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INTRODUCTION

The cardinal pathologic features of asthma are chronic eosin-
ophilic bronchitis with T helper 2 (Th2) inflammation, bronchi-
al smooth muscle hyperplasia, easy shedding of the epitheli-
um, the presence of mucus plug in the bronchi, and thickening 
of the subepithelial basement membrane. Several asthma phe-
notypes, such as allergic asthma, non-allergic asthma, occupa-
tional asthma, and aspirin-sensitive asthma, have been sug-
gested. However, the pathologic features of these phenotypes 
are remarkably similar, and an essential element among them 
is type 2 inflammation by Th2 and group 2 innate lymphoid 
(ILC2) cells.1 The significance of type 2 inflammation has been 
emphasized by newly developed monoclonal antibody treat-
ments for severe uncontrollable asthma phenotypes. Several 

antibodies have been authorized by the US Food and Drug Ad-
ministration (FDA) or European Medicines Agency or are sup-
ported by successful phase 3 results: anti-IgE, anti-interleukin 
(IL)-5, anti-IL-5 receptor, anti-IL-4Rα, and anti-thymic stromal 
lymphopoietin,2 all of which block type 2 inflammation.

Some researchers have suggested the presence of a neutro-
philic asthma phenotype. Neutrophilic bronchial inflamma-
tion can be induced by respiratory viral, fungal, or bacterial 
infections. Recent studies have shown that the lower airway is 
not a sterile organ, with the presence of numerous microbi-
omes. In addition to microbes and infections in the airway, ex-
posure to toxic inhalants, including air pollutions, particulate 
matters, smoking, and occupational irritants, can also induce 
neutrophilic inflammation. These exposures are ubiquitous, 
and the majority of asthma patients may not be plausible to 
avoid them. In addition, patients with asthma frequently have 
a respiratory comorbidity, such as chronic obstructive pulmo-
nary disease (COPD), bronchiectasis,3,4 nontuberculous myco-
bacterium infection,5 or diffuse panbronchiolitis,6 which are 
characterized by the presence of neutrophils in the airway. As 
many as 20% of patients with asthma have a comorbidity of 
bronchiectasis, and 20% of all patients with obstructive airway 
diseases exhibit the overlapping phenotype of asthma and 
COPD.7 Furthermore, the fluctuating nature of type 2 inflam-
mation or possible spontaneous remission status of asthma 
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may lure the concept of a specific neutrophilic asthma phe-
notype. Although monoclonal antibodies, such as anti- tumor 
necrosis factor (TNF)-α or anti-IL-17, have shown partial re-
sponses, they have not met the primary endpoints of phase 3 
clinical trials,8-10 suggesting the minor role of neutrophils in 
asthma. Moreover, they resulted in unacceptable adverse re-
actions in these clinical trials.

However, patients with asthma and metabolic dysfunction 
have additional pathogenic and pathologic features from those 
with Th2 inflammation. Metabolic dysfunction, typically pre-
sented as metabolic syndrome, has several important clinical 
features, including central obesity, insulin resistance/glucose 
intolerance, dyslipidemia, and vitamin D (VitD) deficiency. It 
is well known that asthma is difficult to treat in patients with 
obesity, due in part to inadequate response to inhaled cortico-
steroids. Recently, epidemiological studies using big data have 
suggested that the treatment of insulin resistance and VitD 
supplementation have beneficial effects on asthma manage-
ment.11,12 Meanwhile, a cohort study of patients with exacerba-
tion-prone asthma suggests that metabolic dysfunction is the 
key factor of asthma exacerbation.13 These features emphasize 
the role of metabolic dysfunction for the pathogenesis of asth-
ma and the presence of an asthma phenotype with metabolic 
dysfunction. As the prevalence of obesity and metabolic dys-
function continue to soar globally, the gravity of these condi-
tions on asthma is also reinforced. In this review, I summarize 
the recent studies on metabolic dysfunction and asthma, as well 
as the suggested mechanisms of asthma aggravation (Fig. 1).

ASTHMA WITH OBESITY

Obesity has been recognized as one of the risk factors for asth-
ma development and exacerbation.14 Patients with asthma and 
obesity are vulnerable to asthma exacerbation by nitric oxide 
exposure.15 However, the underlying mechanisms that explain 
how obesity affects asthma remain obscure. One plausible hy-
pothesis is that obesity has mechanistic effects on the lungs 
that result in difficulty of breathing. Obesity can increase lung 
elastance, thereby reducing forced expiratory volume and in-
creasing expiratory reserve volume, peripheral airway resis-
tance, and airway hyperresponsiveness.16,17 Additionally, obe-
sity is the well-known risk factor for gastroesophageal reflux 
disease (GERD),18 which can make asthma control difficult.19 
Another explanation is obesity-induced neutrophilic20 or pau-
ci-inflammatory lung lesions.21 Adipose tissue is the largest 
immune organ and produces various proinflammatory medi-
ators, such as C-reactive protein (CRP), TNF-α, transforming 
growth factor (TGF)-β, leptin, and IL-6.22 Adipose tissue-derived 
macrophages have been regarded as the primary source of 
these proinflammatory cytokines.23,24 In the absence of inflam-
mation, 10%–35% of circulating IL-6 may come from adipose 
tissue,25 and it induces CRP production.26 van Huisstede, et al.22 

showed that bariatric surgery decreased CRP from 36 mg/L to 
7.1 mg/L in patients with asthma and obesity at 1 year after bar-
iatric surgery. The causal relationship of obesity and asthma 
has been supported by weight reduction studies in patients 
with asthma and obesity.27 Both surgical and medical interven-
tion studies have showed an improvement in asthma medica-
tion or symptom scores. Additionally, a cohort study of patients 
with exacerbation-prone asthma showed that serum IL-6 is 
the biomarker of asthma exacerbation,13 supporting the intrac-
table nature of patients with asthma and obesity or metabolic 
dysfunction. Furthermore, an in vivo murine model of high-
fat diet (HFD)-induced obesity showed the consistent feature 
of proinflammatory lesion in the lung. The bronchoalveolar la-
vage fluid of obese mice exhibits a characteristically greater 
number of alveolar macrophages. These macrophages can 
produce TNF-α, TGF-β1, and other proinflammatory media-
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Fig. 1. Suggested mechanisms of metabolic dysfunction in patients with 
asthma. AHR, airway hyperresponsiveness; CRP, C-reactive protein; FRC, 
functional residual capacity; GERD, gastroesophageal reflux disease; 
RAS, renin-angiotensin system; TNF, tumor necrosis factor; VitD, vitamin 
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tors,23 which may also aggravate the type 2 inflammation.28 
Moreover, obesity is associated with insulin resistance and de-
creased VitD levels, both of which contribute to asthma aggra-
vation.29-31 Previously, we demonstrated that HFD-induced 
obesity is significantly associated with airway hyperrespon-
siveness and peribronchial lung fibrosis through increased in-
sulin resistance and VitD deficiency, which contribute to en-
hanced TGF-β1 secretion from the bronchial epithelium.32,33

One complicating factor is the ethnic and gender differenc-
es in the diagnostic criteria of obesity. There is no globally ac-
cepted definition of obesity, and significant ethnic differences 
exist. The World Health Organization defines “overweight” as 
a body mass index (BMI) of 25.0–29.9 and “obesity” as a BMI of 
30 kg/m2 or greater.34 However, the Japanese Society of Obesity 
specifies obesity as a BMI of 25 kg/m2 or greater, without sug-
gesting the overweight criteria.35 This difference is due to popu-
lation differences: approximately 10%–20% of Caucasian pop-
ulations have a BMI of more than 30 kg/m2, while only 2%–3% of 
the Japanese population have a BMI of more than 30 kg/m2.35,36 
Waist circumference criteria for abdominal obesity are mark-
edly different by ethnicity and gender (Table 1).35,37 Interesting-
ly, the waist circumference criteria for central obesity is higher 
in Caucasian, South Asian, and Chinese men but higher in Jap-
anese women. Although no report has been published on the 
ethnic differences in the effect of obesity on asthma, these eth-
nic differences in obesity criteria must be considered when 
studying the effect of obesity on asthma.

In summary, these studies suggest that obesity can aggravate 
asthma through the physiologic and mechanistic effects of in-
creased elasticity of the chest wall and the lungs, as well as lung 
fibrosis and GERD aggravation. Additionally, obesity induces 
VitD deficiency, as well as secretion of proinflammatory medi-
ators from adipose tissue. All of these factors may make it diffi-
cult to control asthma in patients with obesity. Clinical trials for 
weight reduction modalities on patients with asthma and obe-
sity have consistently supported the causal relationship be-
tween obesity and asthma control.

VITAMIN D DEFICIENCY AND ASTHMA

VitD has been recognized as a key player in calcium and bone 
metabolism, but it is a pleiotropic hormone. The active form of 
VitD—1, 25-dihydroxyvitamin D—binds to the VitD receptor 
(VDR) and forms a heterodimer with the retinoic X receptor. 

This receptor then binds to the VitD response element in DNA 
to upregulate or downregulate more than 200 genes. VDRs are 
found in all tissues including antigen-presenting cells, such as 
alveolar macrophages and dendritic cells, bronchial epithelial 
cells, and lung fibroblasts.38,39 Many epidemiological and clini-
cal studies have linked VitD deficiency to various respiratory 
diseases, such as asthma,12,40,41 chronic obstructive pulmonary 
disease,42 cystic fibrosis, and respiratory infections.43 Prenatal 
VitD deficiency may contribute to diminished tracheal and 
bronchial cartilage formation and then decreased airway di-
ameter, leading to increased airway resistance.44 Additionally, 
VitD is important in immune regulation. Antigen-presenting 
cells, such as macrophages and dendritic cells, produce 1, 25-di-
hydroxyvitamin D from 25-hydroxyvitamin D, and have an im-
portant role in normal development of these antigen-present-
ing cells and antigen processing.39 VitD also enhances regulatory 
T-cell immunity, and through this mechanism, it may suppress 
Th1 and Th2 cell-induced inflammation.45 An in vivo neonatal 
mouse model showed that VitD deficiency aggravates eosino-
philic inflammation with increased CD3+ CD4+ T1ST2+ T help-
er cells and reduced CD4+ IL-10+ regulatory T cells in the lungs; 
these changes were reversed by VitD supplementation.46 Fur-
thermore, VDRs can enhance the production of antimicrobial 
peptides, such as cathelicidin and β-defensin,47,48 and can pre-
vent respiratory viral infection, which is the most important 
trigger factor for asthma exacerbation and a risk factor for the 
development of asthma. These results have led to many ran-
domized clinical trials for VitD supplementation in VitD-defi-
cient asthma patients; however, these trials have shown con-
troversial results.49-51

Interestingly, obesity is a well-known risk factor for VitD de-
ficiency. Several mechanisms have been suggested for the de-
creased level of VitD in obesity. At first, it was proposed that 
VitD is sequestered in adipose tissue52 and VitD produced in 
the skin by UV may be diluted with increasing fat mass.53 Addi-
tionally, obesity may decrease the expression of CYP2R1, he-
patic 25-hydroxylase, which may contribute to 25-hydroxyvita-
min D deficiency.54 Ramirez, et al.38 showed that VDRs are found 
in the respiratory epithelium and lung fibroblasts. TGF-β1 is well 
known as the key player in the development of lung fibrosis 
and airway remodeling in asthma.55 Importantly, VitD reduc-
es TGF-β1-stimulated lung fibroblast proliferation and decreas-
es collagen, fibronectin, and α-smooth muscle actin fibroblast 
production, and TGF-β1-mediated epithelial-mesenchymal 
transformation.38 Our previous study demonstrated that VitD 
supplementation can prevent the expression of obesity-relat-
ed lung fibrosis and airway hyperresponsiveness through the 
suppression of RAS and TGF-β1 expression in a murine model 
of HFD-induced VitD deficiency.33 The mechanism of how VitD 
attenuates TGF-β1 signaling remains obscure. However, since 
VDRs can negatively regulate the profibrotic effects of TGF-β1 
signaling by inhibiting phosphorylated Smad-2/3, VitD sup-
plementation may prevent fibrosis of the lungs, skin, or other 

Table 1. Ethnic Differences in Abdominal Obesity Criteria by Waist Cir-
cumference37

Ethnic group
Waist circumference (cm)
Men Women

European Caucasian >94 >80
Japanese >85 >90
South Asian and Chinese >90 >80
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major organs.38,56,57 Interestingly, several nonalcoholic fatty liv-
er disease rodent experimental studies already have reported 
the attenuation of steatosis and liver fibrosis by VitD supple-
mentation.58-61 The renin-angiotensin system (RAS) may be 
important for lung fibrosis in obesity. The activation of RAS by 
VitD deficiency is a well-known phenomenon62,63 and may con-
tribute to fibrosis in the lungs.64 Shi, et al.65 showed that VitD 
deficiency over-activates the RAS and increases TGF-β1 ex-
pression, leading to lung fibrosis. Interestingly, COVID-19 uses 
angiotensin-converting enzyme 2 receptor for invading the 
host cell. Some investigators have suggested that VitD supple-
mentation for the deficiency subjects may be helpful to pre-
vent COVID-19 infection through suppression of the RAS and 
production of antimicrobial peptides.66

Considering the high prevalence of VitD deficiency in the 
real world,67 clinicians should consider VitD deficiency for the 
management of asthma. The recommended level of serum 
VitD concentration for asthma patients is unclear. If the serum 
level of 25-hydroxyvitamin D is below 15 μg/L, parathyroid lev-
els increase while bone density decreases. Therefore, more than 
20 μg/L (50 nmol/L) of 25-hydroxyvitamin D has been recom-
mended for maintaining bone density. However, the optimal 
concentration of VitD for immune regulation and the mainte-
nance of immunological homeostasis is contested. Many guide-
lines have recommended maintaining 25-hydroxyvitamin D 
levels at more than 30 μg/L (75 nmol/L), considering the pleio-
tropic function of VitD.68 Further studies are needed to deter-
mine the ideal serum concentration of VitD in patients with 
asthma. As the effect of VitD supplementation on asthma may 
require long-term administration, long-term and large-scale 
randomized clinical trials are required.

INSULIN RESISTANCE AND ASTHMA

Obesity and insulin resistance are closely intermingled. Obe-
sity is a well-known risk factor for metabolic dysfunction and 
type 2 diabetes. Increased free fatty acid (FFA) levels in obesity 
induces hepatic gluconeogenesis, followed by insulin hyperse-
cretion from pancreas. Additionally, FFA reduces insulin sen-
sitivity in the muscle by inhibiting insulin-mediated glucose 
uptake. Obesity-induced proinflammatory status results in ag-
gravation of insulin resistance and lipolysis of triglycerides in 
adipose tissue, which leads to higher FFA levels and makes vi-
cious cycle.69 Furthermore, obesity-induced VitD deficiency 
triggers insulin resistance by impairing insulin sensitivity70 and 
insulin secretion from pancreatic β-cells.71,72

Recent epidemiological studies have shown the relationship 
between asthma control and anti-diabetes medications, sug-
gesting the importance of insulin resistance in asthma patho-
genesis.11,73 A big data analysis using US National Health and 
Nutrition Examination Survey data showed that insulin resis-
tance further strengthens the association between obesity and 

asthma.31 Another big data analysis of nondiabetic patients 
with asthma showed the link between glycated hemoglobin 
A1c (HbA1c) levels and asthma-related hospitalization, as well 
as an inverse relationship between HbA1c and FEV1.11 Hyper-
insulinemia may enhance bronchoconstriction by vagal nerve 
stimulation and the loss of inhibitory M2 muscarinic receptor 
function without any changes in smooth muscle contractility 
to acethylcholine.74 In another study evaluating the effects of 
insulin on bronchial smooth muscle, insulin was found to en-
hance extracellular matrix laminin expression and contribute 
to the maintenance of hypercontractility in the airway smooth 
muscle.75 Additionally, our previous study showed that insulin 
resistance induced by obesity can enhance TGF-β1 expression, 
lung fibrosis, and airway hyperresponsiveness in a murine 
model.32 These findings suggest that insulin resistance may at-
tenuate the response to conventional asthma management and 
aggravate the severity of asthma.

Previous studies have shown the beneficial role of metfor-
min for asthma management. In a retrospective cohort study 
of 1332 patients with asthma and diabetes in Taiwan, metfor-
min use decreased asthma-related hospitalization [odds ratio 
(OR), -0.21] and asthma exacerbation (OR, -0.39).76 These re-
sults were replicated with different large databases of electron-
ic health records.77 Patients with asthma and diabetes who used 
metformin had less emergency room visits compared to those 
who did not use metformin. Interestingly, this effect was inde-
pendent of glycemic control and the degree of obesity. It is well 
known that metformin could improve insulin resistance. An 
in vivo study using an HFD obesity mouse model showed that 
metformin can suppress allergen-induced eosinophilic inflam-
mation as well as the production of proinflammatory TNF-α, 
eotaxin, and nitric oxide.78

A retrospective cohort study of patients with type 2 diabe-
tes and asthma showed that glucagon-like peptide 1 receptor 
(GLP-1R) agonist treatment decreases the exacerbation and 
symptoms of asthma compared to other antidiabetic treatment 
modalities. This finding was preserved even after adjusting for 
several compounding factors, including BMI and HbA1c.73 
These protective effects are independent of baseline and chang-
es of BMI and serum HbA1c levels by GLP-1R agonist treatment. 
GLP-1 is secreted postprandially from the intestines and the 
central nervous system and lowers serum glucose levels through 
the secretion of insulin and the suppression of glucagon from 
pancreas. Additionally, GLP-1R agonists can induce weight loss 
by increasing satiety by acting to GLP-1 receptor in brain. This 
feature led the US FDA to approve liraglutide and semaglutide 
for the management of obesity.79,80

In addition to these beneficial effects on obesity and insulin 
tolerance, an GLP-1R agonist can suppress allergic inflamma-
tion. GLP-1R has also been found in the respiratory epithelium.81 
A murine model of allergic asthma showed that an GLP-1R ag-
onist can suppress allergen-induced IL-33 and thymic stromal 
lymphopoietin secretions from the respiratory epithelium, as 
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well as the activity of ILC2 cells.82 Interestingly, GLP-1R agonists 
can also suppress obesity–related pro-inflammation. We eval-
uated the effects of SGLT-2 inhibitor (empagliflozin) and GLP-1R 
agonist (dulaglutide) in a murine HFD-induced obesity mod-
el.83 Both drugs attenuated the release of obesity-related proin-
flammatory mediators, as well as airway hyperresponsiveness 
and lung fibrosis; they also had additive effects on obesity-re-
lated pathologies. These studies suggest that these agents are 
the promising therapeutic modality for patients with asthma 
and obesity.73,82,83

These preclinical and retrospective big data studies have 
shown that some antidiabetic medications, such as metfor-
min, and GLP-1R agonists may be helpful for the management 
of asthma, suggesting the causal relationship of increased in-
sulin resistance and aggravation of asthma. However, some 
studies have found that these beneficial effects of GLP-1R ag-
onist on asthma are not associated with the important con-
founding factors of glycemic control or obesity.73 Although these 
results may throw the possible anti-inflammatory roles of GLP-
1R agonists and metformin, these data were based on a retro-
spective cohort and could be vulnerable to insufficiently un-
controlled compounding factors. Therefore, strict and well-
designed prospective clinical studies are required before rec-
ommending these antidiabetic drugs in clinical practice.

CONCLUSION

Th2 inflammation is the most important determinant for asth-
ma pathogenesis. However, metabolic dysfunction may aggra-
vate asthma. Obesity, VitD deficiency, and insulin resistance 
are frequently intermingled, and all of them contribute to the 
pathogenesis of asthma phenotype with metabolic dysfunc-
tion. Various mechanisms of this phenotype on asthma aggra-
vation have been suggested, and clinicians should consider the 
diverse aspects of metabolic dysfunction when treating patients 
with asthma.
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