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Abstract

Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, 

suggesting it may provide a new avenue for studying subsecond neural processes in the human 

brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical 

models of the hemodynamic response. Several studies have established nonlinear properties of the 

hemodynamic response that have significant implications for fast fMRI. We first review nonlinear 

properties of the hemodynamic response function that may underlie fast fMRI signals. We then 

illustrate the breakdown of canonical hemodynamic response models in the context of fast neural 

dynamics. We will then argue that the canonical hemodynamic response function is not likely to 

reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps 

to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI 

is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific 

questions that could be addressed using this approach.
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INTRODUCTION

The most widespread tool for measuring whole-brain activity noninvasively in humans 

is functional magnetic resonance imaging (fMRI), which tracks changes in blood flow, 

volume, and oxygenation that occur alongside neuronal activity. Together these changes 

generate the blood oxygenation-level-dependent (BOLD) signal, which is the most robust 

and commonly used fMRI signal today. The fundamental limitation of hemodynamics-based 

techniques such as fMRI is that they reflect vascular responses to neuronal activity and 

not the neuronal activity itself, which creates challenges for the interpretation of the fMRI 

signals as measures of brain function (Logothetis, 2008). While fMRI has been shown 

to be capable of localizing brain activity at sufficient spatial and temporal scales to map 

large-scale functional organization of the human brain (Eickhoff et al., 2018; Glasser et al., 

2016), today it is still unclear what are the spatial and temporal limits of the technique 

(Buxton et al., 2014). The spatial specificity of human fMRI has substantially advanced in 

recent years, and now enables imaging of fine-scale features of functional architecture such 

as cerebral cortical columns (De Martino et al., 2015; Nasr et al., 2016; Yacoub et al., 2008, 

2007; Yang et al., 2019), cortical layers (Huber et al., 2017; Kok et al., 2016; Muckli et 

al., 2015; Norris and Polimeni, 2019), and small subcortical nuclei (Arcaro et al., 2015; De 

Martino et al., 2013; Denison et al., 2014; Faull et al., 2015; Satpute et al., 2013; Schneider 

et al., 2004; Sclocco et al., 2018), yet the temporal specificity of fMRI has received less 

attention. This may be, in part, because until recently fMRI acquisition technology was not 

capable of sampling the fMRI response faster than about a 2-second interval with a large 

enough brain coverage to be practically useful for neuroscience studies. However, with the 

advent of rapid parallel imaging technologies (Barth et al., 2015; Chiew et al., 2018; Hennig 

et al., 2007; Lin et al., 2008; Moeller et al., 2010; Setsompop et al., 2016, 2012) it has 

become possible to rapidly (< 400 ms) sample the BOLD response with spatial coverage of 

the whole brain.

Now that image acquisition can be fast, the temporal resolution of the hemodynamic 

response itself is the critical limiting factor in the temporal resolution of fMRI. There is 

a long-held belief that the hemodynamic response (HDR) to neuronal activity is intrinsically 

slow or “sluggish”, lagging behind by up to 6 seconds, and thus represents a delayed 

surrogate of neuronal activity. Indeed the full HDR timecourse is slow relative to neuronal 

activity, which is why many assume it does not contain neuronally relevant information at 

time scales faster than those of the HDR. However, several studies have demonstrated that 

some aspects of BOLD respond far more rapidly to neuronal activity than is commonly 

appreciated, and can contain information about neural activity with a higher temporal 

resolution than that of the full HDR—suggesting that fMRI is capable of reflecting what 

may be surprisingly fast neuronal dynamics.

While the HDR dynamics are fundamentally slower than neuronal dynamics, the intrinsic 

temporal resolution limit of fMRI is still unknown—despite keen interest in this question 

dating back to the introduction of fMRI (as evidenced by prior review articles; see 

Bandettini, 2002, 1999; Menon and Kim, 1999; and references therein). Early fMRI 

studies tested the ability of the BOLD response to reflect brief neural activity using the 

instrumentation available at the time (Savoy et al., 1995, 1994) and demonstrated that BOLD 
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exhibited sufficient temporal resolution to detect neuronal activity driven by distinct stimuli 

separated in time by 8 seconds (i.e., 0.13 Hz) (Bandettini, 1999; Thomas and Menon, 1998) 

and potentially down to 4 seconds (i.e., 0.25 Hz) (Bandettini and Cox, 2000); see Fig. 1 

for examples of the data used in these early studies. Because temporal resolution, typically 

defined as the minimal temporal separation required to discriminate or detect two stimuli 

as distinct BOLD responses, is fundamentally dependent on SNR (Green and Swets, 1966; 

Helstrom, 1964), estimates of temporal resolution also depend on the sensitivity of the 

fMRI measurement. Recently, using new fMRI technologies that provide higher sensitivity 

to detect small, rapidly varying fluctuations, it has been demonstrated that the BOLD signal 

can track neuronal oscillations up to 0.75 Hz (Lewis et al., 2016) and perhaps even 1 Hz 

(Lewis et al., 2017) in human visual cortex, with similar observations in auditory (Frühholz 

et al., 2020) and somatosensory (Cao et al., 2019) cortices. Other studies demonstrated 

that the HDR possesses sufficient temporal precision across trials to be able to detect the 

relative temporal order of BOLD activations in different brain regions down to hundreds of 

milliseconds (Lin et al., 2018, 2013; Menon et al., 1998; Miezin et al., 2000; Misaki et al., 

2013; Savoy et al., 1994), and that BOLD response onset time differences on the order of 

100 ms could be detected (Bellgowan et al., 2003). Thus there have been many successful 

efforts into finding meaningful sub-second differences in the BOLD response timing. The 

BOLD response has also been shown to be capable of reporting on differences in neural 

activity at the millisecond scale (Ogawa et al., 2000). Beyond this, there is mounting 

evidence that the earliest phases of the BOLD response may be more neuronally specific 

(Błażejewska et al., 2019; Goodyear and Menon, 2001; Shmuel et al., 2007). Also several 

recent demonstrations have shown that pattern classifiers across multiple voxels can decode 

responses as early as 2 seconds after stimulus presentation (Kohler et al., 2013; Miyawaki 

et al., 2020; Vizioli et al., 2018; Vizioli and Yacoub, 2018; Vu et al., 2016), indicating 

again that the fast components of the BOLD response carry neurally relevant information. 

Taken together, these studies suggest the fMRI signal responds rapidly to neuronal activity 

and reflects meaningful neuronal dynamics approaching the time scales of many cognitive 

processes.

This insight could be highly valuable for human neuroscience, as it could enable a new class 

of fMRI experiments that study the rapid dynamics of naturalistic high-level cognition. 

Attention, language, sleep, and perceptual awareness are all associated with 0.1–1 Hz 

dynamics that cannot currently be precisely localized, and these could be studied directly 

using fast fMRI approaches. In addition, while typical experimental designs are constrained 

to slow stimulus presentation, these fast responses could enable more naturalistic and 

freeform experimental designs, e.g., using movie stimuli or abstract reasoning tasks, tracking 

cognition as it operates on its natural timescales. If a more complete understanding of 

the temporal resolution of fMRI can be established, together with tools for acquiring and 

appropriately analyzing fast fMRI data, it will likely enable new classes of experiments 

investigating brain computation.

Today there are several ongoing and emerging developments in instrumentation and pulse 

sequence technologies that will enable routine acquisition of fast fMRI with sufficient 

sampling rates and sensitivity (Bandettini and Wong, 2015; Budinger and Bird, 2018; 

Polimeni and Wald, 2018; Setsompop et al., 2016; Yacoub and Wald, 2018). These 
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acquisition technology developments have been inspired in part by the demonstrated benefits 

of faster sampling seen in functional connectivity studies (Feinberg et al., 2010; Smith et 

al., 2012b; Uğurbil et al., 2013). Recent developments in time-series data preprocessing and 

analysis have addressed new considerations that arise with such rapidly-sampled data to 

perform proper statistical inference (Purdon and Weisskoff, 1998; Woolrich et al., 2001) by 

generating statistical models that account for the statistical properties of these data (Agrawal 

et al., 2020; Bollmann et al., 2018; Chen et al., 2019a; Corbin et al., 2018; Olszowy et al., 

2019; Sahib et al., 2016). One of the most important remaining steps to fully realize the 

potential of fast fMRI is the development of appropriate biophysical models of the HDR that 

capture fMRI responses to rapidly-presented, brief stimuli/tasks—accurate detection and 

interpretation of the fast fMRI responses requires more accurate models of the BOLD signal 

for these unconventional paradigms. Although there have been many successful efforts at 

statistical modeling of fast fMRI data, biophysical models have received less attention. As 

we review below, it has long been known that the BOLD response for short-duration stimuli/

tasks does not conform to the standard HDR models. Not only are improved biophysical 

models required to analyze fast fMRI data, they are also needed to guide future experimental 

design and push beyond existing paradigms to enable new discoveries. Motivated by this, 

the goal of this review article is to make the case that there is a need for the neuroimaging 

community to adopt an updated view of the hemodynamic response that is in line with these 

observations. Specifically, we discuss how using a single HDR can be problematic for fast 

fMRI, and discuss updated models that can help tap the potential of fast fMRI to image rapid 

neural dynamics.

Physiological basis of the fast hemodynamic response

Before considering the models of the HDR used in BOLD fMRI, we first review the 

physiological basis of the fast hemodynamic responses to neuronal activity. The speed 

of the HDR is determined by the metabolic and signaling pathways of neurovascular 

coupling and by the mechanical responses of both the vasculature and the blood. These 

mechanical responses are far slower and are thus thought to be the limiting factor on the 

delay between the neuronal activity and the corresponding HDR. The BOLD response to 

sustained neuronal activity peaks about 4–6 seconds after the start of the stimulus or task, 

then persists for the duration of the stimulus or task, and finally at the end of the stimulus 

or task returns slowly to baseline, often after a prolonged “post-stimulus undershoot” (see 

Fig. 2). For this reason, the BOLD response is often interpreted as a delayed and dispersed 

version of the neuronal activity, lagging behind by 4–6 seconds. However, the BOLD 

response onset begins almost immediately following neuronal activity, indicating that the 

vasculature in fact responds quickly to the increased metabolic demand of the neurons, with 

a build-up of the response over time and a peak occurring up to 4–6 seconds later. What may 

be underappreciated is that relevant neuronal information can be extracted from the early 

phases of the BOLD response.

Unlike heart and skeletal muscle, brain tissue lacks an oxygen store (Buxton, 2010; Buxton 

and Frank, 1997), and neurons therefore require a rapid supply of oxygen to support energy 

production through metabolism. Recent invasive optical microscopy studies in small animal 

models have demonstrated that individual intracortical blood vessels respond rapidly to local 
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neuronal activity,1 with the fastest responses occurring ~0.5 s or less after neuronal activity 

in animal models (Hirano et al., 2011; Kleinfeld et al., 2011; Nizar et al., 2013; Rungta 

et al., 2018; Tian et al., 2010; Wei et al., 2016). These rapid vascular dilations appear to 

be driven actively by smooth muscle cells on arterioles or pericyte cells on capillaries or 

pre-capillary arterioles (Hall et al., 2014; Hamilton et al., 2010; Hill et al., 2015; Mazzoni 

et al., 2015; Peppiatt et al., 2006), although whether capillaries dilate in vivo remains 

controversial (Drew, 2019; Uludağ and Blinder, 2018). While the HDR is known to be much 

faster in rodents than in humans (de Zwart et al., 2005; Lambers et al., 2020; Silva et al., 

2007), this suggests that there are mechanisms in place for rapid regulation of blood flow 

in brain microvasculature that are likely to be present in humans as well. New evidence 

points to additional mechanisms such as a rapid increase of flux through the capillaries 

due to changes in their mechanical compliance that accompany oxygen release, providing 

another potential mechanism for fast hemodynamic changes accompanying local increases 

in metabolism (Grutzendler and Nedergaard, 2019; Wei et al., 2016; Zhou et al., 2019).

Following the initial vascular response near to the site of neuronal activity, a cascade of 

vascular dilation occurs, including a retrograde propagation of active vessel dilation (i.e., in 

the opposite direction of blood flow) running upstream along the feeding arterioles (Chen et 

al., 2014; Figueroa et al., 2007; Segal et al., 1989; Segal and Duling, 1986), and in many 

cases an anterograde propagation of passive vessel dilation running downstream along the 

draining venules, indicating that there is a spread of the vascular response with time, away 

from the site of neuronal activity. After the neuronal activity ends, the vessels appear to 

return to their baseline diameter in a time-reversed manner (Chen et al., 2011; Devor et al., 

2003). These observations of a rapid HDR based on optical imaging data have also been 

made in fast fMRI studies using small animal models that have observed an onset time of 

~500 ms (Hirano et al., 2011; Silva and Koretsky, 2002; Tian et al., 2010; Yu et al., 2014). 

The spatial spread of the BOLD response outwards with time has been observed in both 

high-resolution animal (Hirano et al., 2011; Tian et al., 2010; Yu et al., 2012) and human 

studies (Błażejewska et al., 2019; Shmuel et al., 2007). The implication of these findings 

is that the HDR within the microvasculature appears to provide the highest spatial and 

temporal specificity, whereas the HDR within the macrovasculature (either on the arterial or 

venous sides) provides lower spatial and temporal specificity. It is thus reasonable to assume 

that the microvascular signal should provide the most specific surrogate for neuronal activity 

both in space and in time. While the potential of improved spatial specificity of the capillary 

response has been long appreciated (Frostig et al., 1990; Grinvald et al., 1986; Lai et al., 

1993; Menon et al., 1995), the temporal specificity of the capillary response has received 

less attention.

This spreading of the HDR outwards from the capillary bed with time has other important 

implications for the temporal resolution of fMRI. The lag between the initial onset of 

the HDR at the capillary bed and the time that the HDR reaches the feeding arteries or 

1These changes in vessel diameter appear to be driven by the same presynaptic signaling pathways that trigger postsynaptic neuronal 
activity, therefore vessels react alongside the postsynaptic neuronal activity (Attwell and Iadecola, 2002; Iadecola, 2004) (the 
“feedforward hypothesis” of neurovascular coupling (Iadecola, 2017; Uludağ et al., 2004)), not in response to the postsynaptic activity 
(the “feedback hypothesis” (Buxton, 2010)).
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draining veins at the pial surface immediately above the capillaries can approach 1 s (Chen 

et al., 2011; Gutiérrez-Jiménez et al., 2016; Hutchinson et al., 2006; Kriegeskorte et al., 

2010; Rungta et al., 2018; Schmid et al., 2017; Yu et al., 2012), which induces a temporal 

dispersion of the HDR even within a relatively small volume. Also, because any given 

surface artery or vein will feed or drain multiple capillary beds within the cortex, such as 

the multiple beds present across cortical depths that span groups of cortical layers (Bell and 

Ball, 1985; Duvernoy et al., 1981; Pfeifer, 1928; Schmid et al., 2017), if multiple capillary 

beds at a given cortical location respond—which is often the case for stimuli/tasks that 

engage multiple neuronal populations within a local neuronal circuit—the responses seen at 

the large surface vessels will reflect an aggregation of the responses in these capillary beds. 

This effect will lead to temporal smearing or blurring seen in the responses measured from 

these large vessels. For fMRI signals that are sensitive to changes within the micro- and 

macrovasculature, such as gradient-echo BOLD, the different temporal phase lags between 

the micro- and macrovasculature will lead to further temporal smearing or blurring as well 

as temporal phase cancellation effects (see Fig. 8C below), which will act to reduce the 

amplitude of the measured response (Lewis et al., 2016). Therefore, acquisition techniques 

that can achieve microvascular specificity should provide higher temporal resolution as well 

as higher neuronal specificity.

The increased neuronal specificity of the early phase of the BOLD response has been 

explored in the context of the “initial dip”, which has been exploited in fMRI studies to 

achieve improved neuronal specificity (Duong et al., 2000; Kim et al., 2000; Yacoub et 

al., 2001). Although it has been demonstrated in invasive optical imaging studies (Devor 

et al., 2003), its detection in fMRI studies remains elusive (Buxton, 2001). It is also 

conceivable that this initial dip may only be reliably detected with both fine spatial and 

temporal sampling (Tian et al., 2010). Recent evidence suggests that this initial dip may 

not only reflect a transient increase in the cerebral metabolic rate of oxygen (a metabolic 
signal) (Malonek et al., 1997) but may represent a rapid initial increase in cerebral blood 

volume (a vascular signal) (Hathout et al., 1999b; Havlíček and Uludağ, 2020; Hillman, 

2014; Lindauer et al., 2001; Sirotin et al., 2009; Uludağ, 2010), yet it still appears to be 

more spatially specific than the peak positive response. This indicates that fMRI signals 

induced by vascular changes still precisely reflect neuronal activation: the former view, 

where metabolic signals are naturally more specific to neural activity than vascular signals, 

has been superseded by a view in which vascular signals themselves can be highly specific 

to neuronal activity. Whether or not a dip in the BOLD response can be detected, or whether 

it reflects a metabolic or vascular change, the earliest regime of the HDR appears to provide 

tighter spatial specificity (Menon and Goodyear, 1999; Shmuel et al., 2007; Yu et al., 2012). 

Thus, while the early phase of the HDR is increasingly thought to reflect a rapid vascular 

response, it still appears to provide increased specificity relative to the later positive peak 

(Sheth et al., 2004a).2

2Because during neuronal activity the BOLD response begins by expanding outwards spatially, then when the neuronal activity ends 
the BOLD response returns to baseline by contracting inwards spatially, it suggests that either the early response before the peak or the 
late response after the peak should be more specific to the site of neuronal activity (Uludağ, 2010). In agreement with this view, the 
post-stimulus undershoot has been shown to provide improved neuronal specificity relative to the positive peak in some cases (Yacoub 
et al., 2006).
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While there is strong evidence for fast hemodynamic response onset times that reflect 

neuronal activity, less attention has been paid to the temporal dispersion or width of the 

response (see Fig. 2a). This temporal property also relates to the temporal precision of the 

fMRI signals as it will alter the low-pass filtering properties of the HDR. An examination 

of recently published data suggests that, for short-duration (2 s) neuronal activity, the width 

of the arteriolar dilation responses may be as narrow as 3 s (FWHM) in small animal 

models (Tian et al., 2010; Uhlirova et al., 2016), with a narrower response expected for 

shorter-duration stimuli. Again this feature is expected to vary across the various branches 

of the microvascular tree, and will most likely be longer in the human brain compared to 

the rodent brain. Still, this feature will strongly affect the frequency content of the HDR and 

therefore will also partly determine the temporal resolution of the fMRI signal.

Overall it appears that the vasculature does respond quickly to local neuronal activity, and 

while the HDR spreads out with time, if it can be sampled with sufficient spatial and 

temporal resolution to avoid smearing and cancellation effects fast fMRI should be capable 

of measuring much faster brain dynamics than the canonical view of the hemodynamic 

response might predict (Bandettini and Cox, 2000; Lewis et al., 2016).

The canonical hemodynamic response function – “wrong but useful” for 

slow designs, yet problematic for fast fMRI

The standard model used for the analysis of fMRI time-series data assumes a standard or 

“canonical” hemodynamic response function (HRF)3. This default model is overly simplistic 

(Handwerker et al., 2012) but is useful for conventional fMRI experimental designs and is 

assumed in the majority of fMRI studies. While there are slight differences in the exact 

shape of this canonical HRF across software implementations, the basic features are the 

same (see Fig. 2). Typically it is modeled as a gamma function or a double-gamma function, 

which provide either a single positive peak or a positive peak followed by a post-stimulus 

undershoot, respectively, where the peak occurs at a delay of 4–6 s. Newer experimental 

evidence suggests that, for some stimulus conditions, the HRF may be substantially faster, as 

discussed further below.

The BOLD response to a task with known timing is often estimated as the stimulus/task 

timing convolved with the HRF, and in this way the BOLD response is modeled as a linear 

function of the neuronal activity timing (typically assumed to be equivalent to the stimulus/

task timing, sometimes called the stimulus/task waveform), with the convolution function 
(i.e., a convolution kernel in time) acting as an Impulse Response Function (IRF).

Although the original articles that established the standard analysis approaches for fMRI 

assumed linearity of the BOLD response (Bandettini et al., 1993; Boynton et al., 1996; 

Friston et al., 1995), the linearity of the BOLD response was directly established by Boynton 

et al., who codified the linear systems analysis approach for BOLD fMRI (Boynton et al., 

3Here we use the term hemodynamic response to refer to the biological response to neuronal activity including the changes in blood 
flow and volume mediated by neurovascular coupling and the term hemodynamic response function to refer to the mathematical 
function that is used to describe this response; we have adopted the standard abbreviations HDR and HRF, respectively.
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1996). In this linear model, the HDR is viewed as a linear time-invariant system that is fully 

characterized by an IRF in the time domain (or, equivalently, a “transfer function” in the 

frequency domain). This linear, time-invariant system is presumed then to exhibit linearity 

properties of additivity and scaling (if input x1(t) produces an output y1(t) and an input 

x2(t) produces an output y2(t), then a sum of the scaled input β1 x1(t) + β2 x2(t) produces 

an output β1 y1(t) + β2 y2(t)) and time-invariance (whether the input occurs at time t or 

at a later time t + δ the output will be identical except for a delay of δ seconds). The 

eigenfunctions of linear time-invariant systems are complex exponentials (Oppenheim et al., 

1997), therefore if the input is a sinusoid, the output will be equal to a sinusoid of the same 

frequency only scaled in amplitude and delayed in time.

Perhaps the most relevant implication the linearity assumption is that it allows for the 

prediction of a measured BOLD response by convolving the presumed input neuronal 

activity by the system IRF regardless of the timing (via the additivity property) and 

amplitude (via the scaling property) of the neuronal activity. While the linear system model 

of the BOLD response is often an excellent approximation, and the assumption of linearity 

is implicit in nearly all fMRI analyses performed today (in the context of the General 

Linear Model framework), the linearity assumption does not hold for many stimulus types. 

It is well known that for sustained stimulation longer than about 4 seconds in duration the 

linearity assumption holds well, while for shorter duration stimuli/tasks the BOLD response 

exhibits clear nonlinearity (Glover, 1999; Miller et al., 2001; Vazquez and Noll, 1998; 

Yeşilyurt et al., 2008), as the additivity property does not hold. In fact, some evidence for 

nonlinearity can be seen in the BOLD response to a 3-second stimulation in the original 

study establishing the linear system model (Boynton et al., 2012, 1996). The experimental 

evidence for this nonlinearity is reviewed further below. The fact that the assumption of a 

temporally linear system4 does not hold for all stimuli means that the convolution kernel 

relating the stimulus waveform to the BOLD response itself changes with the details of the 

stimulus or task. The key point is that there is no one convolution kernel that generalizes to 

all stimuli or tasks, therefore there is no true IRF that characterizes the system. Critically, 

these timescales in which linearity breaks down correspond to those on which many if 

not most naturalistic neural dynamics take place; few real-world cognitive tasks involve a 

constant, unchanging stimulus for >4 second durations.

Not only is the HDR dependent on stimulus/task intensity and duration, but it is well 

known that the HDR varies systematically with many factors (Handwerker et al., 2012). 

For example, the HDR varies: across individuals (Aguirre et al., 1998; Miezin et al., 2000); 

with healthy aging (D’Esposito et al., 2003, 1999; Huettel et al., 2001) and development 

(Kang et al., 2003; Moses et al., 2014; Richter and Richter, 2003; Wenger et al., 2004); with 

common stimulants such as caffeine (Liu et al., 2004); and with baseline physiological state, 

such as basal vasodilation manipulated through CO2 inhalation (Behzadi and Liu, 2005; 

Cohen et al., 2002; Kemna and Posse, 2001). The HDR is well-known to vary across the 

brain—not only across distant cerebral cortical areas (Chang et al., 2008; Handwerker et al., 

2004) but also at more local scales such as within individual areas (Saad et al., 2003). This 

4A less commonly considered form of linearity is spatial linearity between nearby cortical locations (Hansen et al., 2004; van Dijk et 
al., 2020), which can be assessed by utilizing orthogonal stimulus conditions (e.g., in retinotopic cortex) (Hansen et al., 2004).
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inconsistency of the HDR further complicates efforts to define the temporal resolution of 

fMRI.

While conventional block-design experimental paradigms, with relatively long stimulus/task 

durations and inter-stimulus intervals, are somewhat forgiving with respect to the exact form 

of the HRF (Aguirre et al., 1998; Greve et al., 2013; Handwerker et al., 2012; Lindquist 

et al., 2009)—especially when combined with acquisitions using slow temporal sampling 

rates—for faster event-related designs (Bandettini and Cox, 2000; Buckner et al., 1996; 

Dale, 1999; Dale and Buckner, 1997) a mismatch between the HDR model and the measured 

BOLD response can be problematic, leading to both increased estimation bias and variance 

(Greve et al., 2013; Lindquist et al., 2009; Wager et al., 2005). Although these modeling 

challenges can be partly addressed by more flexible frameworks that, instead of assuming 

a single fixed HRF model, utilize a basis set of functions that span the space of possible 

expected HRFs (Friston et al., 2000; Woolrich et al., 2004), our inability to predict the 

HRF for a given stimulus or task does produce challenges in experimental design (Dale, 

1999; Lindquist et al., 2009; Liu et al., 2001). As mentioned in the previous section, 

it has been demonstrated experimentally that in particular the BOLD responses to brief, 

rapidly presented stimuli are far larger in amplitude than what would be expected from the 

canonical HRF (Bandettini, 1999; Bandettini and Cox, 2000; Cao et al., 2019; Lewis et 

al., 2018b, 2016; Thomas and Menon, 1998). In some cases, these estimates are off by an 

order of magnitude, suggesting that a more complete understanding of the HDR to weak or 

brief neural activation is required to design and analyze fast fMRI studies of rapid neural 

dynamics.

Nonlinear hemodynamic responses to weak or brief neural activation

There are several forms of nonlinearity that have been considered in the context of fMRI, 

including neuronal and hemodynamic nonlinearities. Neuronal nonlinearities include short-

term effects such as neuronal transients at stimulus onset (Boynton et al., 1996; Buxton 

et al., 2004; Logothetis et al., 2001; Miller et al., 2001; Yeşilyurt et al., 2008) likely 

reflecting short-term neural adaptation (Gruber and Müller, 2005; Sharpee et al., 2006; 

Wark et al., 2007), neuronal refractoriness (Ogawa et al., 2000), or changes in excitatory/

inhibitory balance (Havlíček et al., 2017b), which lead to a nonlinear transformation 

between the input stimulus/task timing and the neuronal response, as well as effects such 

as long-term adaptation or fluctuating attentional states occurring on the order of tens of 

seconds to minutes (Bandettini et al., 1997; Grill-Spector and Malach, 2001; Heckman 

et al., 2007; Krekelberg et al., 2006; Macdonald et al., 2011; Moradi and Buxton, 2013; 

Ou et al., 2009; Sadaghiani et al., 2009). While it is challenging to predict the neuronal 

response to a particular stimulus/task in human volunteers, several studies have compared 

MEG/EEG recordings with fMRI measures to estimate the neuronal response and compare 

it directly with the BOLD response (Chen et al., 2020a; de Zwart et al., 2009; Janz 

et al., 2001; Lewis et al., 2016; Liu et al., 2010; Yeşilyurt et al., 2010). Although the 

nonlinear neuronal response contributes to the observed nonlinear BOLD response, purely 

hemodynamic nonlinearities appear to contribute as well. In the current BOLD modeling 

framework used today (Buxton, 2012; Havlíček and Uludağ, 2020), which is explained 

further below, the prevailing view is that hemodynamic nonlinearities exist in the cascade 
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linking neuronal activity to the BOLD response, such that Cerebral Blood Flow (CBF) 

appears to be linearly related to the neuronal activity, and the BOLD response appears to 

be nonlinearly related to CBF (Fig. 4) (Miller et al., 2001). While more direct experimental 

evidence for the tight coupling of neuronal activity and CBF will help determine whether 

this linear relationship holds in general, in this prevailing view a large part of the observed 

nonlinearity in the BOLD signal may be attributed to the transformation of the CBF 

response into a BOLD response (Friston et al., 1998; Miller et al., 2001; Yeşilyurt et al., 

2008), therefore hemodynamics contribute to the nonlinearities seen in the BOLD response. 

Invasive electrophysiological recordings have demonstrated that neural nonlinearity cannot 

fully explain the observed nonlinearity seen in BOLD fMRI data (Li and Freeman, 2007; 

Sheth et al., 2004b). In addition, substantial differences in the observed BOLD nonlinearities 

can be observed with a fixed stimulus across magnetic field strength (Pfeuffer et al., 

2003), and—since the dominant components of the hemodynamic response change with 

field strength (Uludağ et al., 2009)—this finding presents further evidence that there is an 

appreciable hemodynamic nonlinearity that accompanies any nonlinear components that are 

strictly neuronal in origin.

As described above, the nonlinearity of the HDR is typically characterized in terms of 

the additivity and, to a lesser extent, scaling properties. However, another category of 

effects that violate the assumption of a linear time-invariant system, known as hemodynamic 

“refractoriness”, has also been explored, especially in the context of rapid event-related 

designs (Friston et al., 2000, 1998; Huettel and McCarthy, 2001, 2000; Inan et al., 2004; 

Soon et al., 2003; Wager et al., 2005; Zhang et al., 2008). This effect can be seen when 

comparing HDRs from a single stimulus to those of paired stimuli: when the second 

stimulus of the pair is presented during the refractory period (or post-stimulus undershoot) 

of the first stimulus of the pair, the HDR for the second stimulus experiences a reduction 

in amplitude and therefore is not a time-shifted version of the HDR for the single stimulus. 

While this may be viewed as a nonlinearity in that the HDR for the single stimulus cannot 

predict the HDR for the second stimulus of the pair, it may also be viewed as a violation 

of time-invariance in that the HDR for a given stimulus depends on when the stimulus is 

presented, and therefore this refractory effect indicates that the HDR can change with time 

when using short inter-stimulus intervals.

The most commonly considered form of nonlinearity that is perhaps the most relevant 

for fast fMRI is the violation of the additivity property, which can be seen readily as 

a disproportionately large BOLD response to short-duration stimuli (Birn and Bandettini, 

2005; de Zwart et al., 2009; Glover, 1999; Hirano et al., 2011; Janz et al., 2001; Liu and 

Gao, 2000; Miller et al., 2001; Nangini et al., 2005; Pfeuffer et al., 2003; Robson et al., 

1998; Soltysik et al., 2004; Vazquez and Noll, 1998; Wager et al., 2005; Yeşilyurt et al., 

2008), which we will refer to as amplitude effects. In addition, the temporal properties of 

the HDR are different for short-duration stimuli compared to long-duration stimuli: the HDR 

to brief stimuli is faster than predicted from the linear system (Lewis et al., 2018b, 2016; 

Liu and Gao, 2000; Pfeuffer et al., 2003; Soltysik et al., 2004; Vazquez and Noll, 1998; 

Yeşilyurt et al., 2008), which we will refer to as temporal effects. The implication of this 

faster-than-expected HDR for brief stimuli is that the temporal resolution of fMRI is not a 

fixed quantity (even for a given subject at a given brain location) but rather itself depends 
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on the stimulus. This means that some stimuli may be capable of probing faster neural 

dynamics than others, complicating the definition of temporal resolution in the context of 

fMRI.

Our recent study demonstrated this phenomenon by employing an oscillating visual stimulus 

to induce oscillating neural activity at various known frequencies of interest (Fig. 3), 

enabling quantification of fMRI response amplitude in the context of known neural timing 

(Lewis et al., 2016). This experiment demonstrated that the BOLD response can track 

neuronal oscillations up to at least 0.75 Hz, which was faster than previous reports. 

However, these data also demonstrated that the magnitude of these BOLD response 

oscillations far exceeded the predictions from the canonical HRF (i.e., the standard linear 

model), and the measured BOLD amplitudes became increasingly larger than the predictions 

with faster oscillation frequencies—up to an order of magnitude larger than predicted by the 

canonical HDR model for the 0.75 Hz stimuli. Simultaneous EEG recordings confirmed that 

the amplitude of neuronal activity did not change appreciably across stimulus frequencies. 

This suggests again that the HDR is able to track rapidly-fluctuating neural activity and can 

be used to detect short-duration neural events spaced closely together in time in a way that is 

not captured by existing models.

One possible explanation that is consistent with the findings of a nonlinear BOLD response 

to short-duration stimuli is that CBF is tightly coupled to neuronal activity, and, for short-

duration stimulation, the CBF, Cerebral Blood Volume (CBV) and BOLD signal time 

courses are approximately scaled versions of each other. In this short-duration stimulus 

regime, the nonlinearity observed between the stimulus waveform and the measured BOLD 

response is viewed to be dominated by neuronal nonlinearities (e.g., a large initial transient 

neural response followed by a reduced sustained response amplitude) that cause the BOLD 

HRF to vary with stimulus duration. The components of the HDR and their relationship 

for short-duration stimuli is depicted in Fig. 4A as predicted using the current balloon 

model framework. These neuronal nonlinearities may be able to account for some observed 

amplitude effects such as BOLD responses to short-duration stimuli overpredicting BOLD 

responses to long-duration stimuli (Miller et al., 2001); however, neuronal nonlinearities 

alone cannot fully explain these amplitude effects in all cases (Lewis et al., 2018b).

For long-duration stimulation, additional hemodynamic nonlinearities become relevant that 

contribute to the observed temporal effects. Specifically, for long-duration stimuli there 

is dynamic decoupling between the CBF, CBV and BOLD signal time courses such that 

each component exhibits distinct temporal features that are seen most prominently during 

the timecourse transients—e.g., the venous CBV response, which is the CBV component 

most relevant to the BOLD signal, is slower and therefore lags the CBF response (Kim 

and Kim, 2011a), and consequently the BOLD response is also slower than the CBF 

response (Fig. 4B). Recent empirical human fMRI data provides additional evidence in 

support of this dynamic decoupling between CBF and venous CBV following long-duration 

stimulation (Havlíček et al., 2017a). This dynamic decoupling likely occurs because, for 

longer-duration stimuli with sustained active arterial vasodilation of the feeding arterioles, 

there is a build-up of pressure in the draining venules causing a slow passive venous 

vasodilation (due to venous compliance (Mandeville et al., 1999b)). After the stimulus ends, 
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there is a rapid active arterial vasoconstriction during the return to baseline and a slow 

passive venous vasoconstriction. Therefore, the asymmetry between the active control on the 

arterial side, which is directly coupled to neuronal activity, and the passive compliance on 

the venous side, which is partly uncoupled from neuronal activity, can explain the observed 

nonlinearities that cause the temporal features of the HDR to change with stimulus duration. 

Note that this also implies that the BOLD response to short-duration stimuli may provide 

a much more faithful representation of neuronal activity (similar to CBF) compared to the 

BOLD response to long-duration stimuli, which can be seen by comparing the CBF and 

BOLD responses shown in Fig. 4A and 4B. This testable prediction is consistent with the 

current view of the BOLD nonlinearity (based largely on the balloon model), and may be 

plausible, however to our knowledge there is, to date, no empirical data to support this.

If a dynamic decoupling between the components of the HDR occurs for long-duration 

stimuli, why then is the observed BOLD response reported to be “nonlinear” only for short-

duration stimuli? The current account is that for short-duration stimuli, the reported BOLD 

response nonlinearity is viewed to reflect mainly the nonlinearity in the transformation 

from the stimulus waveform to the neuronal activity, which changes with stimulus duration. 

Because short-duration stimuli generate short-duration BOLD responses, the entirety of the 

BOLD response occurs during this regime of tight CBF-BOLD coupling. The nonlinearity 

in the neural response, attributed to short-term adaptation, results in a substantial reduction 

in the amplitude of the neural activity after the first few seconds of the stimulus. Thus the 

current account implies that this “nonlinearity regime” is determined by the time scale of 

short-term neuronal adaptation.

As the stimulus continues, the prevailing view is that CBF and BOLD slowly become 

more and more decoupled, and as a consequence the BOLD response during the later 

phases of sustained stimulation is less closely reflecting neuronal activity. The gradual 

decoupling of the CBF and BOLD signals appears to take place over a longer time scale, 

perhaps on the order of 10–20 s. This dynamic decoupling will also result in a nonlinear 

HDR that changes with stimulus duration reflecting hemodynamic nonlinearities, however 

these temporal effects are less pronounced than the amplitude effects reflecting neuronal 

nonlinearities.

Another effect that must be considered is that, for longer-duration stimuli, the HDR reaches 

a steady-state during the period of sustained stimulation about ~6 seconds after the stimulus 

onset. During this sustained period, the neuronal activity, CBF, CBV and BOLD signals are 

all unchanging, such that any BOLD response to a sufficiently long-duration stimulus (i.e., 

beyond the “nonlinearity regime”) can be reasonably predicted from a single convolution 

kernel, and the BOLD response is approximately “linear”. In other words, the HDR for, e.g., 

an 8-second-duration stimulus and the HDR for a 32-second-duration stimulus should be 

well-predicted by the same convolution kernel. This specific convolution kernel generated 

from the 8-second-duration stimulus response will not be an IRF, since it will not be able 

to predict the BOLD response to a short stimulus “impulse” that is beyond the nonlinearity 

regime, but this convolution kernel can predict BOLD response generally for any stimuli 

with sufficiently long duration beyond the “linearity regime”.
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This current account does however leave several open questions. First, it implies that 

a “neural” nonlinearity contributes to amplitude effects manifesting in responses to short-

duration stimuli, and a “hemodynamic” nonlinearity contributes to temporal effects that 

become pronounced with long-duration stimuli. However, even after factoring out neural 

nonlinearity effects, recent data suggest that the HDR to rapidly-varying stimuli exhibits 

a substantially larger BOLD response amplitude than predicted from standard models, 

suggesting some form of hemodynamic nonlinearity (Lewis et al., 2016). Today this 

observation is not fully explained. Similarly, recent work has explored whether a simple 

model of neuronal nonlinearity might explain observed temporal effects seen across a 

range of short-duration stimuli, and found that neuronal nonlinearity alone may not 

suffice to explain the measured BOLD fMRI data (Lewis et al., 2018b), suggesting 

again that hemodynamic nonlinearities may contribute to BOLD response nonlinearities 

associated with short-duration stimuli. Second, despite the many observations of this BOLD 

nonlinearity, existing quantitative modeling frameworks (reviewed below) do not seem 

capable of capturing the BOLD response behavior within both the nonlinearity regime and 

the linearity regime, and therefore do not generalize across a wide range of stimulus/task 

durations.

Beyond this nonlinear behavior that varies with stimulus duration, there are less-well-

characterized sources of nonlinearity in the BOLD response. As noted above, the scaling 

property has also been shown to be violated, in that the HDR appears to be dependent 

on stimulus/task intensity. This manifests in two potentially distinct ways. First, several 

studies have shown that the BOLD response amplitude scales nonlinearly with stimulus/

task amplitude, such that a large increase in stimulus intensity (e.g., luminance contrast 

in the case of visual stimuli) leads to only a modest increase in BOLD percent signal 

change, which then causes a modest increase in the spatial extent of activation for a 

fixed statistical threshold (Goodyear and Menon, 1998; Mohamed et al., 2002; Thompson 

et al., 2014). Some of this amplitude scaling can be attributed to purely neuronal effects

—increasing stimulus luminance contrast by a factor of 2 is not expected to increase 

neuronal activity by a factor of 2, and so the main cause of this nonlinearity may not 

be hemodynamic in nature.5 The HDR may also potentially saturate when local CBF and 

CBV reach their maximal values, causing a “ceiling” effect on the BOLD signal amplitude 

(Buxton et al., 2004), introducing a saturation nonlinearity that may also be reached more 

or less quickly as a function of stimulus intensity. This ceiling or plateau may represent a 

saturation of CBF response corresponding to a steady state in which sufficient numbers of 

feeding arteries are dilated to such that the energetic supply of oxygenated blood matches 

the metabolic demand of the neurons, or perhaps more likely a saturation of the BOLD 

response itself as further increases in CBF cause negligible decreases in the concentration 

of deoxyhemoglobin (Davis et al., 1998; Miller et al., 2001). It is unclear, however, under 

which physiological conditions and with which common stimuli/tasks this saturation in CBF 

or BOLD would be expected. It is also unclear how to properly model this potential effect. 

5By combining arterial spin labeling (ASL) and BOLD, and estimating CMRO2 with the calibrated BOLD method (Davis et al., 1998; 
Hoge et al., 1999), it has also been shown that the coupling between CBF and CMRO2 itself varies with many stimulus features 
including stimulus intensity (Buxton et al., 2014; Liang et al., 2013), which calls into question how to interpret the amplitude of the 
BOLD response in terms of neuronal activity.
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Simultaneous electrophysiological recordings may yield insight into the relative neuronal 

and hemodynamic contributions to the amplitude nonlinearity (Chen et al., 2020a; Liu et al., 

2010; Yeşilyurt et al., 2010), although the balance of neuronal and hemodynamic effects are 

expected to vary with the details of the stimulus/task. While this nonlinear change in the 

BOLD response amplitude with stimulus/task duration provides insights into the physiology 

of the HDR, in practice it may not be relevant for fMRI studies because the amplitude of the 

BOLD response is typically not the quantity of interest (Buxton et al., 2014). However if this 

form of nonlinearity varies spatially then this phenomenon can cause problems (see below).

Second, there is mounting evidence that changes in stimulus intensity also modulate the 

temporal features of the BOLD response (Chen et al., 2020a, 2019b; Thompson et al., 

2014; Vazquez and Noll, 1998; Yeşilyurt et al., 2008). This form of nonlinearity represents 

both a violation of additivity and of scaling, or an interaction between the two. Stronger 

stimuli appear to result in a BOLD response that begins earlier in time (Chen et al., 2020a; 

Thompson et al., 2014); however the earlier onset time (i.e., the time at which the BOLD 

response amplitude is detectable by being above the noise level) may be caused in part by 

the overall increased amplitude of the BOLD response to the more intense stimulus. What 

may be more surprising is that the temporal properties such as the time to peak and temporal 

dispersion (quantified as the temporal width of the main positive response) also increase 

with stimulus intensity (Chen et al., 2020a; Vazquez and Noll, 1998; Yeşilyurt et al., 2008). 

Although, as stated above, some amount of the observed nonlinearity in the measured fMRI 

signal can and should be attributed to neuronal effects, the differences in HDR timing in 

the range of 1 s have been observed across stimulus/task intensities (Chen et al., 2020a; 

Thompson et al., 2014; Vazquez and Noll, 1998; Yeşilyurt et al., 2008), which may be too 

long to be completely attributable to differences in neuronal activity. Given the scale of 

these timing differences it is likely that at least part of this dependence on stimulus/task 

intensity is due to hemodynamic effects. This form of nonlinearity may be interpreted in 

terms of the dynamic decoupling hypothesis stated above: strong stimuli may induce a larger 

CBF response and more downstream pressure in the venous compartment causing a venous 

CBV effect that induces an increased uncoupling between CBF and BOLD, whereas weaker 

stimuli may induce less downstream pressure engaging the venous compartment less leading 

to a decreased decoupling between CBF and BOLD. This speculative explanation would 

have to be validated empirically.

A potentially related finding is that other major temporal features of the HDR appear to be 

dependent on details of the stimulus presentation; for example, studies have shown that the 

post-stimulus undershoot is present after flickering visual stimuli but absent after static but 

otherwise identical visual stimuli (Havlíček et al., 2017a; Mullinger et al., 2017; Sadaghiani 

et al., 2009), or that the BOLD response is selective to other aspects of the stimulus timing 

(Gonzalez-Castillo et al., 2015, 2012; Harms and Melcher, 2003; Uludağ, 2008), giving rise 

to unexplainable features of the observed BOLD response. These changes in the temporal 

features may be more likely due to neuronal effects than purely hemodynamic effects that 

are the focus of this review, however these examples do highlight the complexities in relating 

stimulus/task dynamics to the dynamics of the measured fMRI signal.
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In summary, the HDR violates the assumptions of a linear time-invariant system, and 

thus the temporal properties of the BOLD response, including its speed and amplitude, 

vary systematically with the stimulus configuration. In particular, both brief stimuli and 

weak stimuli lead to rapid HDRs that are faster than the canonical HRF. Both of the 

phenomena have been interpreted physiologically in terms of coupling/decoupling between 

the CBF and BOLD responses, as described above: for either brief or weak stimuli, there 

is less decoupling between CBV and BOLD. In other words, the vascular system is less 

perturbed away from its baseline steady-state for either brief or weak stimuli, under which 

circumstances the BOLD response is relatively rapid. While some evidence exists for 

differing ratios of CBF and BOLD response amplitudes with stimulus intensity (Buxton 

et al., 2014; Liang et al., 2013) as well as a dependence of BOLD temporal dynamics 

on baseline CBF (Behzadi and Liu, 2005; Cohen et al., 2002; Kemna and Posse, 2001), 

the gradual transition from a tight CBF-BOLD coupling for short-duration or low-intensity 

stimuli to decoupling for long-duration or high-intensity stimuli should be tested empirically 

in humans. A recently introduced experimental paradigm succeeded in demonstrating 

dynamic decoupling between CBF and BOLD for long-duration stimuli (Simon and Buxton, 

2015) and could perhaps be extended to test whether short-duration or low-intensity stimuli 

exhibit stronger coupling between CBF and BOLD.

Spatial heterogeneity of fast BOLD responses

Because the temporal properties of the HDR dictate the temporal resolution of fMRI, and, as 

mentioned above, the HDR varies substantially across the brain (Handwerker et al., 2012), 

it follows that the detectability of BOLD responses to brief or weak stimuli will also vary 

across the brain. The question is whether the HDR varies systematically with any aspect of 

brain anatomy, and to what extent the degree of HDR nonlinearity (i.e., the change in HRF 

shape with changing stimulus duration or intensity) and the departure of the local HRF from 

the canonical HRF also varies systematically—which might allow investigators to know a 
priori how to interpret responses to brief or weak stimuli within individual brain regions.

As noted above, the HRF shape changes across brain regions, across cortical areas, and 

within cortical areas. The HRF shape even varies systematically across cortical depths, 

which may largely be attributable to proximity to large pial vessels, as demonstrated by 

directly measuring vascular anatomy using angiographic techniques (Bause et al., 2020; 

Chen et al., 2019b; Moerel et al., 2018). The effect in voxels adjacent to these large pial 

vessels is dramatic because large vessels on the pial surface are quite sparse in the human 

cerebral cortex (Bollmann et al., 2020; Duvernoy et al., 1981). Just as the HDR exhibits 

spatial heterogeneity, the severity of the observed nonlinearity in the BOLD response varies 

across cortical gray matter voxels (Birn et al., 2001; Huettel and McCarthy, 2001; Pfeuffer 

et al., 2003), across cortical areas (Glover, 1999; Miller et al., 2001; Soltysik et al., 2004), 

across cortical and subcortical responses (Lau et al., 2011; van Raaij et al., 2012) and even 

across individuals (Handwerker et al., 2004). Recent evidence also points to an increased 

linearity of the BOLD response within the cerebral cortical parenchyma (Gomez et al., 2020; 

Lewis et al., 2018b; Zhang et al., 2009), where the response is less influenced by large 

draining vessels on the surface, suggesting that BOLD responses from the microvasculature 

may exhibit more linearity and perhaps a stronger CBF-BOLD coupling compared to BOLD 

Polimeni and Lewis Page 15

Prog Neurobiol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responses dominated by the microvasculature (Tak et al., 2015, 2014). This finding may 

also be interpreted in terms of the dynamic decoupling hypothesis stated above: regions 

with either higher venous density or higher baseline venous CBV may exhibit stronger 

venous CBV changes which induce decoupling between CBF and BOLD and influence the 

degree of nonlinearity observed. Veins farther downstream from the capillary beds may also 

experience a larger build-up of pressure during the HDR (Krieger et al., 2012), which may 

similarly induce larger delayed venous CBV changes that may also impact the nonlinear 

BOLD effect.

Beyond these observations of spatially varying nonlinearity, indicating a dependence of the 

HDR on the stimulus/task, even for a given stimulus/task the speed of the HDR varies 

across brain regions, suggesting that some brain regions may be more suitable for fast 

fMRI experimental paradigms. Several studies have compared the HDR between cerebral 

cortical and subcortical gray matter and have shown that for a specific stimulus/task that 

elicits concurrent activation in multiple regions that the HDR is faster in subcortical nuclei 

(Lau et al., 2011; Lewis et al., 2018b; Yen et al., 2011) as shown in Fig. 5A. Within the 

visual system, the differences in HDR speed between the thalamus and visual cortex are 

greater than the differences across cortical depths within the visual cortex, as shown in Fig. 

5B. As mentioned above, while some differences across brain regions may be attributable 

to differences in the timing of neuronal activity across these regions (since neuronal 

dynamics are likely to vary between e.g., thalamus and cortex), the observed differences 

in HDR timing are on the order of seconds, which is far too long to be explainable by 

neuronal differences alone. The observed differences may be due to regional differences in 

neurovascular coupling (Devonshire et al., 2012) or in vascular anatomy such as capillary 

density and path length between the capillary bed and the largest proximal draining veins 

(Duvernoy, 1999a, 1999b), or simply in the speed or reactivity of the local vasculature.

Comparing the HDR speed across brain regions highlights a potential trend in the speed of 

the HDR. Although data comparing the speed of the HDR across the brain are sparse, there 

is some preliminary evidence for a slowest HDR seen in the cerebral white matter (Li et 

al., 2019), then progressively faster responses seen in the cerebellar gray matter (Boillat and 

van der Zwaag, 2019; Chen and Desmond, 2005; Marvel and Desmond, 2012), followed by 

superficial then parenchymal cerebral gray matter (Kriegeskorte et al., 2010; Lewis et al., 

2018b; Tian et al., 2010; Yu et al., 2012), subcortical gray matter such as the thalamus (Lau 

et al., 2011; Lewis et al., 2018b; Yen et al., 2011), then deeper subcortical gray matter in 

the brainstem (Faull and Pattinson, 2017; Lewis et al., 2018b), and potentially the fastest 

responses seen within the central nervous system just outside of the brain in the cervical 

spinal cord (Marcus et al., 1977; Nix et al., 1976; Piché et al., 2017; Sasaki et al., 2002). 

Although again some of these differences in the HDR across regions is likely attributable 

to differences in neuronal timing, the hypothesized progression of BOLD response delays 

across brain regions is summarized in Fig. 6. This hypothesis requires rigorous testing, and 

the biological significance of such gradient in HDR latency or speed across brain regions 

is unclear—and, naturally, some exceptions are expected given the heterogeneity of the 

metabolic demand and vascular density and morphology across the brain (Lauwers et al., 

2008; Shannon et al., 2013; Shokri-Kojori et al., 2019; Tsai et al., 2009; Villien et al., 2014)

—systematic comparison of regional differences in the HDR would be practically useful for 
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fMRI studies. For example, an atlas of region-dependent HDR responses, combined with an 

atlas of regional vascular density (Bernier et al., 2018), may provide some insight into the 

anatomical/physiological determinants of the HDR timing (Chen et al., 2020b), which could 

potentially yield some ability to predict or model the HDR timing on the basis of additional 

anatomical information. Until there is a better understanding of the HDR in the form of 

regional models of the expected fMRI response to rapidly-varying neuronal activity, for now 

these regional differences in the speed of the HDR do indicate that, in practice, some brain 

regions lend themselves more to fast fMRI paradigms than others.

Updated models of the HDR

Given this nonlinearity in the BOLD response that is seen for brief or weak stimuli, there is 

a need for updated models of the HDR for fast fMRI that can account for these observations. 

Ideally an updated model would not only generalize sufficiently so that it could be used to 

design novel experimental paradigms, but it would also provide biophysical interpretability 

that could guide new acquisition and analysis approaches as well.

Early attempts to model the HDR in both linear and nonlinear response regimes proposed 

mathematical frameworks based on systems identification theory to generate parameterized 

convolution kernels, or expansions of convolution kernels into basis sets, to account for the 

observed deviations from the canonical HDR (Friston et al., 1998; Vazquez and Noll, 1998; 

Woolrich et al., 2004) but despite their success for conventional experimental paradigms 

these convolution models did not have a biophysical interpretation and therefore are not 

easily extended to account for new physiological insights. The first models inspired by 

vascular physiology were the venous “balloon” model (Buxton et al., 2004, 1998; Mildner 

et al., 2001; Obata et al., 2004) and the postarteriole “windkessel” model (Mandeville et al., 

1999b), which both viewed each voxel as containing a full vascular tree including feeding 

arterioles, draining venules, and the capillary bed. These single-compartment lumped 
models accounted for the steady-state and dynamic relationships between CBF as the input 

component, CBV and the cerebral metabolic rate of oxygen consumption (CMRO2) as 

intermediate components, and the BOLD signal as the output component. Later versions of 

the models using this framework also accounted for the nonlinear transformation between 

the stimulus timing and the neuronal response (Buxton et al., 2004; Miller et al., 2001). 

These models fit a wide variety of data with a small number of parameters, although with 

the accumulation of more specific experimental data the exact physiological interpretation of 

the model parameters came into question (Buxton, 2012; Gagnon et al., 2016a; Griffeth and 

Buxton, 2011).

One of the first updates to the single-compartment lumped model was to include the 

possibility of arterial dilation. With the availability of invasive optical imaging recordings 

of blood flow and volume at the individual capillary scale (Devor et al., 2007; Hillman 

et al., 2007; Kleinfeld et al., 1998) it became clear that a key assumption of the original 

lumped models—that there should be negligible arterial response to neuronal activity—did 

not match the experimental data, and arteries did exhibit larger-than-expected dilations 

(Buxton, 2009). Similar effects had been seen in MR-based measures that could track CBV 

changes specific to the arterial compartment (Kim et al., 2007; Lee et al., 2001). In fact, 
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in many cases venous CBV was instead found to be negligible: intracortical veins did 

not appear to dilate in response to short-duration stimuli (Berwick et al., 2005; Fernández-

Klett et al., 2010; Hillman et al., 2007), but only dilated in response to longer, sustained 

stimulation (Drew et al., 2011) that presumably caused a build-up in pressure on the venous 

side of the vascular tree. Note that these experimental observations of negligible venous 

dilation following short-duration stimuli support the dynamic decoupling model described 

above (Havlíček et al., 2017a; Uludağ and Blinder, 2018). The findings of an arterial 

change in CBV and a stimulus-duration-dependent venous change in CBV subsequently 

inspired multi-compartment lumped models such as the “bagpipe” model that allowed for 

independent arterial and venous dilation (Drew et al., 2011), and other models that included 

arterial, capillary, and venous sections (Griffeth and Buxton, 2011; Kim et al., 2013; Kim 

and Ress, 2016; Zheng et al., 2005).

Still, most conventional lumped models consider only large fMRI voxels that each contain 

the entire vascular tree. Motivated by the increasing availability of fMRI data with high 

spatial resolution, recent extensions of the multi-compartment lumped hemodynamic models 

explicitly account for the hierarchy of vascular compartments within the cerebral cortical 

gray matter. With conventional voxel sizes, each voxel contains a similar heterogeneous 

mix of vasculature spanning the large supplying pial surface arteries, the intracortical 

diving arterioles, the small pre-capillary arterioles, the capillary bed, the small post-capillary 

venules, the intracortical ascending venules, and the large draining pial surface veins. With 

newly-available smaller voxel sizes far smaller than the cortical thickness, there is less 

heterogeneity within any given voxel, however there is more heterogeneity across voxels, as 

neighboring voxels will sample from different levels of the vascular hierarchy. To address 

this, newer hierarchical lumped models account for the HDR within different cortical depths, 

which corresponds roughly to different levels of the vascular hierarchy, and also account for 

the coupling of the HDRs across neighboring voxels (Havlíček and Uludağ, 2020; Heinzle et 

al., 2015; Markuerkiaga et al., 2016). In the context of fast fMRI, allowing for the increased 

degrees of freedom in these extended, spatially-coupled models (and, with it, more free 

parameters to assign) can better account for the vascular anatomy and physiology, yet thus 

far these more flexible hierarchical lumped models have only just begun to account for 

the delays of the various venous and arterial components of the HDR across the vascular 

hierarchy from parenchyma to pial surface (Havlíček and Uludağ, 2020). Therefore for fast 

fMRI there is a need for models that can account for these timing differences across the 

vascular hierarchy.

While these lumped models are often derived directly from experimental data, there is 

another class of models, vascular anatomical models, that attempt to generate biophysical 

simulations of the fMRI signals from first principles using explicit representations of 

vascular anatomy. These biophysical models originally represented the vasculature as 

randomly spaced and oriented infinite cylinders and the blood as being static (Bandettini 

and Wong, 1995; Boxerman et al., 1995; Fisel et al., 1991; Ogawa et al., 1993; Uludağ et 

al., 2009) and were used to characterize the physics of the fMRI signal formation. These 

random cylinder models could be as the basis for numerical simulations (Bandettini and 

Wong, 1995; Boxerman et al., 1995; Fisel et al., 1991; Ogawa et al., 1993; Uludağ et al., 

2009) and based on realistic distributions of vessel size and type (Berman et al., 2018), 
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or as the basis for analytic expressions of simplified systems (He and Yablonskiy, 2007; 

Kiselev et al., 2005; Kiselev and Posse, 1999; Troprès et al., 2001; Yablonskiy and Haacke, 

1994), but because they were not connected they could not be used to model blood flow 

through the vasculature or fMRI signal dynamics. Vascular anatomical models based on 

random cylinders were later extended into vascular anatomical network (VAN) models that 

similarly accounted for the coupling of the HDR between adjacent vascular compartments. 

Although the HDR and BOLD signal components in hierarchical lumped models are 

typically phrased in terms of mesoscopic quantities that are measurable non-invasively 

with MRI such as CBF (i.e., perfusion) and CBV (Havlíček and Uludağ, 2020; Heinzle et 

al., 2015), the hemodynamics represented these in VAN models are expressed in terms of 

microscopic quantities that are measurable with optical microscopy such as blood velocity, 

vessel diameter, blood oxygen saturation, vessel compliance, and blood pressure, making it 

somewhat challenging to directly relate these two frameworks. Early simplified VAN models 

(Boas et al., 2008) therefore were used to model blood flow and volume dynamics that, 

when coupled with an MR physics simulation engine, could simulate BOLD dynamics.

Perhaps the most significant recent step for fMRI modeling was the extension of the 

simplified VAN model into the realistic VAN model in which a realistic reconstruction 

of vascular anatomy based on optical microscopy served as the basis of the modeling 

(Gagnon et al., 2016a, 2015). These realistic VAN models combine full reconstructions of 

the microvascular network (Blinder et al., 2013) with in vivo measures of blood flow and 

vessel diameters both in the baseline and active states recorded across the vascular hierarchy 

(Tian et al., 2010; Uhlirova et al., 2016), then use numerical simulations to estimate blood 

flow and oxygenation throughout the vascular tree (Gould and Linninger, 2015; Lorthois 

et al., 2011a, 2011b; Peyrounette et al., 2018; Reichold et al., 2009; Secomb et al., 2004), 

from which the BOLD signal can be computed numerically using conventional techniques 

(Bandettini and Wong, 1995; Boxerman et al., 1995; Fisel et al., 1991; Ogawa et al., 1993). 

These realistic VAN models have been applied to simulate baseline physiology (Gould et 

al., 2017; Schmid et al., 2017) and MR signal characteristics such as model parameters 

used in lumped models (Báez-Yánez et al., 2017; Cheng et al., 2019; Gagnon et al., 

2016a; Pfannmoeller et al., 2019; Pouliot et al., 2017), but they have also been applied 

to modeling BOLD dynamics (Gagnon et al., 2016a, 2016b, 2015). Remarkably, these 

models, based on microvascular anatomy and physiology, were able to predict previously 

undiscovered BOLD signal characteristics that were subsequently confirmed experimentally 

in conventional human fMRI data (Gagnon et al., 2015; Viessmann et al., 2019b, 2019a). 

However, perhaps due to their complexity, these realistic VAN models have not yet been 

applied to modeling temporal features such as nonlinearities in response to brief or weak 

stimuli, and more experimental data from invasive optical imaging may be needed to enable 

these models to generalize to new stimulus/task configurations.

How then might an existing modeling framework be used to explain the nonlinearities 

that are central to predicting fast responses to brief or weak stimuli? As articulated in the 

dynamic decoupling hypothesis, stated above, the observed nonlinearity of the BOLD signal 

can be understood in terms of delayed venous CBV relative to CBF, and during the early 

phases of the HDR CBF and BOLD are tightly coupled while in the later phases the increase 

in venous CBV induces a decoupling between CBF and BOLD. This could be captured in 
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the framework of a realistic VAN model through a venous compliance parameter, however 

additional experimental data may be required to constrain this parameter properly. Instead 

we can consider the simple single-compartment lumped model (a.k.a., the updated balloon 

model (Buxton et al., 2004; Griffeth and Buxton, 2011)). In this model, the steady-state 
relationship between CBF and CBV is summarized by the empirical Grubb equation CBF = 

CBV1/α (Davis et al., 1998; Grubb et al., 1974) parameterized by exponent α, while during 

transient states the relationship (ignoring normalization and scaling factors) is typically 

represented roughly as CBF(t) = CBV(t)1/α + τv dCBV(t)/dt, where the parameter τv, 

known as the venous CBV viscoelastic constant, controls the extent to which venous CBV 

lags CBF (Buxton et al., 2004; Havlíček and Uludağ, 2020; Mildner et al., 2001). The 

venous compartment “initially resists a change in volume, but eventually settles into a new 

steady-state” (Buxton et al., 2004). In this form, if the value of the viscoelastic parameter 

τv were set to zero, the changes in CBV and this in the BOLD signal would closely 

track changes in CBF (see Fig. 4). It has been suggested that this value of τv is not 

a fixed quantity, and may be different during venous inflation and deflation (Buxton et 

al., 2004, 1998), and the value of τv may also change with stimulus duration such that 

for short-duration stimuli τv ≈ 0 whereas for long-duration stimuli τv takes on a larger 

value (Havlíček et al., 2017b; Uludağ and Blinder, 2018). If in fact these parameter values 

themselves evolve during the HDR and can be viewed as functions of stimulus duration 

this introduces yet another potential nonlinearity into the modeling framework. It may 

also be the case that different vascular compartments may exhibit different levels of the 

venous ballooning effect and may contribute differently to the BOLD nonlinearity—for 

example, it may be that the pial veins and parenchymal veins contribute in different ways 

to the ballooning effect (Gao et al., 2015; Uludağ and Blinder, 2018), which would further 

contribute to the spatial heterogeneity of the observed nonlinearities. Other parameters of the 

established lumped model also control the nonlinearity of the BOLD response, including the 

Grubb parameter α, which controls the steady-state relationship between CBF and CBV, and 

controls the influence of CBV on the BOLD signal and thus affects the temporal properties 

of the BOLD signal including the transients (Havlíček et al., 2015; Uludağ and Blinder, 

2018); whether the value of α is stimulus dependent (Chen and Pike, 2009; Jones et al., 

2001; Mandeville et al., 1999a; Zheng and Mayhew, 2009) warrants further investigation. 

Additionally, the baseline mean transit time (MTT) through the venous compartment is an 

additional parameter that represents the relationship between baseline CBF and CBV (Boas 

et al., 2003; Buxton et al., 1998) that has also been shown in simulations to affect BOLD 

response transients and nonlinearity (Lewis et al., 2016); given that baseline physiology has 

been shown experimentally to affect the BOLD response dynamics (Behzadi and Liu, 2005; 

Cohen et al., 2002; Kemna and Posse, 2001), it is likely that this parameter may also play an 

important role in modeling BOLD nonlinearity.

Finally, the question arises of how to best utilize these models in practice. While, as 

stated above, updated models of the HDR can be useful in planning new experiments, and 

determining, for example, what might be the fastest-detectable BOLD response for a given 

stimulus paradigm, the complexity of the modern modeling frameworks presented above 

suggests that they are usually not suitable for direct use in data analysis. Several groups have 

proposed methodologies for fitting nonlinear models with several free parameters directly 
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to BOLD time-series data (Deneux and Faugeras, 2006; Havlíček et al., 2015; Vakorin et 

al., 2007; Vazquez et al., 2006). Recent work has shown how these nonlinear physiological 

models can be used to simultaneously explain multiple physiological components underlying 

the observed BOLD response, including experimentally measured neural activity derived 

from electrophysiological recordings (Havlíček et al., 2017b). However, since fast fMRI 

signals are very low-amplitude, it will typically not be practical to apply these complex 

models to fast fMRI studies of neural processes themselves. Instead, we suggest that 

these modeling studies are highly valuable for developing an understanding of how 

hemodynamics are expected to appear in the context of more naturalistic neural activity. 

These models can then be translated into more simple analysis approaches to analyze fast 

fMRI data. While many studies have used stimulus-specific, and even voxel-specific, HRFs 

derived directly from the measured fMRI data in order to reduce bias (Kay et al., 2008a; 

Pedregosa et al., 2015), these estimated HRFs themselves will be noisy and will likely 

increase the variance of the measured fMRI activation. Also, because the HDR changes 

with stimulus configuration, caution should be exercised when attempting to use an HRF 

derived from auxiliary fMRI data (akin to a functional localizer) to analyze the fMRI data 

of interest. Nevertheless, although there is ongoing work in these new modelling directions, 

and continued progress is expected, the existing models adapted to brief stimuli have already 

provided some insight into the possible origins of several features of the HDR. A promising 

future direction is to use the valuable insights from these modeling and experimental studies 

of context-dependent HDR dynamics to establish principles for how the HDR varies across 

tasks and regions (for example, how the values of lumped model parameters α and τv vary 

with stimulus/task configuration or with brain region) (Pfannmoeller et al., 2021), and then 

in turn use this to implement simple HDR models that can be applied to fast fMRI data.

Updating our models of the fast fMRI response, and deriving appropriate parameter settings, 

will likely require additional data on vascular anatomy and physiology, which often comes 

from invasive recordings in animal models. However, these parameters cannot be directly 

applied to humans. The hemodynamics are likely matched to the spacing and dimensions 

of vessels (Turner, 2002), and it is well known that there are substantial species differences 

in vascular anatomy, including pial vessel topology (Mchedlishvili and Kuridze, 1984), the 

ratios of intracortical arterioles and venules (Schmid et al., 2019) and even the capillary 

network (Smith et al., 2019). Furthermore, there have been reports of species differences in 

the temporal properties of the BOLD response (de Zwart et al., 2005; Lambers et al., 2020; 

Silva et al., 2007); a recent example of the differences in the HRF between rats and humans 

is presented in Fig. 7, showing that the rat HRF is substantially faster than the human HRF. 

Another major consideration is the well-known effects of anesthetics on hemodynamics 

(Gao et al., 2017; Martin et al., 2006; Pisauro et al., 2013; Schlegel et al., 2015; Xie et 

al., 2020) and some evidence suggests that hemodynamics are faster in awake animals (Ma 

et al., 2016) and the nonlinearity of the BOLD response may differ between awake and 

anesthetized states (Martin et al., 2006). Therefore, any updated models will require careful 

validation to confirm applicability in humans.
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Extensions of fast fMRI to resting-state designs, non-BOLD fMRI, and 

laminar fMRI

The canonical HRF was originally derived from long-duration stimuli commonly used for 

block-design experimental paradigms, but does not generalize to all stimuli, in particular 

brief or weak stimuli. This recognition is important, not only because it indicates that 

caution must be exerted when analyzing responses to brief or weak stimuli, but also 

because any estimation of the temporal resolution of fMRI based on considering the 

temporal properties of canonical HRF will be inaccurate. It also highlights that improved 

temporal resolution may be achieved with rapidly changing, subtle stimuli or cognitive tasks. 

Similarly, fast fMRI responses may be prevalent in the resting state, if these resting-state 

fluctuations can be viewed as responses to unknown yet brief or weak neuronal events (Chen 

and Glover, 2015), although other studies have reported slower HRFs in the resting state (de 

Munck et al., 2007; Logothetis et al., 2009; Yeşilyurt et al., 2010). Future work may further 

test what is the temporal (and spatial) specificity of these resting-state fluctuations.

Although in this review we focus primarily on the fast fMRI responses of the BOLD signal, 

there is increasing availability and interest in non-BOLD fMRI signals (Huber et al., 2019). 

What is less clear is how the temporal resolution varies between the fMRI contrasts. Several 

studies have reported distinct dynamics for various fMRI contrasts (de Zwart et al., 2018; 

Hirano et al., 2011; Hulvershorn et al., 2005a, 2005b; Mandeville et al., 1998; Silva et al., 

2007), including differences between gradient-echo versus spin-echo BOLD (Hulvershorn 

et al., 2005a, 2005b), and differences in the measured non-BOLD responses as a function 

of stimulus duration for CBF (Gu et al., 2005; Kim et al., 2020; Leite and Mandeville, 

2006; Su et al., 2004; Yang et al., 2000) and venous CBV (Kim and Kim, 2011a). Arterial 

CBV, which can be measured separately from venous CBV (Hua et al., 2018; Kim et al., 

2008; Kim and Kim, 2011b, 2006), is expected to exhibit a different time course (Kim 

and Kim, 2011a). While either arterial CBV or CBF may be anticipated to have improved 

temporal specificity compared with BOLD, still the ultimate resolution of these techniques 

will ultimately depend both on the speed with which the vasculature responds to neuronal 

activity, as well as on the voxel size—since temporal resolution will be decreased due to the 

abovementioned temporal dispersion or “smearing” effects if multiple levels of the vascular 

hierarchy contribute to the fMRI signal.

Another extrinsic factor that may influence achievable temporal resolution of fMRI is the 

magnetic field strength. Not only does imaging performance and sensitivity increase with 

field strength, allowing increased imaging resolution, but fMRI signal transients have been 

shown to exhibit a weak dependency on field strength for short-duration stimuli and a 

stronger dependency of field strength for long-duration stimuli duration (Pfeuffer et al., 

2003; Uludağ and Blinder, 2018). This suggests that, while most high-resolution fMRI 

studies are conducted at ultra-high field strengths (Polimeni and Uludağ, 2018), fast neural 

dynamics may be observable with fast fMRI techniques at conventional field strengths as 

well—provided sufficient imaging resolution and sensitivity can be achieved.

Finally, fast fMRI techniques may also be used to better localize brain activity in time, 

to investigate the temporal sequence of neural processing across brain regions and map 
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large-scale brain circuitry. While prior studies have utilized the temporal precision of the 

BOLD response to attempt to map out the temporal progression of activation within specific 

brain networks (Bartels and Zeki, 2004; Katwal et al., 2013; Menon et al., 1998) and even 

infer the causality of these connections on the basis of fMRI response timing (Stephan 

and Roebroeck, 2012; Valdes-Sosa et al., 2011), the variability of the temporal properties 

of the HDR including its delay across brain regions reviewed above must be considered 

when interpreting measures based on observing the relative lag of fMRI response across 

brain regions (Miezin et al., 2000; Smith et al., 2012a). Analogous questions arise in the 

context of laminar fMRI, where, because certain cortical layers are well-known inputs or 

outputs along feedforward, feedback, or horizontal pathways in multi-area brain circuits, 

localizing fMRI activation within a specific cortical layer can provide information about 

which brain circuit is engaged (Norris and Polimeni, 2019). However, because within a 

given cortical area, neuronal populations across multiple cortical layers may be engaged 

during local neuronal processing, multiple layers within a cortical area will be activated by 

a given stimulus/task, therefore identifying the input cortical layer will not be possible by 

simply localizing activity alone. Several laminar fMRI studies therefore have attempted to 

identify the input layer on the basis of fast fMRI acquisitions (Hirano et al., 2011; Petridou 

and Siero, 2019; Silva and Koretsky, 2002; Yu et al., 2014) under the assumption that the 

input cortical layer within a cortical area should activate before the other cortical layers. 

This is a promising direction, although proper accounting of the systematic differences in the 

HDR across cortical layers will be required in this scenario as well.

Limitations in modeling the HDR and the importance of experimental 

design

While improvements in HDR modeling can help directly relate fMRI signals to the 

underlying neural activity, it is important to acknowledge the challenges in generating a 

fully accurate model given the many complexities underpinning the HDR. First, deriving 

a HDR model that is based on experimental observations requires some ability to separate 

out temporal features of the measured fMRI signal that are attributable to neural versus 

hemodynamic effects. Indeed the brain exhibits a broad repertoire of neural responses 

to the stimuli and tasks used in fMRI, and abstracting the neural response as simply 

following the stimulus or task timing is clearly an oversimplification (Gonzalez-Castillo 

et al., 2012; Havlíček et al., 2017b; Uludağ, 2008). Second, neurovascular coupling and the 

many pathways through which neurons communicate with the vasculature and trigger the 

initial hemodynamic changes are notoriously complex (Iadecola, 2017, 2004; Uhlirova et 

al., 2016), and it is possible that no one mechanism can describe this relationship for all 

brain regions, brain states, or neuronal sub-populations that are engaged by during any given 

stimulus or task. Finally, the hemodynamics themselves are complex—there are many open 

questions regarding the mechanisms of functional hyperemia (Attwell et al., 2016; Cai et al., 

2018; Drew, 2019; Hartmann et al., 2021), plus the local hemodynamics are likely shaped by 

several factors including the local microvascular architecture suggesting that they will vary 

systematically across the brain (Schmid et al., 2019). Altogether, while impressive progress 

has been made in modeling the HDR, relying entirely on accurate HDR models to infer 

patterns of neural activity from fast fMRI data may not be viable. What is clear, however, is 
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that the standard linear model based on the canonical HRF is not appropriate for fast fMRI 

data. Fast task designs in particular will not be well modeled by canonical models (Fig. 

8A & B), leading to low sensitivity and missed activation when studying many common 

timescales of neural activity.

Given this limited understanding, there are other strategies for extracting meaningful 

information about neural dynamics from fast fMRI data. Approaches that focus on 

extracting mean responses that are consistently time-locked across trials have uncovered 

meaningful neural activity that did not conform to standard expectations (Gonzalez-Castillo 

et al., 2012). Similarly, periodic designs are amenable to Fourier-based analyses akin to 

the classic “phase-encoded” stimulus design (Bandettini et al., 1993; Engel et al., 1994; 

Sereno et al., 1995) and do not require explicit HDR models; this approach can be used 

to examine the frequency response of the measured fast fMRI data during steady state 

(Lewis et al., 2016) as well as the spectral content of fast fMRI signals across the course 

of an experiment (Lewis et al., 2018a). Rapid periodic stimulus designs also have the 

potential advantage saturating some components of the HDR and may yield improved neural 

specificity (Fukuda et al., 2021; Moon et al., 2007). Lastly one can consider designs with 

carefully crafted controls that account for hemodynamic effects. For example, by comparing 

temporal features of the observed fMRI response to multiple stimuli with constant stimulus 

intensity and duration while varying other features hypothesized to generate different neural 

dynamics, it is possible to compare the changes in the HDR across stimuli (Bellgowan et al., 

2003). Thus while continued development of HDR models improve our ability to estimate 

of neural activity from fMRI measurements, today, through careful experiment design, it is 

still possible to exploit the intrinsically high temporal specificity of the HDR to extract rich 

temporal dynamics of the underlying neural activity.

Neuroscience advances within reach of fast fMRI

Since many cognitive processes involve neural sequences unfolding over hundreds of 

milliseconds, corresponding to the temporal resolution now enabled with fast fMRI, fast 

fMRI studies that take into account these faster dynamics of the HDR could be used to 

test neuroscience questions in this temporal range. A large number of studies have reported 

fast BOLD dynamics in task-driven and in resting-state studies (Cao et al., 2019; Chen and 

Glover, 2015; Lee et al., 2013; Lewis et al., 2018b, 2016; Lin et al., 2015, 2013; Sasai et 

al., 2021), suggesting that these updated HDR models could both provide more accurate 

analysis of signals in naturalistic or resting-state paradigms, as well as enabling a new class 

of neuroscientific studies aiming to image subsecond neural dynamics directly with fMRI.

An immediate application area is cognitive neuroscience studies seeking to disambiguate 

rapid sequences of neural events. Lin et al. (2013) demonstrated that events as little as 

100 ms apart can be distinguished using fast fMRI, by presenting motor and visual stimuli 

with controlled onset timing. Many cognitive tasks involve timing in this range—notably, 

language, abstract reasoning, attentional selection, and many other tasks we aim to study in 

the human brain involve sequences on this timescale. Previous work at slower timescales has 

already used fMRI to investigate neural sequences and transient events engaged in cognitive 

processing (Dux et al., 2006; Stigliani et al., 2017). Recent work has demonstrated how the 
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BOLD dynamics of rapidly-presented short-duration stimuli could be used to test models of 

temporal summation and adaptation in the context of the visual system (Zhou et al., 2018); 

extending this model to other areas, and including modeling of how HRF timing changes 

with stimulus duration, could further enhance our understanding of temporal patterning of 

neural dynamics. A recent study with faster sampling has now demonstrated the use of fast 

fMRI to disentangle responses to individual words within a narrative (Rocca et al., 2020), 

and other recent studies have applied other rapid investigations to visual sequence detection 

(Wittkuhn and Schuck, 2020) and auditory dynamics (Frühholz et al., 2020). An important 

consideration in these types of rapid neural sequence detection studies will be consideration 

of how HDR models may differ across regions, complicating interpretation of different 

response time dynamics in different brain areas (Miezin et al., 2000). While keeping this 

issue in mind, approaches using within-region analyses and faster models of the HDR should 

enable a wide range of studies using subsecond task dynamics.

Spontaneous aspects of neural activity may also induce fast hemodynamic responses and 

contain higher frequency dynamics than are analyzed in conventional resting-state studies, 

which primarily focus on < 0.1 Hz bands. The low-frequency BOLD dynamics observed 

at conventional temporal sampling rates have been associated with infraslow spontaneous 

fluctuations in cortical potential (He et al., 2008; He and Raichle, 2009; Hiltunen et al., 

2014; Pan et al., 2013), as well as low-frequency modulations of higher-frequency neural 

dynamics (Mateo et al., 2017; Schölvinck et al., 2010). As the attainable frequency range 

of fMRI increases, qualitatively distinct aspects of spontaneous neural activity should be 

in range of fast fMRI. A range of particular interest is the human slow oscillation band, 

peaking around ~0.7 Hz (Achermann and Borbély, 1997; Steriade et al., 1993). Slow 

oscillations reflect coherent dynamics across much of the cortex (Destexhe and Contreras, 

2011; Massimini et al., 2004), and are implicated in sleep, memory, and awareness 

(Batterink et al., 2016; Mölle et al., 2004; Ngo et al., 2013). The rapid HDR observed 

in response to oscillatory neural activity suggests that this frequency range is now in reach 

of fast fMRI (Lewis et al., 2016). Another detectable aspect will be alterations in brain 

state occurring in the 0–1 Hz frequency band, such as amplitude envelope modulations of 

higher-frequency rhythms (Mateo et al., 2017; Schölvinck et al., 2010) or sequences of 

neural microstates (Van De Ville et al., 2010; Vidaurre et al., 2016; Yuan et al., 2012). 

Finally, endogenous fluctuations in physiology and autonomic state, while posing challenges 

for fMRI due to their associated effects on the BOLD signal (Birn et al., 2006; Chang et al., 

2009; Murphy et al., 2013), may also be detectable with fast fMRI (Manuel et al., 2020). 

Each of these spontaneous neural dynamics falls into the subsecond range in which the HDR 

is expected to be faster, and faster HDR models may be needed in order to capture the >0.1 

Hz dynamics produced by these signals.

In addition, the advent of naturalistic tasks now poses both an opportunity for and an 

argument in favor of fast fMRI. Naturalistic stimuli fall squarely into the temporal regime 

where the conventional, slow and linear HDR is no longer expected to hold, as they typically 

do not involve slowly alternating high-intensity blocks. fMRI during naturalistic movies or 

auditory stimuli is increasingly being used to study high-level visual and semantic structures 

(Finn et al., 2020; Hasson et al., 2004; Huth et al., 2016; Kay et al., 2008b; Nishimoto et 

al., 2011; Simony et al., 2016) and early investigations suggest that high-frequency content 
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may also be present in these responses (Gao, 2015). Accurate modeling of the HDR will 

be needed to capture how fMRI signals fluctuate in concert with these relatively broadband 

neural signals.

Fast fMRI also offers the potential of studying dynamics in cortical mesoscale structures 

at high spatial resolution. Laminar fMRI is being increasingly used to assess cognitive 

processes across deep and superficial cortical layers (Finn et al., 2019; Huber et al., 2017; 

Lawrence et al., 2019). The faster hemodynamic responses of deep cortical layers make 

them an ideal region for imaging fast fMRI signals, suggesting that subsecond dynamics 

could potentially be best studied within the cortical gray matter parenchyma, as these signals 

are attenuated in the larger surface veins.

Finally, fast fMRI with appropriate HDR models will be particularly well suited to studies 

seeking to image the subcortex, as it is the only noninvasive tool with millimeter resolution 

in deep brain. Diverse nuclei in structures such as the brainstem, thalamus, and basal ganglia 

play critical roles in many fundamental aspects of brain function, and their dynamics can 

be simultaneously imaged with fMRI. Furthermore, while sensitivity can be lower due to 

the distance from the RF receive coils, the observation that hemodynamics are even faster 

in subcortex will enhance the ability of fast fMRI to detect rapid signals in these regions. 

For example, a recent study demonstrated >0.1 Hz signals in human brainstem, which 

could not have been identified through other techniques (Manuel et al., 2020). Fast fMRI 

in brainstem, thalamus, and other subcortical structures may thus be able to uncover rapid 

activity sequences and higher-frequency oscillations due to the temporal characteristics of 

responses in these regions, providing a window into how subcortical systems regulate sleep, 

arousal, pain, mood, autonomic function (Sclocco et al., 2018), as well as the complex 

cognitive processes implemented in thalamic circuits (Saalmann and Kastner, 2015), in the 

human brain. Furthermore, using conventional HDR models in these regions could lead to 

missing their activity patterns even when imaging at conventional temporal resolution (Fig. 

8b). The substantial decrease in time-to-peak of the brainstem signal (Lewis et al., 2018b) is 

expected to lead to poor model fits with a canonical HRF, which could prevent detection of 

the rapid responses in these structures.

As this example illustrates, a critical limitation for all fast fMRI studies—and indeed, for 

conventional fMRI studies as well, in which the problem may simply be harder to detect—is 

the lack of established HDR models that can generalize across brain regions and tasks. In 

many cases, inaccurate models could simply lead to missing detection of activity that is 

in fact present, as the incorrect HDR leads to poor model fit. While fitting complex VAN 

models to fast fMRI data is unlikely to be practical, using HRFs derived from the extensive 

work that has been done on nonlinear and heterogeneous HRF properties may enhance 

the sensitivity of these studies, particularly in subcortex and in deep cortical gray matter, 

where hemodynamics are fastest. Alternatively, in the absence of pre-identified HRFs, the 

use of FIR models (Gonzalez-Castillo et al., 2012) can allow discovery of local activity 

timecourses with fewer assumptions about the HDR shape, although these approaches do not 

resolve whether temporal differences are expected to be due to hemodynamic differences. 

Interpreting the neural dynamics underlying fast fMRI signals will thus benefit from 

incorporating information on how hemodynamics vary with stimulus type and brain region, 
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informing conclusions about which temporal differences are neural, vs. hemodynamic, in 

origin.

In addition, a challenge for all these applications will be the low amplitude of fast fMRI 

signals, which are extremely small at high frequencies. With available technology, sensitivity 

likely poses the greatest limit to the use of fast fMRI. While high-frequency signals are 

clearly detected in structures that can be strongly driven by sensory signals, such as the 

visual pathway (Lewis et al., 2018b), more complex, high-level cognitive tasks already 

frequently elicit relatively low-amplitude fMRI responses that will be further attenuated at 

faster timescales. Fast fMRI may thus be best applied initially to cognitive questions that are 

expected to elicit large effect sizes, such as sensory tasks, attentional dynamics, and arousal 

state modulations.

Two approaches may help increase the efficacy of fast fMRI analyses, expanding its reach 

beyond these initial studies. First, increasing spatial resolution will also greatly enhance 

detection of fast fMRI signals, as the spatial heterogeneity of HDR timing leads to signal 

cancellation when using large voxels (Fig. 8C) that can be mitigated by decreasing voxel 

size (Chen et al., 2019b), avoiding spatial smoothing, and restricting analyses to the cortical 

gray matter parenchyma (Polimeni et al., 2018). fMRI at 7 Tesla can help with this, as 

it increases CNR as well as providing additional spatial resolution with which to reduce 

phase cancellation effects, allowing enhancement of the contributions from the gray matter 

parenchyma. Second, analysis methods and statistical models that account for the distinct 

statistical properties of fast fMRI data (Agrawal et al., 2020; Bollmann et al., 2018; Chen et 

al., 2019a; Corbin et al., 2018) and carefully account for physiological noise, will enhance 

detection and estimation of these signals. Both of these improvements could be used in 

conjunction with updated HDR models that take into account the faster hemodynamics in 

response to transient or fluctuating neural activity.

Together, these studies suggest that fast fMRI will be well suited to examining fast HDRs 

in studies with brief, weak, or oscillatory patterns of neural activity, which correspond 

to the naturalistic dynamics of many aspects of both task-driven and spontaneous human 

cognition. Furthermore, it provides a unique tool with which to image subsecond dynamics 

in mesoscale structures such as brainstem nuclei, opening the door to new questions in the 

neuroscience of human subcortical circuits.

CONCLUSIONS AND OUTLOOK

In this review we have presented evidence for the ability of modern fast fMRI methods 

to probe surprisingly fast neuronal dynamics. We have surveyed recent experimental data 

on the microvascular responses to neural activity which demonstrate that the changes in 

both the vasculature and the blood occurring alongside neuronal activity are localized in 

both space and time; fundamentally, the “biological” spatial and temporal resolution of 

hemodynamics-based measures of brain function such as fMRI appear to be finer than 

our imaging resolution today, motivating new advances in fMRI technology to better 

exploit this untapped potential. We summarized recent experimental data suggesting that 

the observed temporal resolution of the BOLD response is far beyond what was predicted 
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by the canonical HRF, and posited that this is in part because the linear system assumption 

of the BOLD response does not hold for brief or weak stimuli. We surveyed the vast 

literature on the nonlinearity of the BOLD response, from which a picture of an HDR that is 

dependent on many features of the stimulus/task emerges. We then summarized a wide range 

of BOLD models and noted that while there has been recent progress there is still an unmet 

need for models that can generalize across stimulus and task configurations to account 

for these nonlinearities and thereby be capable of predicting and interpreting the observed 

fast fMRI signal. We then presented several examples where the temporal resolution of 

fast fMRI is approaching the temporal scales needed to track cognitive processes that may 

be inaccessible to conventional fMRI techniques. Measuring these dynamics will require 

updated analysis approaches tailored to these newly available paradigms.

In conclusion, fast fMRI offers the potential to study dynamics at timescales and contexts 

that are important for many aspects of human cognition: sequences over hundreds of 

milliseconds, involving brief, low-intensity, or rapidly fluctuating neural activity. While 

these signals are small, the increasing sensitivity of fMRI suggests that they are nevertheless 

now within reach. Using appropriate, updated models of the HDR will be essential for 

enhancing the detectability of these signals, ultimately enabling imaging of neural dynamics 

on timescales of hundreds of milliseconds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

ASL arterial spin labeling

BOLD blood-oxygenation-level-dependent

CBF cerebral blood flow

CBV cerebral blood volume

CMRO2 cerebral metabolic rate of oxygen consumption

FWHM full-width at half-maximum
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GM gray matter

HDR hemodynamic response

HRF hemodynamic response function

IRF impulse response function

LGN lateral geniculate nucleus

MEG magnetoencephalography

MTT mean transit time

SC superior colliculus

SNR signal to noise ratio

V1 primary visual cortex

VAN vascular anatomical network

WM white matter
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Highlights:

• New data suggest vascular responses to neural activity can be surprisingly fast

• Conventional fMRI models of hemodynamics do not capture these rapid 

responses

• Temporal properties of the hemodynamic response depend on the stimulus/

task

• The current account of this response nonlinearity does not fully match new 

data

• Updated models are still needed to image faster neural dynamics with fast 

fMRI
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Figure 1: Early investigations of the temporal limits of the BOLD response in humans.
(A) BOLD responses measured in visual cortex to brief stimuli including 1-s, 100-ms, and 

34-ms duration flickering checkerboards. The response to the shortest stimulus, 34 ms, was 

about 3.5 s in duration. (From Savoy et al., 1995, 1994; reproduced from Savoy, 2001, with 

permission.) (B) BOLD response measured in motor cortex during finger movement, with 

on-off frequency increasing from 0.024 Hz to 0.5 Hz. Distinct responses can be detected up 

to 0.083 Hz. (Reproduced from Bandettini, 1999, with permission.) (C) BOLD responses 

measured in visual and motor cortex to stimuli of varying inter-stimulus intervals (ISI) and 

stimulus duration (SD). Weak BOLD modulation can be detected in the 2-s on, 2-s off case 

(0.25 Hz). (Reproduced from Bandettini and Cox, 2000, with permission; see also Hathout 

et al., 1999a.)
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Figure 2: Example HDR models that represent the BOLD impulse response.
(A) The default HRF provided by the SPM package (Ashburner, 2012). The temporal 

features are characterized by the onset time, the peak time, the width (i.e., the FWHM) 

and the time and relative amplitude of the undershoot. This is often taken as the canonical 

HRF. (B) The default SPM HRF alongside two default HRFs provided by the FSL package 

(Jenkinson et al., 2012), including a double-gamma that includes a small undershoot and a 

single-gamma that does not; these HRFs have a slightly faster time to peak. Also included 

is a hypothesized HRF—consistent with data from a recent study (Lewis et al., 2016) 

reflecting measured responses to rapidly-oscillating stimuli—that is substantially faster than 

the canonical (peak time = 2.5 s, FWHM = 2.6 s). The HRF known to be faster for 

short-duration stimuli, thus the HDR is considered to be nonlinear, and thus the canonical 

HRF is not appropriate for rapidly-varying stimuli.
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Figure 3: Oscillatory stimuli elicit rapid BOLD oscillations an order of magnitude larger than 
canonical models predict.
(A) Design of visual oscillatory visual stimulus used to probe fast fMRI responses in 

human visual cortex. Stimulus consisted of a standard radial checkboard flashing at 12 

Hz, and the luminance contrast was modulated at several frequencies of interest (0.1 Hz, 

0.2 Hz, 0.5 Hz, and 0.75 Hz). (B) Quantifying BOLD responses to oscillating stimuli. 

The contrast modulation is depicted by the purple trace and the expected BOLD responses 

depicted by the blue trace. After stimulus onset, the BOLD response exhibits a transient 

phase followed by a plateau (similar to the measured data presented in Figs. 1B & C); 

the BOLD oscillations and their amplitudes are measured around that plateau. (C) Mean 

BOLD response amplitude measured in visual cortex at 3T (blue trace). The dashed line 

depicts the predicted amplitude of the BOLD response to this stimulus as a function of 

stimulus modulation frequency. The BOLD responses to the 0.75 Hz stimulus modulation 

were approximately 10× larger than those predicted from the canonical model. The data 

demonstrate the need for updated models of the hemodynamic response to predict rapidly 

varying BOLD signals. (Adapted from Lewis et al., 2016, with permission.)
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Figure 4: Nonlinearities seen in the cascade linking the stimulus/task waveform to the BOLD 
response.
(A) Current Balloon model framework applied to predicting the BOLD response to a 

short-duration (2 s) stimulus, using parameter values α = 0.15 and τv = 0 s (see text for 

description). (B) This same framework applied to predicting the BOLD response to a more 

conventional long-duration (20 s) stimulus, using parameter values α = 0.35 and τv = 25 

s. The neuronal response begins with a positive transient reflecting excitation, followed 

by a reduced response during the sustained period reflecting short-term adaptation, and 

ends with a negative transient reflecting inhibition. Dashed arrows indicate stages of the 

cascade where stimulus duration is believed to affect the nonlinearity of the transformation, 

including the transformation between the stimulus waveform and the neuronal response, 

and the transformation between the CBF and CBV responses. For short-duration stimuli, 

a strong coupling is exhibited between CBV and CBF, however for long-duration stimuli 

a dynamic coupling occurs between CBV and CBV. The CBF-CBV decoupling translates 

into a consequent decoupling between CBF and BOLD, as shown in the circle inset in 

the top-right of each panel. (Also indicated in gray arrows is the potential for a dynamic 

decoupling between CMRO2 and CBF, such as a CMRO2 response that is faster than the 

hemodynamic response which would potentially give rise to an initial dip; here the CBF 

response is modeled as having no delay relative to the CMRO2 response.) All quantities are 

plotted normalized to their baseline values, with the exception of the BOLD response which 
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is in units of percent signal change. Parameter values were taken from the literature (Chen 

and Pike, 2009; Havlíček and Uludağ, 2020; Jones et al., 2001; Mandeville et al., 1999a; 

Uludağ and Blinder, 2018).
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Figure 5: The temporal properties of the BOLD “impulse response function” vary with stimulus 
duration and with brain region.
Impulse response functions (i.e., convolution kernels) were estimated from BOLD response 

to visual stimuli with varying durations presented in a conventional block design; on-block 

durations were 4 s, 2 s, 1 s, 0.5 s, and 0.17 s. (A) The stimulus-specific impulse response 

function timing (measured as the time to peak or TTP of the impulse response) and shape 

(measured as the full-width at half-maximum or FWHM of the impulse response) were 

estimated along the visual pathway at the primary visual cortex (V1), the lateral geniculate 

nucleus (LGN) of the thalamus, and the superior colliculus (SC) of the brainstem. Both TTP 

and FWHM became systematically shorter with shorter stimulus durations in all three brain 

regions. (B) A similar analysis applied to the superficial and deep cortical depths of V1, with 

the timing and shape parameters plotted from LGN as a reference. Both response timing 

and response shape were systematically faster in the deeper cortical depths compared to the 

superficial depths, but both were consistently slower than the responses measured within the 

LGN, suggesting that the fastest responses in V1 are still slower than the responses in LGN. 

(Reproduced from Lewis et al., 2018b, with permission.)
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Figure 6: Tentative hypothesis of the progression of BOLD response delays across brain regions, 
relative to the cerebral cortical GM as a reference.
Each bar represents the approximate delay of the block response relative to cerebral cortical 

GM as reported in the original studies, with the exception of the c-spine GM which did 

not record cerebral cortical GM responses; this value is therefore roughly estimated. While 

these measurements across brain regions were each obtained using different stimuli and 

different experimental conditions, thus should be interpreted with caution, plus there are 

likely differences in the timing of neuronal response, given that the time scales are longer 

than the expected neuronal timing differences this suggest that at least some of this trend 

may be explained by hemodynamic difference. Values were obtained from the following 

studies: cerebellar GM (Boillat and van der Zwaag, 2019; Chen and Desmond, 2005); 

cerebral WM (Li et al., 2019); cerebral cortical GM, deep layers (Lewis et al., 2018b); 

thalamic GM (lateral geniculate nucleus, LGN) (Lewis et al., 2018b; Yen et al., 2011); 

brainstem GM (superior colliculus, SC) (Lewis et al., 2018b), c-spine GM (Sasaki et al., 

2002).
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Figure 7: Differences in HDR timing across species.
Estimated BOLD impulse response from the rat cerebral cortical gray matter obtained from 

averaging 143 BOLD measurements in the primary somatosensory cortex of 76 animals 

under anesthesia; the green trace represents the average impulse response function and the 

shading represents its standard deviation. The black trace represents the canonical impulse 

response function for humans based on the SPM HRF. The maximum occurs after 2.8 ± 

0.8 s and the undershoot occurs at 6.1 ± 3.7 s, compared to 5 s and 15 s for the human 

impulse response The HRF is expected to vary across brain regions, and may even become 

faster for under awake/behaving preparations, this example demonstrates that hemodynamics 

may occur at different time scales in the experimental animal model most often used 

for investigating neuro-vascular coupling. (Reproduced from Lambers et al., 2020, with 

permission.)
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Figure 8: Accurate hemodynamic response models become increasingly important when 
studying fast neural activity.
(A) Example of a fast HRF vs. the canonical HRF. (B) Schematic of how a fast voxel 

would respond to a block vs. a rapid event. When the stimulus design is slow, a mismatched 

HRF has little effect; however, when the stimulus is fast, a mismatch between the HRF 

and canonical model leads to lower accuracy. This can cause lower sensitivity to activation 

when using conventional models to analyze rapid task designs, or in regions with fast 

hemodynamics such as subcortical structures or deep cortical gray matter. (C) Schematic of 

temporal phase cancellation during a 0.5-Hz stimulus. When analyzing rapidly fluctuating 

activity, the typical biological heterogeneity of HDRs (e.g., 1-s phase delay) across voxels 

can average out the responses, leading to smaller signals.
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