preferable to use a separate localizer, as this circular selection does lead to a 

bias in favor of the slowest sampled dataset (1000ms), this bias cannot explain our primary 

finding of benefits in faster sampling (see below).

We processed the data in AFNI, performing slice time, motion and distortion correction 

and automated alignment to each participant’s anatomical image. Example images from 

each TR are shown in Figure 1, panel A. The images are similar, with the primary visible 

difference due to the voxel size. In order to confirm that the chosen sequence parameters 

successfully produced images with comparable SNR despite the changes in spatial and 

temporal resolutions, following (Dietrich et al., 2007), we calculated an image SNR metric 

by dividing the mean signal intensity in the gray matter by the standard deviation of the 

background (i.e. “noise”) signal.

Gray matter was defined using a mask of the cortical ribbon derived from FreeSurfer 

(Fischl and Dale, 2000) and resampled for the varying spatial dimensions of each of the 

acquisitions. Background signal was taken as the standard deviation within a sphere of 9mm 

radius, positioned outside of the head and regions of ghosting. Image SNR values were 

comparable across sequences, with a slight bias towards the 1000 ms TR, 1.6 mm isotropic 

voxel protocols (i.e. the HCP protocol). This is not surprising in light of the extensive effort 

(Glasser et al., 2016) devoted to optimizing the HCP acquisition pipeline (however note the 

largely overlapping error bars in Figure 1A).

Next, we computed the voxel-wise acquisition specific TSNR, defined as the mean of the 

signal in each run, after detrending with polynomials up to order 3, divided by the standard 
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deviation. tSNR maps were warped into standard space independently for each sampling rate 

and averaged (Figure 1B). In contrast to image SNR, the tSNR shows increases as faster 

sampling is used. The highest tSNR is found for the most rapid acquisition and particularly 

in cortical areas. This is likely due to a number of factors, including reduced aliasing of 

physiological noise, better estimates of motion, better sampling of the HDR in addition to 

larger voxels (see below). Note that in the present dataset we chose to maintain identical 

acceleration factors across acquisition types in order to reduce the confound of SNR changes 

that can arise due to increased rates of acceleration (L. Chen et al., 2015). Furthermore, 

increases in tSNR are expected to saturate even as SNR continues to increase (Triantafyllou 

et al., 2011), implying that it is necessary to look beyond the tSNR metric in order to 

evaluate the benefits of increased temporal sampling.

In order to examine the statistical properties of the data, each run was scaled to have a 

mean of 100 and we then performed a GLM using the canonical HDR as implemented in 

AFNI (‘SPMG1’). The resulting beta and t-statistic maps were then warped into standard 

space and averaged for visualization purposes. Figure 1 panel C shows the mean beta 

values (only voxels with average t-statistic corresponding to p>0.01 are shown) from the 

contrast of all nonzero phase face stimuli versus baseline, conducted without (top) and with 

autocorrelation correction (bottom). Consistent with expectations, beta values show minimal 

differences between these two approaches, however, large differences are seen between 

different repetition times. In the 1000ms acquisition, the activation patterns show fine scale 

detail and larger amplitudes relative to the faster TRs, which also used larger voxel sizes, 

leading to partial volume effects. Though there is a loss of spatial precision due to the design 

of this experiment, there are benefits of rapid temporal sampling which will be discussed in 

further detail in a subsequent section.

In contrast to the lack of differences between betas, Figure 1, panel D shows the t-statistics 

maps from the two respective models. While a TR of 1000ms has very similar t-statistics 

between the two different approaches, larger differences are seen for the faster TRs. Two 

directly related effects are observed. First, the activation extent is reduced, as fewer voxels 

survive the arbitrary p<0.01 threshold. Second, the magnitude of the t-statistic is reduced, 

particularly in the case of the 323ms dataset, when autocorrelation correction is used. The 

peak magnitude of the t-statistics are reduced as the autocorrelation correction reduces the 

inflated t-statistics.

It should be noted though that, in light of the concomitant changes in temporal sampling 

rates and spatial resolutions across sequences, the observed tSNR gains are due, in part, to 

the larger voxel sizes, which increase as TRs get faster. In order to examine this possibility, 

the 1000ms data were smoothed, in Fourier space, to produce 3mm-equivilent data and 

resampled. These simulated 1000ms, 3mm data were then subjected to identical processing 

and analysis steps. tSNR was calculated as before showing that much, but not all, of the 

tSNR gains seemed to be related to voxels volumes (Figure 2A). Importantly, the activation 

extent (Figure 2B,C) and the peak of the t-statistic values remained significantly larger for 

the rapidly sampled data (Figure 2C), even when accounting for temporal autocorrelation. 

These findings suggest that the larger voxels do contribute to the higher tSNR measures, 

however the improvements above and beyond the smoothing effects support the conclusion 
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that at least part of the observed improvements are related to faster sampling. As mentioned 

previously, these improvements could be related, amongst other things, to better sampling 

of the HDR (thus capturing more information) or reducing the relative impact of sudden 

subject movements.

Collectively these results highlight how, in an acquisition strategy where image SNR is 

matched across different protocols, temporal SNR can still increase with faster sampling 

rates and, additionally, reasonable patterns of activation can be generated for each 

acquisition. These findings also show the wide range of spatial-temporal scales available to 

investigators. One could also imagine reducing the coverage in order to achieve comparable 

temporal resolutions for a given spatial resolution, thereby gaining benefits of both increased 

spatial and temporal sampling.

Denoising approaches can benefit from faster sampling

High frequency physiological noise arises primarily from the oscillatory nature of cardiac 

pulsations, which are typically around 1 Hz (Chen et al., 2019). In addition, there are slower 

physiological noise sources which include variation in the heart rate (Chang et al., 2009), 

respiration (Birn et al., 2008) and linked factors such as arousal (Chang et al., 2016). While 

traditional fMRI sometimes samples fast enough to capture variance driven by processes 

such as respiration (TR of ~1.5s), cardiac signals require substantially faster (<500 msec) 

acquisitions. Under the slow TR fMRI framework these signals do not disappear, but are 

instead aliased into lower frequencies, corrupting the portion of the spectrum in which task 

responses or resting state fluctuations appear. With sufficiently fast sampling rates, it is 

often believed that it is possible to remove the unaliased physiological signals via filtering, 

however, this ignores higher order harmonics (Chen et al., 2019). Encouragingly, modeling 

methods that use cardiac and respiratory recordings can be used (Glover et al., 2000; Kasper 

et al., 2017) to generate regressors that capture and remove physiological noise. A limitation 

of this approach is that researchers often do not collect physiological recordings or are 

unable to acquire sufficiently clean recordings. Of course, if the physiological signals are 

corrupting the data, perhaps it is possible to derive the waveforms in a data driven manner. 

This idea was present in the early days of fMRI, with work using the phase information 

present at the center of k-space (‘frequency’ space, i.e. the Fourier transform of the image) 

to estimate respiratory and cardiac signals (Le and Hu, 1996). Recent work has conceptually 

built on this approach, reconstructing these physiological signals in a data driven manner 

when TRs are sufficiently short. Using an approach labeled HRAN, a statistical model of 

harmonic regression with autoregressive noise, Agrawal and colleagues show that with fast 

enough sampling, estimates of cardiac and respiratory noise can be produced from the fMRI 

data alone (Agrawal et al., 2020). These estimates performed as well as physiological noise 

regressors from RETROICOR and did not require separate physiological noise recordings.

Another approach involves examining time lagged correlations of the cardiac trace, as 

measured from pulse oximetry, in order to map its time lag across the brain (Tong et 

al., 2014). When sampling is sufficiently fast, it can be seen that the cardiac signal has 

effects across the whole brain, though the timing varies – an observation that requires 

rapid sampling to examine. This method can also be used to examine the low frequency 
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fluctuations that are present in fMRI data, and again requires rapid sampling to reduce the 

aliasing of cardiac and respiratory signals into the lower frequencies of interest (Hocke 

et al., 2016). Though some harmonics may remain aliased even at fast sampling rates, 

there is a clear benefit of faster sampling in uncovering and potentially removing these 

confounding effects. At a minimum, fast sampling reduces the amount to which high 

frequency physiological noise components are aliased into the lower frequencies which are 

typically of interest for fMRI.

In addition, structured noise (which include noise from sources such as bulk motion) 

removal processes do appear to benefit from shorter TRs. With fast sampling, independent 

component analysis (ICA) methods appear to have more success in removing physiological 

noise and motion (Boubela et al., 2014; Griffanti et al., 2014), which can be applied in 

both task and resting state analyses. Multi-echo fMRI, a method that captures multiple 

“exposures” of the BOLD contrast in a single volume acquisition, can be combined with 

ICA methods for denoising (Kundu et al., 2012). With multi-echo fMRI contrast, denoising 

can be done based on whether there is a dependence of the signal on the echo time and 

then classifying signals as either BOLD or noise-like effects (Kundu et al., 2017, 2012). 

Multi-echo denoising used with ICA can also benefit from faster sampling rates (Boyacioğlu 

et al., 2015; Olafsson et al., 2015). Other denoising methods, such as GLMDenoise (Kay 

et al., 2013), which uses cross validation across multiple runs and derives noise regressors 

using principle component analysis (PCA) after determining a subject specific HDR, is 

also expected to perform better with faster sampling. Broadly speaking, any method which 

attempts to partition out insufficiently sampled temporal components of the signal is 

expected to benefit from faster sampling.

In addition to structured noise sources as discussed above, thermal noise is also a concern 

in fMRI. Thermal or system noise is Gaussian in nature and its relative contribution to the 

image increases with finer spatial sampling (Triantafyllou et al., 2011, 2005) or with the use 

of accelerated techniques (Todd et al., 2017). In rapid temporal sampling, lower flip angles 

are used, reducing the (arbitrary) signal intensity (in a given volume of tissue) of the image 

and its ratio to thermal noise. Unlike physiological noise sources, which are more detectable 

with faster sampling, there is no such benefit for thermal noise. Retrospectively, the thermal 

noise contribution in fMRI has typically been suppressed using spatial smoothing, which 

necessarily reduces spatial precision and can erroneously shift peak activation (Geissler et 

al., 2005; Jo et al., 2008; White et al., 2001). In high-speed fMRI, this may be even less 

desirable, as spatial resolution sacrifices have already been made to achieve the desired 

temporal resolution. Recent developments have led to methods that use low-rank patch 

based PCA methods to remove, in part, noise that cannot be distinguished from Gaussian 

(i.e. thermal noise) in the fMRI timeseries (Vizioli et al., 2020b). This method, known as 

NORDIC, can lead to increased t-statistics without the image blurring that is associated with 

spatial smoothing (Vizioli et al., 2020b).

Here we show, using the previously introduce 323 millisecond dataset, that the NORDIC 

method is able to suppress thermal noise in rapidly sampled data. The NORDIC method 

was applied to these data before any processing. Subsequently, identical processing 

methods were applied to the images (see Empirical effects of faster sampling). This led 
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to substantially less variance in the timeseries, and additionally, following the suppression of 

thermal noise, the contribution of physiological noise sources is clearer (Figure 3). The top 

left shows this for a single subject single voxel case in which the reduction of noise in the 

timeseries is clear, while the overall structure remains intact. This effect is apparent in the 

frequency domain after a fast Fourier transform (FFT), in which the respiratory (at ~0.3Hz) 

and cardiac (~1Hz) frequency peaks can be clearly distinguished after NORDIC but are 

buried in the high levels of thermal noise in the original data. These effects are also clear in 

the data after meaning over 419 voxels in the visual cortex ROI. While the mean timeseries 

are nearly identical, the FFT plot shows a clear reduction in power across a broad band of 

frequencies. As faster sampling become the norm, there is a clear need for methods that 

are able to suppress the relatively larger contribution of thermal noise. This is particularly 

true for the higher signal frequencies that are of interest and often contain physiological 

information that may be difficult to resolve due to thermal noise.

Collectively, these findings show that there is a synergistic effect of faster sampling and 

denoising. These methods, whether they are tuned to remove physiological noise, other 

structured noise, or even thermal noise, appear to benefit from the increased dimensionality 

and reduced temporal aliasing achieved with fast fMRI acquisitions. This in turn produces 

better estimates of the hemodynamic response, higher t-statistics, and/or better parameter 

estimates (Bhandari et al., 2020). For example, going from a sampling rate of 1000ms to 

323ms reduced the variance in single trial beta estimates, yielding a 57% (±6.2%) reduction 

in the standard deviation across trials for the 40% phase condition in the visual cortex ROI. 

The subsequent applications of NORDIC in the 323ms dataset, led to a further reduction of 

9.5% (±6%) in the standard deviation of single trials, consistent with the effects described 

in prior work (Vizioli et al., 2020b). More work is required to sufficiently tease apart the 

benefits and downsides of faster imaging, as it is plausible that optimal analyses strategies 

will lead to more substantial analytical gains that have yet to be realized using methods that 

were developed for much slower sampling rates.

Sampling rate interactions with common preprocessing steps

Estimating and correcting for motion is a critical step in the fMRI analysis pipeline. Faster 

sampling can allow for a more precise snapshot of motion, depending on the time scale 

of the motion relative to the TR. Volumes are aligned to one another, typically using a 

least-squares rigid body approach (i.e., 6 degrees of freedom), which reduces but does not 

entirely remove the effects of movement. Faster imaging could lead to more accurate motion 

estimates since motion might be captured instead of aliased, producing better outcomes after 

motion correction. However, there is a concern in that motion parameters in fast sampling 

regimes suggest that participants are constantly moving, with previously unnoticed motion 

occurring in the phase-encode direction of the EPI scan (Power et al., 2019). These effects 

have been studied, finding that they are due to a number of factors (Fair et al., 2020; Power 

et al., 2019). Namely, respiration is driving motion effects that are both “real”, in that the 

head is moving due to breathing, as well as apparent motion of the head resulting from 

magnetic field shifts due to movement of the chest during breathing (Power et al., 2019; 

Raj et al., 2001). In order to appropriately correct for motion, it may be necessary to notch 

filter the motion estimates in the respiratory band (Fair et al., 2020). Alternatively, it may be 
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possible to correct for the effects of respiration at the time of acquisition either with dynamic 

shims (corrections for magnetic field distortion) applied during data acquisition (Stockmann 

and Wald, 2018; van Gelderen et al., 2007) or in a data-driven manner (Durand et al., 2001).

One other consideration is the impact of the slice timing correction. In typical 2D 

acquisitions, each slice (or slice group for multiband) is acquired at a unique point in 

time, however, the entire volume is considered a single timepoint by default. Particularly in 

event related studies (Sladky et al., 2011) correcting for within volume differences in timing 

improves accuracy and can be critical. The process of doing this does incur some penalty 

due to the necessity of interpolating the unmeasured timepoints and recent work has shown 

that slice-timing prior to motion correction can yield incorrect motion estimates, reducing 

the magnitude of sudden movement in particular (Power et al., 2017). With faster temporal 

sampling, the need for slice timing corrections, and thus interpolation, is reduced (Sahib et 

al., 2016; Sladky et al., 2011) or even eliminated.

Neural Dynamics

Relationship between sampling and task effects

Faster sampling can also improve task separation. While amplitude has long been used as the 

key separator for task activation within the general linear modeling (GLM) framework, two 

slightly shifted HDRs can have identical amplitudes, despite very different response profiles 

(Lindquist et al., 2009).

Unbiased deconvolution models, such as those using finite impulse response (FIR) 

approaches, which directly estimate the HDR, have allowed for detailed investigations into 

the temporal dynamics of the BOLD signal. Under the FIR framework, a researcher selects a 

temporal window, or the number of TRs they expect the stimulus response to last, in which 

to estimate effects (Dale, 1999; Glover, 1999; Ollinger et al., 2001). The design matrix for 

the GLM then consists of a series of delta functions corresponding to the length of the 

time window multiplied by the number of unique stimulus conditions. This flexible and 

unbiased (i.e., no assumption of shape is made) approach produces a series of betas for each 

stimulus condition after the GLM, corresponding to the temporal estimates of the HDR. 

This approach can be used to deconvolve stimulus responses without making assumptions 

about specific shapes (Glover, 1999; Lewis et al., 2018). While FIR computations avoid 

mismodeling and mistaking temporal differences as amplitude effects, they do have the 

potential to overfit noise (Kay et al., 2008; Lindquist et al., 2009). Thus, their usage requires 

careful consideration of data quality and the chosen temporal window.

Empirical demonstration of the benefit of faster sampling: 1. Identifying task differences 
over time

To demonstrate the benefit of rapid temporal sampling within the FIR framework, which 

can be used to uncover differences between tasks that may be overlooked with slower 

sampling rates, we examined the multiple TR dataset introduced previously. In contrast to 

the GLM using the canonical HDR, we conducted a GLM using the finite impulse response 

(FIR) approach with a window of approximately 12 seconds in response to the 5 stimulus 
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conditions (0 to 40% phase) for the separate face detection and fixation detection runs. We 

then extracted the FIR responses from a ROI that consisted of the primary visual cortex 

and compared all voxels FIR responses across all phases for the face detection against the 

fixation task (Figure 4).

Our data indicate that as sampling rates increase, a more precise characterization of the HDR 

leads to a more precise quantification of temporal differences across tasks. Consider the 1 

second TR acquisition (Figure 4, First column) in which 2 timepoints corresponding to peak 

of the curves can be seen as differentially responding to the 2 tasks (shown in different 

colors - column 1, lower; non overlapping error bars). For the 1 second TR, the HDR 

elicited by the face detection and fixation task are nearly perfectly overlapping, indicating 

no temporal differences across tasks. As we examine time courses with faster sampling, 

not only do we see more timepoints differentially responding to the 2 tasks (culminating in 

in 12 or more timepoints at a sampling rate of 0.323); but also, importantly, we begin to 

appreciate differences in the temporal structure of the HDRs (Column 4). More specifically, 

the response elicited by the fixation task drops off faster than that elicited by the face 

detection task (clearly seen for the .414 s and the .323 s TRs). Though preliminary, these 

findings highlight one of the benefits of rapid sampling in increasing the discriminability of 

task effects on the basis of HDRs estimate and show how this effect varies over the duration 

of the response.

Moreover, as we sample data faster more prominent temporal structure can be appreciated. 

For example, for the fixation task, the amplitude of the initial dip increases as a function or 

temporal resolution, ranging from an average amplitude of approximately −.01±0.036 (mean 

± standard error) for the 1 second TR to −0.093±0.047 for the 0.323 second TR (Figure 

5, Top). Here we are showing an improved ability to detecting early temporal structure 

(i.e., initial dip) as TR decreases, however, these datasets varied across several parameters, 

including in their spatial resolution and tSNR characteristics. This was done to ensure that 

image SNR was maximized and comparable across protocols (see Figure 1). To further 

compare temporal characteristics across temporal resolutions only (that is, keeping all other 

parameters constant), we simulated 3 slower TR datasets by downsampling the 323ms data. 

These were produced by averaging 2, 3 or 4 neighboring timepoints to produce simulated 

data with effective TRs of 646, 969 and 1292ms. Identical processing method and analyses 

were conducted to determine how this change in sampling affected the observation of the 

initial dip (Figure 5, middle row). Despite being derived from the 323ms data, which possess 

a robust initial dip, we observed that downsampling the data dramatically reduced (646ms 

data) or eliminated this effect (969 or 1292 data). These findings suggest that sampling 

rates are driving these effects, and it is not an artifact of the changing voxel size or tSNR 

characteristics.

More importantly, also as a function of temporal resolution, our analyses indicated early 

emergence of attentional differences during the period of the initial dip. We found that, for 

the fastest resolution only, all subjects showed task differences emerged as early as 5 TRs 

(i.e., ~1.62 secs) after stimulus onset (Figure 5, Bottom row), with larger responses (i.e., 

more negative) for the fixation (amplitude: −0.095±0.053 at TR 5) than the face detection 

task (amplitude: 0.01±0.027 at TR 6). These timings are consistent with those reported for 

Dowdle et al. Page 16

Prog Neurobiol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the initial dip (Hu et al., 1997; Menon et al., 1995) and suggest that sufficient temporal 

sampling is required to detect such rapid and (across all subjects – see Figure 5) small 

attentional effects.

The initial dip, which was noted to begin within the first second of a BOLD response (Hu et 

al., 1997; Menon et al., 1995), has been difficult to confirm (Buxton, 2001), with a number 

of studies not being able to identify this temporal component, despite ample averaging 

(Fransson et al., 1999, 1998). A number of variables have in fact been attributed to the 

presence or absence of the initial dip, including field strength, task timing, stimulus type, 

echo time and spatial and temporal dimensions of the sampled data (Hu and Yacoub, 2012; 

Watanabe et al., 2013) and it is reasonable to expect that these causes can interact. It is, of 

course plausible that subtle differences between the task conditions in early visual cortex are 

giving rise to temporal differences in the initial dip and more generally across the HDR. As 

such, with typical acquisition strategies this effect is missed (Figure 4, first column), leading 

to incorrect assumptions about task demands or task effects. Here we report that attentional 

differences related to task can also be visible in the initial dip, which has been suggested 

to reflect more localized neuronal responses (Hu et al., 1997; Menon et al., 1995; Yacoub 

and Hu, 2001). While this observation further supports the value of temporal information in 

fMRI, the size, transient nature, individual differences and magnitude of these effect further 

advocate the need to continue developing tailored tools to extract this information.

As the data presented here are meant to provide insights into the temporal dimension of 

BOLD responses, a thorough neuroscientific interpretation of these results is beyond the 

scope of this work. However, the differences in the amplitude of the initial dip across tasks 

could be related to response inhibition during the fixation task, where faces are considered 

as distractors and must be suppressed.

Generally, we report both early (i.e. 5 TR after stimulus onset) and late (after the HDR peak) 

latency differences become clearer as temporal resolution increases. Albeit preliminary, due 

to the small N, these promising results suggest that, if fine grained temporal information 

is available, faster temporal sampling may uncover additional temporal structure or stimuli 

related effects that were previously overlooked. Of course, finding such effects may require 

specific analysis strategies tailored for voxel wise HDRs and single trial estimates of 

responses.

Temporal dynamics in fMRI

Historically, rapid (i.e. sub-second) temporal dynamics in fMRI have been for the most part 

neglected due to the inability of acquiring rapidly sampled data in conjunction with both 

reasonable spatial resolution and/or whole or near whole brain coverage. More recently, 

optimizations in both software and hardware have allowed the recording of functional 

images with unprecedented spatial and temporal resolutions, while maintaining reasonable 

SNR and CNR. Consequently, more and more attention has been devoted to statistical 

analyses of TR-to-TR fluctuations in the sub-second regime.

For example, in the realm of spatial analyses, considerable attention has been given to spatial 

clustering (Cox et al., 2017; Eklund et al., 2016; Hayasaka and Nichols, 2003; Nichols, 
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2012), including using Monte Carlo methods (Cox et al., 2017). Advanced multivariate 

methods have also been developed to account for spatial patterns of activity (Haxby et al., 

2014, 2001), including using search light approaches (Kriegeskorte et al., 2006). Notably, 

these spatially oriented methods can also benefit from temporal detail. For example, Vu and 

colleagues demonstrated that accurate word timing, made possible by fast TR fMRI data, 

improved the performance of multivoxel pattern analyses (MVPA) (Vu et al., 2016).

Recently, however, there has been some development in methods which directly consider 

temporal dynamics. For example, when considering deconvolution approaches, it is 

necessary to correctly deal with the multiple levels of statistical interdependence. A voxel-

wise, linear mixed modeling approach was developed to examine both where and when 

statistical differences occur in complete HDRs (G. Chen et al., 2015). The benefit of this 

method is that it allows the statistical examination of a full curve, rather than summarizing 

the multiple parameter estimates via averaging or area-under-the-curve calculations. This 

becomes increasingly important as sampling rates and thus the number of timepoints 

estimated in the deconvolution increase.

Analogous to multivariate pattern analysis for spatial maps, a recently developed method 

considers the temporal corollary of this, termed temporal MVPA (tMVPA) (Vizioli et 

al., 2018). tMVPA uses single trial response time courses or single run FIR estimates 

to compute single trial Representation Dissimilarity Matrices (RDM) independently per 

condition within a given ROI. To infer statistically significant differences across time 

courses, tMVPA builds on a sliding window approach (extensively tested on real and 

synthetic data elsewhere – Vizioli et al., 2018) that allows for the precise identification 

of the temporal window of an effect and whether this encompasses only a few time points 

or is sustained over a larger time window. Multivariate analyses methods have been shown 

to have increased sensitivity for the analyses of spatial maps (Kriegeskorte and Bandettini, 

2007; Vizioli et al., 2020a) in fMRI. There is evidence that this is also the case for the 

temporal domain, with prior work finding earlier identification of statistically significant 

task differences on both real (Ramon et al., 2015) and synthetically simulated data (Vizioli et 

al., 2018).

Partial windowing of temporal effects

Partial volume effects (i.e. when the prescribed voxel size is not small enough to capture 

only a single tissue) are often discussed in the fMRI literature. This describes a phenomenon 

in which a single voxel can have contributions from multiple tissue types, or from two 

nominally independent cortical layers (Siero et al., 2013). In the temporal domain, a 

parallel manifestation of this is aliasing of oscillatory signals due to sampling slower than 

the Nyquist frequency. This is typically considered in the context of physiological noise 

regressors, such as cardiac pulsation (Chen et al., 2019). For example, cardiac signals, 

which tend to range between 0.8 to 1.5Hz require rapid sampling rates in order to avoid 

aliasing, even faster than what is used for increasingly common sub-second TRs. While 

rapid sampling does improve the fidelity of these signals and aid in their removal (Chen 

et al., 2019; Tong et al., 2014) we wish to highlight additional considerations beyond 

undesirable physiological noise.
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Unlike periodic physiological signals, there is often little consideration of any loss of task 

relevant BOLD signal information due to insufficient temporal sampling. However, given the 

rich dynamics of the BOLD signal and the short delay between a stimulus and a potential 

initial dip or initial rise in signal intensity, there is a risk that insufficient sampling rates 

can lead to “partial windowing” of temporal signals of interest. This effect can manifest 

due to their short duration and magnitude, as is the case for the initial dip. To some extent, 

this can be mitigated by jittering the stimulus onset with respect to TR (Amaro and Barker, 

2006; Dale, 1999; Miezin et al., 2000; Watanabe et al., 2013), but this requires jittering with 

sufficient time steps in order to capture all temporal aspects of interest, i.e. on the order of 

500 ms or shorter. Considering the duration of a conventional HDR (on the order of 20s), 

this would require multiple stimulus presentations to capture a single “full” HDR, producing 

overly long scan times or reduce repeats of the stimulus. This is also not to say that faster 

acquisition times cannot take advantage of jitter, however, they would require substantially 

fewer variants of the stimulus timing to sample all of the temporal characteristics of interest, 

thereby reducing “partial windowing” effects. If sampling is sufficiently fast, then the effect 

of partial windowing is reduced even further, producing estimates of the HDR that capture 

fast temporal dynamics (Figure 5, above).

High frequency and dynamic correlations in resting state

If the effects of interest are oscillatory in nature, then jittering is no longer a reasonable 

option and instead rapid acquisitions may be more suited for observing high frequency 

effects. For example, in resting state fMRI, the primary frequencies of interest appear in low 

frequency bands, between 0.1 and 0.01Hz. For these frequencies, faster sampling primarily 

serves to reduce the impact of physiological noise, as discussed previously. Such low 

frequency bands are easily sampled with classic 2 to 3 second TRs and would, by necessity, 

contain substantially higher relative power when compared to high frequency fluctuations. 

Recently, however, with the advent of faster sampling, there have been observations of 

resting state correlations at frequencies greater than 1Hz (Gohel and Biswal, 2014; Smith‐
Collins et al., 2015). Though this work is still ongoing, there are methodological concerns 

as denoising procedures make it possible to reintroduce noise under the linear regression 

framework (Lindquist et al., 2019) and even produce spurious or enhanced high frequency 

correlations (Chen et al., 2016).

One argument against high frequency correlations concerns the plausibility of their origin. 

Based on conventional models of the BOLD response, it should be incredibly difficult to 

detect neuronally driven oscillations at such high frequencies (Chen et al., 2016), however 

it has been suggested that through suitable task designs it is possible to derive information 

from effects in the 10s of millisecond range (Ogawa et al., 2000). This is ultimately an 

empirical question that can be evaluated using oscillating stimulus designs with sufficiently 

high frequencies. Unlike relative timing within regions or between separate tasks and 

stimuli, oscillatory or incredibly rapid stimulus presentation is much more difficult to 

detect. This is due to the plateauing nature of the BOLD response, converting these rapid 

oscillations into small fluctuations. Recent work has uncovered that with sufficiently fast 

sampling, fMRI can capture rapid oscillations in visual stimuli up to 0.75 or potentially 

1Hz (Lewis et al., 2016) and other have found that neurovascular coupling appears to occur 
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on shorter timescales than were typically thought (Siero et al., 2011; Silva and Koretsky, 

2002). How these findings have led to a reconsideration of the dynamics of the HDR and its 

underlying biological principles are considered in a separate manuscript in the current issue 

(Polimeni, and Lewis, 2021).

An alternative extension to resting state analyses, known as dynamic functional connectivity 
(dFC), consider the change in the correlation pattern over time, often within sliding windows 

containing 30 to 60s worth of samples (Hutchison et al., 2013; Preti et al., 2017). These 

studies seek to explore how brain states change, in contrast to static functional connectivity 

which captures a single measure of correlations across the brain. This approach has been 

used, for example, to link behavioral measures of executive performance with the changes 

in network state (Braun et al., 2015) or link changes in the default mode network while 

listening to narratives with memory retrieval (Simony et al., 2016). One recurring question 

for a windowed approach concerns the window length. With a TR of 2 seconds, there is 

often a difficulty in selecting an adequate window length that balances statistical power 

concerns against capturing each dynamic state (Hutchison et al., 2013). Here the statistical 

gains of rapid sampling can be directly linked to the benefit of uncovering neural dynamics, 

as there is evidence that faster sampling provides for gains in measuring significant 

functional connectivity changes within shorter and shorter windows (Sahib et al., 2018) or 

capturing network effects that are missed in static analyses of clinical populations (Zhang et 

al., 2018). Though resting state emerged as a methodology focused on slow (0.1 to 0.01Hz) 

oscillations for which typical 2s TRs are more than adequate, these findings suggest that 

there are substantial benefits and novel neuroscientific findings waiting to be uncovered with 

fast fMRI.

Combining fMRI and EEG/MEG

Tools such as electroencephalography (EEG) and magnetoencephalography (MEG) offer 

high temporal resolution for human imaging but suffer from limited spatial precision. By 

combining these techniques with fMRI, concurrently in the case of EEG, or consecutively 

for MEG, it is possible to combine the precise spatial information with the rich temporal 

signals from electrophysiology.

In line with the goal of clinical utility for fMRI, there is ongoing research in epilepsy, as 

concomitant spatial and temporal precision could prove extraordinarily useful for presurgical 

planning, for example. Even with TRs of 3000ms early work showed that these methods 

were not only feasible but could potentially augment the limited spatial precision of 

EEG, though effectiveness varied over the sample (Salek-Haddadi et al., 2006). However, 

there is evidence that faster fMRI methods may have superior performance (Jacobs et al., 

2014) and clinical promise. Using a rapid functional imaging technique termed magnetic 

resonance encephalography (MREG) (Assländer et al., 2013; Zahneisen et al., 2012), Jäger 

and colleagues were able to obtain whole brain data with 100ms temporal sampling and 

reasonable (4 to 5mm) voxel resolutions. In patients with epilepsy, they found increased 

support for positive BOLD responses co-occurring with epileptic spikes , though further 

work is required to better understand the link between the highly variable spikes and the 

resulting HDR (Jäger et al., 2015).
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Furthermore, in the case of simultaneous EEG/fMRI, the temporal information available 

from EEG can be used to supplement and better understand the co-occurring fMRI signal 

(Chang and Chen, 2021; Murta et al., 2015) or potentially confirm novel hemodynamic 

findings (Lewis et al., 2016). Studies combining EEG and fMRI have spanned the full range 

experimental paradigms routinely used in fMRI , from naturalistic stimuli (Whittingstall 

et al., 2010), to resting state (Deligianni et al., 2014; Goldman et al., 2002; Mayhew and 

Bagshaw, 2017; Meyer et al., 2013; Wirsich et al., 2020) and typical task based approaches 

(Hill et al., 2021; Mayhew and Bagshaw, 2017).

Using flickering gratings within task setting, for example, Lewis and colleagues found that 

HDRs in response to 0.5Hz and 0.2Hz oscillating stimuli were larger and more visible than 

expected by conventional HDR models. By recording simultaneous EEG, they were able to 

argue against these linear canonical models of the HDR, as the underlying neural activity 

(driving the EEG responses) did not differ strongly in magnitude (Lewis et al., 2016).

Though MEG cannot be acquired simultaneously with fMRI, it still offers promise for 

integration. Difficult fMRI latency investigations (See Hemodynamic Response Variability 

section) can be augmented with event timings derived from MEG to investigate and validate 

latency estimates derived from fMRI (Lin et al., 2013). Even in complex, putatively 

hierarchical stimulus processing, such as visual object recognition, combining MEG and 

fMRI experimental results (Cichy et al., 2016), yields millisecond resolution in the ventral 

visual stream processing cascade.

While there are several exciting research avenues associated with combining these methods, 

there are a number of limitations to consider. For example, in light of their different 

physiological origins, reconciling neuronal responses from hemodynamically driven BOLD 

effects and electrophysiological cortical signals can be a challenge (Rosa et al., 2010). 

In addition, EEG data acquired simultaneously with fMRI is corrupted with a number of 

artifacts, including those from the MR hardware, such as gradient effects (Allen et al., 

2000; Yan et al., 2009) and those associated with the subject, such as the head motion or 

the ballistocardiograph artifact from the heartbeat (Allen et al., 1998; Debener et al., 2008; 

Masterton et al., 2007). Pushing simultaneous EEG/fMRI to higher field strengths (>=7 

Tesla) increases the prominence of these artifacts and further degrades the BOLD signal 

(Jorge et al., 2015; Neuner et al., 2014).

Despite these challenges, these findings highlight the diverse benefits of combining the 

temporal resolution available with EEG or MEG with the spatial precision of fMRI – and 

show that despite the lagging BOLD response, there are benefits in accelerated fMRI when 

combined with these temporally precise methods.

Relationship between spatial specificity and the temporal signal.

While much of fMRI has pushed for higher and higher spatial resolutions, there is also a 

need to consider how temporal dynamics interact with spatial precision as a specific point 

in time gives rise to a non-stationary spatial activation map. For example, we know that 

the HDR changes across regions, but also within regions across cortical depths. It would 
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be logical to assume that when temporal sampling is too low, accurate characterization 

of the model HDR (or of the empirical time courses themselves) would be unachievable. 

Consequently, model fit may be suboptimal, leading to misestimation of response amplitude 

parameters, thus producing inaccurate spatial maps. Here, we consider further implications 

for spatial resolution and specificity in the context of temporal information.

Depth-dependent fMRI and spatiotemporal information

There is evidence that early and late phases of the HDR have greater spatial specificity 

relative to the central peak (Goodyear and Menon, 2001; Puckett et al., 2016; Shmuel et al., 

2007). In line with this, it was proposed that fitting or analyzing just the early parts, such as 

the initial dip, could provide a method to gain spatial specificity (Hu et al., 1997; Menon et 

al., 1995; Yacoub and Hu, 2001). A similar possibility manifests in depth-dependent fMRI 

data. As venous blood drains through the cortical column, there is a slight delay between the 

peak of deep layers and the large veins on the pial surface (Petridou and Siero, 2019; Siero 

et al., 2011, 2015; Silva and Koretsky, 2002). This effect appears as differences in the HDR 

between layers, which must be accounted for in analyses. Using an identical model for the 

HDR across all layers will lead to mismodelling (Lindquist et al., 2009) and could produce 

spurious layer dependent effects if the temporal differences appear as amplitude changes. 

Alternatively, as a consequence of the same mismodelling, the true effects, which are often 

very small in magnitude, could be missed. HDR estimates must be carefully tailored for each 

layer in order to make depth dependent inferences about neural connections or activity.

Building on this idea, it is has been recently demonstrated that we can use this temporal 

information to separate out the earlier responses, which may be nominally more spatially 

precise, from the later responses (Kay et al., 2020). This method, termed temporal 

decomposition through manifold fitting (TDM), uses unbiased FIR estimates of voxel time 

courses to produce two regressors for each event, one early and one late. This method 

separates out these responses rather than accounting for timing differences, as is done with 

methods that use multiple basis functions. While this method works with data sampled at 

sampling rates of up to 2.2 seconds, the time courses of early and late responses are highly 

correlated, and higher temporal sampling would aid in separation and provide more data 

dimensionality for estimating early and late responses. More work is needed to consider how 

spatial effects interact with the temporal domain and what resolutions are required for an 

optimal experimental paradigm. It is likely that reduced field of view imaging will remain 

common, as whole brain imaging at both high spatial and temporal resolutions remains 

difficult.

Line scanning as a preview of the future of fMRI

Accelerated fMRI can offer increases in precision and spatial specificity across larger 

sections of the cortex but remains relatively course on the scale of local neural activity. 

One technique, which takes the temporal and spatial focus to its extreme is termed line 

scanning (Albers et al., 2018; Yu et al., 2014). Typically performed in animal fMRI, line 

scanning offers unprecedented spatial <(.5 mm) and temporal (100 to 50ms) resolution with 

the limitation of collecting an extremely limited, one-dimensional portion of the cortex.
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In rodents this has been used to interrogate the precise temporal differences between 

optogenetic stimulation relative to direct sensory stimulation (Albers et al., 2018), as well 

as confirming the layer specificity of fMRI responses (Yu et al., 2014). While these results 

were obtained under very specific acquisition paradigms, they support the quest for higher 

temporal and spatial precision, showing that this, under the right circumstances, can provide 

for neurobiological precision as well.

In humans, line-scanning presents new challenges, however, development has made initial 

explorations of this technique possible. Recent preliminary results in humans show that 

0.2mm resolution with 100ms temporal precision is achievable, albeit over a single and 

selective portion of the human visual cortex (Morgan et al., 2020). By using a multi-echo 

sequence, this group was able to estimate the T2* parameter and its variability across 

cortical layers (Koopmans et al., 2011), obtaining increased functional precision. In addition, 

they find that this precise mapping technique recapitulates findings from electrophysiology, 

namely visual tuning properties (Morgan et al., 2020).

These results build upon the ideas of the previous sections, showing that even at the 

extremes of currently feasible temporal and spatial sampling there is rich information to be 

gained. Of course, the current field of view requirements prevent examining the interaction 

of local and long-range networks, limiting the type of research questions that can be asked 

for now. In addition, data collected at such high resolutions inherently has very low SNR, 

being dominated by thermal noise. These issues highlight the important of methods to 

reduce thermal noise, such as NORDIC (Vizioli et al., 2020b, see Denoising approaches 

section). In time, it is likely that the difficulties associated with these types of acquisitions 

and analyses will be further reduced, providing for a new frontier of spatiotemporal fMRI 

discoveries. .

Conclusion

Technical developments and the increasing availability of advanced pulse sequences and 

methods have made ultra-fast fMRI routinely possible. Here, we have tried to address 

a seemingly straightforward question – What are the benefits of increased temporal 

sampling for fMRI? In combining information from existing work and our own empirical 

demonstrations we have shown that the answer is complex, but ultimately encouraging. 

We have argued that the benefits are not just limited to statistical gains, but encompass 

a wide range of potential neuroscientific questions, including BOLD dynamics at rapid 

timescales. While we find consistent effects across subjects and convergence with emerging 

data, additional work, with larger sample sizes, will be required to confirm the specific 

timing of the effects reported. Nonetheless, the idea that faster temporal sampling can help 

extract fine grained temporal information, if it is available, is demonstrated by these data. 

Of course, additional considerations are needed regarding the challenges and difficulties 

associated with collecting, analyzing and interpreting rapidly sampled data. Nevertheless, 

the potential benefits are many: statistical power, better denoising, better spatial resolution 

and, importantly additional and more precise insights into neuronal temporal dynamics. 

Though space and time are intrinsically linked in fMRI, the relationship between accurate 

measures of temporal dynamics and spatial precision is often overlooked. More precise 
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timing estimates can produce better models, which in turn will produce more accurate 

spatial maps. Collectively this diverse array of benefits suggests the continued work is 

worth the effort. With the combined efforts across hardware, pulse sequence developments, 

statistical understanding and methodological approaches the functional neuroimaging field is 

ready for a resurgence or perhaps a return, to the days of in depth, temporal investigations.
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Highlights

• Technical developments have enabled unprecedent (<1s) whole brain fMRI

• Here, we review the historical and contemporary literature on fast fMRI

• Beyond statistical gains, benefits extend to the sampling of neural dynamics

• Full exploitation of temporal information requires continued analytical 

development

• Presented concepts are corroborated by empirical demonstrations
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Figure 1. Effects of faster sampling on statistical and signal characteristics.
A) Image SNR characteristics, with images from a single subject. Image SNR values were 

comparable across sequences (with largely overlapping error bars representing the standard 

errors across subjects), with a slight bias towards the 1000 ms protocol. B) tSNR measures, 

average over subjects. Faster sampling leads to substantial gains in tSNR throughout 

the brain, with the largest effects visible with a sampling rate of 323ms. C) Activation 

amplitudes (betas) for the nonzero phase face stimuli compared to baseline. Betas are little 

changed due to accounting for autocorrelation in the timeseries. D) T-statistics for the same 

contrast. Unlike betas, both the extent and the magnitude of the t-statistics is reduced when 

we attempt to account for temporal autocorrelation. These effects are most pronounced for 

the 323ms data. For visualization purposes, the beta and t-statistic maps use a t threshold of 

p<0.01 from the average t-statistics.
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Figure 2. Characteristics of simulated 3 millimeter, 1000ms data.
A) tSNR measures, average over subjects. The simulated 3mm data show gains in tSNR, 

but remain below the peak obtained with a sampling rate of 323ms. B) Activation 

amplitudes (betas) for the nonzero phase face stimuli compared to baseline. The impact 

of autocorrelation on betas is minimal, with the simulated data showing a larger, but still 

relatively smaller extent of activation. D) T-statistics for the same contrast. The 1000ms data 

is again little changed by simulating 3mm data acquisition and the peak t-statistics remain 

larger in the data sampled at 323ms. For visualization purposes, the beta and t-statistic maps 

use a t threshold of p<0.01 from the average t-statistics of original 1000 and 323ms data are 

reproduced from Figure 1.
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Figure 3. Timeseries and FFT plots show effects of NORDIC processing for 323ms data.
Top Left. The timeseries for a single voxel is shown for the original (blue) and NORDIC-

processed (Orange) data. The original data shows a larger amount of spurious noise, which 

is suppressed following NORDIC processing. Bottom Left. The FFT plots for this single 

voxel show that the effects of NORDIC are present across the entire power spectrum, though 

the respiratory and cardiac peaks at 0.3Hz and 1Hz remain in the data and are more easily 

seen. Top Right. Using the mean within the 419 voxels of the visual cortex ROI, there is 

little difference in the timeseries before and after NORDIC processing. Bottom Right. The 

FFT plot again shows a large suppression of noise, with physiological noise sources left 

intact.
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Figure 4. Clearer task differences at faster sampling rates.
A) Panel A shows the average FIR (mean across subjects and phase coherences) for all 

resolutions elicited in the primary visual cortex during fixation and face detection task. Error 

bars portrays standard errors across subjects B) Zoomed in version of the dotted boxes 

in panel A. Note: 1. how latency differences across tasks become more prominent as TR 

decreases, particularly between 1000 and 323ms TR (arrows); 2. How amplitude difference 

across tasks also become more pronounced as TR decreases.
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Figure 5. Clearer emergence of initial dip with sampling rate increases.
The top two panels illustrate how the initial dip becomes more pronounced as TR decreases. 

Specifically, task differences in the initial dip only emerge at the fastest sampling rate (i.e., 

323ms TR). Both top panels zoom in the initial dip for the average FIRs across subjects 

and conditions elicited by both tasks in the visual cortex ROI, with error bars representing 

standard error across subjects. The top panel shows the initial responses in the empirical 

data for all resolutions (as portrayed in Figure 3). The middle panel instead shows 

downsampled data, simulating different TRs. Note the striking correspondence between 

empirical and simulated data. The bottom panel instead shows the first 10 volumes (i.e., 0 

to 3.23 seconds after stimulus onset) for each single subject and for both tasks, only for the 

323 ms TR data (i.e., the fastest temporal sampling), which the data set showing the earlies 

differences across tasks. Note how all subjects show an increased negativity for fixation 

compared to face detection.
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Table 1.

Sequence parameters used for the empirical demonstration data.

TR (ms) Multiband In-Plane 
Acceleration 
(GRAPPA)

Partial 
Fourier

Spatial Resolution 
(mm)

TE (ms) Bandwidth (Hz) Number of 
Slices

1000 5 2 7/8ths 1.6×1.6×1.6 22.0 1923 85

590 5 2 7/8ths 2.0×2.0×2.0 15.6 2170 70

414 5 2 7/8ths 2.5×2.5×2.5 16.4 2193 55

323 5 2 7/8ths 3.0×3.0×3.0 14.2 2231 45

TR: Repetition Time; TE: Echo Time.
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