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Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop 
from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The 
osteogenic lineage commitment of MSCs is controlled by cell–cell interactions, paracrine factors, mechanical signals, hor-
mones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphoge-
netic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with 
other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific 
transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the 
cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified 
for therapy for bone repair and regeneration.
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Abbreviations
AD-MSCs	� Adipose tissue-derived mesenchymal stem 

cells
ALP	� Alkaline phosphatase
ATF4	� Activating transcription factor 4
BM-MSCs	� Bone marrow-derived MSCs
BMP	� Bone morphogenetic protein
BMPR	� BMP receptor
BSP	� Bone sialoprotein
Cbfa1	� Core binding factor 1
Cntnap4	� Contactin associated protein family member 

4
Col1	� Collagen type 1
Dkk1	� Dickkopf 1
Dlk1	� Delta homolog-like 1
Dll1/2/3	� Delta-like 1/2/3
Dlk5	� Distal-less homeobox 5
DNER	� Delta/Notch-like EGF-related receptor
ERK1/2	� Extracellular-signal regulated kinase1/2
FAK	� Focal adhesion kinase

FGF	� Fibroblast growth factor
FOXO	� Forkhead box type O
Fzd	� Frizzled
GSK3β	� Glycogen synthase kinase-3 β
Hey	� HES-related with a YRPF motif
Ihh	� Indian hedgehog
Jag1	� Jagged 1
JNK	� Jun amino-terminal kinase
LRP	� Low-density lipoprotein receptor-related 

protein
MAPK	� Mitogen activated protein kinase
MSCs	� Mesenchymal stem cells
NELL-1	� Neural epidermal growth factor-like 1 

protein
NICD	� Notch intracellular domain
Opn	� Osteopontin
Ocn	� Osteocalcin
Osx	� Osterix
PCP	� Planar cell polarity
PPARγ	� Peroxisome proliferator-activated receptor 

gamma
PTH	� Parathyroid hormone
PTHrP	� Parathyroid hormone-related protein
Rbpjκ	� Recombination signal binding protein for 

immunoglobulin kappa J region
rhBMP	� Recombinant human BMP
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ROCK	� Rho associated protein kinase
Runx2	� Runt-related transcription factor 2
sFRP	� Secreted frizzled-related protein
Shh	� Sonic hedgehog
SMO	� Smoothened
SOST	� Sclerostin
Sox9	� SRY box transcription factor 9
TGFβ	� Transforming growth factor β
WIF1	� Wnt-inhibitory factor 1
YAP/TAZ	� Yes-associated protein/transcriptional coacti-

vator with PDZ-biding motif

Introduction

Osteoblasts develop from the MSCs through a process called 
osteogenesis. MSCs, give rise to osteo-chondro progenitors, 
which develop into osteo-precursors upon Runx2 (Runt-
related transcription factor 2) activation or chondrocytes if 
Sox9 (SRY box transcription factor 9) is activated (Mar-
tinez et al. 2016). Pre-osteoblasts, the osteogenic precur-
sors, proliferate further and mature to form osteoblasts and, 
finally, osteocytes (Maes et al. 2010). MSCs, isolated from 
the bone marrow and other tissue sources, can differentiate 
into osteoblasts, adipocytes, and chondrocytes (Pittenger 
et al. 1999). Osteogenic differentiation ability was observed 
in MSCs isolated from several tissue sources such as bone 
marrow (Shima et al. 2015), adipose tissue (Si et al. 2019), 
the dental pulp (Kawashima et al. 2017), placenta (Ulrich 
et al. 2015), umbilical cord blood (Rebelatto et al. 2008), 
extraocular muscle (Mawrie et al. 2016) and ocular adipose 

tissue (Mawrie et al. 2019). However, bone marrow MSCs 
(BM-MSCs) possess epigenetic memory for osteo-lineage 
and have high osteogenic differentiation ability compared to 
MSCs from other tissue sources (Xu et al. 2017), whereas 
adipose tissue-derived MSCs (AD-MSCs) do not show the 
donor-dependent change in characteristics (Beane et al. 
2014).

Osteogenesis is controlled by several signaling path-
ways such as bone morphogenetic proteins (BMPs), Notch, 
Hedgehog, neural epidermal growth factor-like 1 protein 
(NELL-1), and Wnt/β-catenin signaling (Fig. 1). Activa-
tion of transcription factors Runx2, Osterix (Osx), distal-
less homeobox 5 (Dlx5), TWIST, Msh homeobox 2 (Msx-2), 
activating transcription factor 4 (ATF4) and forkhead box 
type O (FOXO) members through interaction with various 
signaling pathways induce osteogenic lineage commitment 
and differentiation of MSCs. Runx2, the master regulator 
of osteogenesis, has an important role in early osteogenic 
lineage commitment, and induce Hedgehog and Wnt sign-
aling molecules for further maturation (Qin et al. 2018). 
When core binding factor 1 (Cbfa1), the mouse homolog 
of Runx2 was knocked out, it abrogated ossification due 
to maturational arrest in osteoblasts (Komori et al. 1997). 
Cbfa1 null mice has delayed osteogenesis while heterozy-
gotes show skeletal abnormalities and hypoplasia similar 
to that seen during cleidocranial dysplasia (CCD) (Otto 
et al. 1997). When Osf2/Cbfa1 was expressed in stem cells, 
it induces pre-osteoblast development even in non-osteo-
blastic cells (Ducy et al. 1997). However, when Cbfa1 was 
forcibly expressed in late stage of osteogenesis, it resulted 
in failed osteoblast maturation and osteopenia (Liu et al. 

Fig. 1   Osteogenic lineage commitment of MSCs. The initial com-
mitment of pluripotent MSC into osteogenic fate is induced by BMP, 
Wnt, Hedgehog and Nell-1 signaling pathways. While many BMP 
ligands promote osteogenesis of MSCs, BMP13 inhibits osteogenic 

differentiation of BM-MSCs by inhibiting calcium mineralization and 
alkaline phosphatase (ALP) activity. Notch plays an inhibitory role 
during initial commitment into osteogenic lineage, whereas it pro-
motes the terminal differentiation of osteoblasts
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2001). Another transcription factor Osterix (Osx), also 
inhibits osteoblast maturation at later stages of differentia-
tion, although it is necessary for maintaining bone homeo-
stasis, craniofacial bone development, and spine formation 
(Chen et al. 2014; Li Wang and Fei 2015). Further, MSCs 
from Osx null mice does not mineralize the cartilage matrix 
or form mature bone, and Osx acts downstream of Runx2 
(Nakashima et al. 2002). In this review, we discuss the vari-
ous signaling pathways that modulate osteogenesis and oste-
ogenic differentiation of MSCs, secondly, how the signaling 
pathways cross-talk to induce osteogenesis and finally, the 
modulation of signaling pathways to enhance osteogenesis 
for therapeutic purposes.

BMP signaling

BMPs are members of the transforming growth factor- β 
(TGF-β) superfamily, secreted by osteoblasts and other cells 
(Wang et al. 2014). BMP signaling is initiated by ligand 
binding to the heterodimeric BMP receptors (BMPRs) 
(Nickel and Mueller 2019) formed of BMPR1 and BMPR2 
(Nickel and Mueller 2019). BMP receptors can signal 
through either canonical Smad-dependent or non-canonical 
Smad independent pathways (Derynck & Zhang, 2003). 
BMP molecules function in autocrine, paracrine, and endo-
crine manner, and to date, more than 15 different types of 
BMP molecules have been discovered in mammals with dis-
tinct and overlapping functions. Mutation in BMP-2 causes 
Brachydactyly type A2 characterized by bone shortening, 
also seen in BMPR1B mutants (Lehmann et al. 2003; Liu 
et al. 2014). Smad4 mutation leads to Myhre syndrome, 
which causes short stature and facial dysmorphism (Le Goff 
et al. 2011). Mutations in BMPR1 receptor results in osseous 
deformation and fibro dysplasia ossificans progressiva (FOP) 
(Shore et al. 2006).

Several studies have investigated the effect of exogenous 
addition to BMPs in regulating osteogenesis of MSCs. 
Among the BMP ligands, BMP-2, BMP-6, and BMP-9 sig-
nificantly induce osteogenic lineage commitment of MSCs 
whereas BMP-2, BMP-4, BMP-7, and BMP-9 promote ter-
minal differentiation of osteoblast progenitors (Cheng et al. 
2003) (Fig. 2). BMP-4 expression is regulated in an auto-
crine manner and by Noggin and inhibited by BMP-2 and 
BMP-6 (Pereira et al. 2000). Exogenous BMP-2 and BMP-7 
enhance osteogenic differentiation and induce endogenous 
BMP-2, 3, and 8a expression but inhibit endogenous BMP-
3b, 4, and 6 expression in BM-MSCs (Edgar et al. 2007). In 
MSCs, the continuous presence of BMP-7 was required to 
maintain osteogenesis and its withdrawal led to adipogenic 
differentiation (Shea et al. 2003). The addition of BMPs such 
as BMP-4, BMP-9, BMP-10, BMP-11, and BMP-14 induces 
the expression of osteogenic transcription factors Runx2 

and Osx in mouse myoblasts. Maximum osteogenic activity 
is exhibited by BMP-4, BMP-9 and BMP-14, they induce 
Smad1/5 activity and expression of ALP, Bone sialoprotein 
(BSP) and Osteopontin (Opn) (Bessa et al. 2009). Further-
more, BMP-2 overexpression in human MSCs significantly 
increased its osteogenic potential and N-cadherin (CDH2) 
expression (Cai et al. 2021). Co-expression of BMP-2 and 
TGF-β3 significantly increased Runx2 and Osx protein lev-
els and improved the osteogenic activity of BMP-2 in rabbit 
BM-MSCs (Wang et al. 2016b). Porcine MSCs transfected 
with rhBMP-6 had significantly high ALP expression, cal-
cium deposition, and ectopic bone formation than rhBMP-2 
(Mizrahi et al. 2013), and BMP-1 overexpression in rabbit 
BM-MSCs promoted ALP and type 1 collagen expression 
(Su et al. 2020). On the contrary, exogenous addition of 
BMP-13 inhibited osteogenic differentiation of BM-MSCs 
in a dose-dependent manner by inhibiting calcium minerali-
zation and alkaline phosphatase (ALP) activity (Shen et al. 
2009).

BMPs also induce the expression of BMP antagonists 
in vivo that limit the exposure of BMPs to regulate osteo-
genesis. BMP antagonists are spatiotemporally regulated 
molecules that negatively regulate the BMP pathway by 
interfering directly with BMP ligands, BMP receptors, or 
Smad proteins. Some known BMP antagonists are Grem-
lin, Noggin, Sclerostin, Chordin, CTGF, and Follistatin 
(Rosen, 2006). Gremlins bind to BMP ligands and inhibit 
their interaction with the BMP receptors (David R. Hsu 
1998). Gremlin2 inhibits BMP-2 induced osteogenesis in 
human BM-MSCs by competing with BMP receptors, and 
its suppression leads to an enhanced healing of defective 
femur in animal models (Wang et al. 2017). Noggins are 
secreted molecules that inhibit BMP signaling by blocking 
the molecular interface of the binding epitopes of type I and 
type II BMP receptors (Groppe et al. 2002). Noggin expres-
sion induces BMP-7 expression in the niche during skeletal 
development in mice, which in turn suppresses the BMP-7 
activity (Nifuji and Noda 1999). Noggin inhibits osteoinduc-
tion by BMP-2, BMP-4, and BMP-6, however, BMP-7 and 
BMP-9 induced osteogenesis is resistant to Noggin mediated 
inhibition. Noggin does not inhibit BMP-9 induced nuclear 
translocation of Smad1/5/8 (Wang et al. 2013). However, a 
balance between Noggin and BMP expression is essential for 
normal development, and imbalance leads to pathological 
conditions (McMahon et al. 1998; Warren et al. 2003). For 
instance, BM-MSCs from patients with ankylosing spon-
dylitis (AS) show decreased Noggin expression, leading to 
increased action of BMP-2 and high Smad1/5/8, extracel-
lular-signal regulated kinase1/2 (ERK1/2) phosphorylation 
resulting in pathological osteogenesis (Xie et al. 2016). 
Chordin, an antagonist of BMP signaling, inhibits osteo-
genesis of human AD-MSCs by suppressing BMP-2 signal-
ing and its deletion leads to osteoinduction (Schneider et al. 
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Fig. 2   Signaling networks that regulate osteogenesis in MSCs. Fig-
ure representing various signaling pathways and their cross-talk in 
enhancing osteogenesis in MSCs. Several signaling pathways activate 

Runx2 expression, and in association with other genes, Runx2 acti-
vates the expression of Osterix and Osteocalcin
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2014). Chordin-like 1, a BMP inhibitor, increases the prolif-
eration of human MSCs in a dose-dependent manner without 
affecting the early osteogenic marker ALP (Fernandes et al. 
2010). Thus, BMPs are the major regulators and inducers of 
osteogenesis in MSCs, which is confirmed by the fact that 
Food and Drug Administration (FDA) had approved the use 
of recombinant BMP-2 and BMP-7 for the treatment of long 
bone non-unions.

WNT signaling

Wnt, a highly conserved signaling pathway, regulates cell 
polarity, proliferation, fate determination, migration, inflam-
mation, primary axis formation, and energy homeostasis in 
several cell types (Sethi and Vidal-puig 2015). Wnt ligands 
are cysteine-rich, highly hydrophobic proteins composed of 
300 to 400 amino acids that bind to transmembrane receptor 
Frizzled (Fzd) and low-density lipoprotein receptor-related 
proteins 5 or 6 (LRP5/6) and receptor tyrosine kinase-like 
orphan receptor-1/2 (ROR-1/2) act as co-receptors. 19 dif-
ferent Wnt ligands are known in vertebrates, and the type of 
co-receptors engaged determines the downstream effect of 
the ligand binding. Low levels of Wnt signaling increase the 
proliferation of uncommitted human MSCs, whereas high 
levels lead to inhibition of adipogenic differentiation but pro-
mote osteo-lineage commitment (Jan De Boer and Clemens 
2004). Wnt ligand binding can activate distinct signaling 
pathways such as canonical Wnt/β-catenin dependent path-
way, non-canonical Wnt/planar cell polarity (PCP) pathway, 
and Wnt/Ca2+ pathway.

Mutations in the Wnt receptor LRP5 is associated with 
low bone mineral density in humans, and loss of function 
mutation in LRP5 or LRP6 in mature osteoblasts results 
in trabecular bone loss (Riddle et al. 2013). The absence 
of both LRP5 and LRP6 receptors leads to osteopenia and 
failure in osteogenic differentiation, whereas heterozygous 
mutations cause limb defects in mice (Holmen et al. 2004). 
Conversely, a gain of function mutation in the LRP5 cod-
ing sequence increases Wnt signaling resulting in high bone 
density in the mutated individuals and is resistant to inhibi-
tion by dickkopf 1 (Dkk1) (Boyden et al. 2002). Wntless 
(Wls)/Gpr177, a chaperone protein directing Wnt ligand 
secretion, regulates bone mass in mature osteoblasts through 
Wnt/β-Catenin signaling and conditional deletion of Wls 
inhibits Wnt expression and induces a defect in osteoblast 
differentiation and mineralization (Zhong et al. 2012), hence 
pointing to a positive role for Wnt signaling in osteogenesis.

Several studies have reported autocrine Wnt signaling in 
the fate determination of MSCs. Several Wnt signaling com-
ponents such as LRP5, secreted Frizzled related peptides 
sFRP2, sFRP3, sFRP4, Disheveled (Dvl), Glycogen synthase 
kinase-3 β (GSK3β), APC, β-catenin, Kremen 1, Dkk1, and 

T‐cell factor (TCF1 and TCF4) were identified in BM-MSCs 
obtained from different donors (Etheridge et al. 2004). How-
ever, Wharton’s jelly derived MSCs (WJ-MSCs) express 
low levels of Wnt components, Wnt receptors, targets, and 
have upregulated Wnt inhibitor DKK1 (Batsali et al. 2017). 
Canonical Wnt signaling modulates osteogenic differentia-
tion mainly through its interaction with Runx2 promoter and 
putative TCF-DNA binding sites, and a Wnt responsive ele-
ment was identified in the Runx2 promoter (Gaur et al. 2005) 
(Fig. 2). Upregulated Wnt signaling prevents osteoblasts 
from entering chondrocyte lineage, whereas inactivation of 
β-catenin in progenitors induces chondrocyte differentiation 
at the expense of osteoblast differentiation (Day et al. 2005; 
Liu et al. 2009). Further, Wnt ligand Wnt10b inhibits adipo-
genic transcription factor peroxisome proliferator-activated 
receptor gamma (PPARγ) and induces trabecular bone for-
mation in mice by enhancing Runx2, Dlx, and Osx expres-
sion (Bennett et al. 2007). Wnt10b also mediates BMP-9 
induced osteogenesis (Liao et al. 2019) and conditional 
Wnt10b expression induces osteoblastogenesis in transgenic 
mice, whereas bone formation rate is reduced in Wnt10b 
knock out mouse (Bennett et al. 2007). When human MSCs 
were treated with Wnt5a, it induced osteogenesis by acti-
vating non-canonical Wnt signaling and subsequent osteo-
pontin expression (Bilkovski et al. 2010). Treatment with 
Wnt11 upregulates Wnt5a and subsequent commitment to 
osteogenic lineage in human BM-MSCs (Boyan et al. 2018). 
Further, Wnt6 and Wnt10a, when overexpressed, stimulates 
osteoblastogenesis and upregulation of osteolineage specific 
genes in murine MSCs, whereas its knock down enhances 
adipogenesis (Cawthorn et al. 2012). In addition, β-catenin 
overexpression inhibits adipogenesis by increasing Runx2 
and ALP levels. On the other hand, inactivation of β-catenin 
promotes adipogenesis and inhibits osteogenic differentia-
tion of MSCs (Cai et al. 2014; Cawthorn et al. 2012) and 
lineage committed pre-osteoblasts (Song et al. 2012).

Wnt antagonists, mainly secreted molecules that inhibit 
Wnt signaling belong to two families, sFRP (secreted Friz-
zled-related protein) and Dkk class of molecules (Kawano 
and Kypta 2003). While sFRP molecules inhibit by binding 
with Wnt ligands, inhibiting canonical and non-canonical 
signaling, Dkk molecules inhibit canonical pathway by bind-
ing to Wnt receptor components. The sFRP family includes 
the sFRP, WIF1 (Wnt-inhibitory factor 1), and Cerberus, 
and the Dkk family is comprised of four members (Dkk1 to 
Dkk4). The expression pattern of endogenous Wnt antago-
nists in mice osteoblasts suggests a Wnt feedback loop dur-
ing osteoblast maturation (Vaes et al. 2005). Hsieh et al. 
reported that WIF1 treatment enhances adipogenesis by 
downregulating the transcriptional activity of β-catenin/T-
cell factor (TCF) (Hsieh et al. 1999), whereas WIF1 level 
gets downregulated when murine MSCs differentiate into 
osteogenic cells (Cho et al. 2009). Dkk downregulates Wnt 
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signaling in maturing osteoblasts so that the mineralized 
matrix can be formed (van der Horst et al. 2005) and mice 
heterozygous for Dkk1 display increased bone formation 
and bone mass (Morvan et al. 2006). Dkk1 blocks canonical 
Wnt/β-catenin signaling by antagonizing LRP5/6, and inhi-
bition of Wnt signaling by Dkk-1 is responsible for reduced 
bone mass (Li et al. 2006) and osteolytic bone lesions during 
multiple myeloma (Qiang et al. 2008). Sclerostin (SOST), 
an inhibitor of canonical Wnt signaling is expressed by 
osteocytes, whose absence leads to a pathological condi-
tion termed Sclerosteosis characterized by high bone mass 
(Balemans et al. 2001). SOST competes with BMPs-2,4,5,6 
for binding sites on type I and type II BMP receptors thus 
interrupting BMP signaling (Winkler et al. 2003). SOST is 
negatively regulated in osteocytes by parathyroid hormone 
(PTH) (Bellido et al. 2005) and expression of SOST was 
found restricted to osteocyte canaliculi, lacunae, cell pro-
cesses in cortical and trabecular bones and primary oste-
oblasts but absent in active bone forming osteoblasts and 
osteoclasts (Van Bezooijen et al. 2004; Winkler et al. 2003). 
SOST expression is controlled by the mechanosensory prop-
erty of osteocytes as mechanical loading of rodent limbs 
leads to a reduction in sclerostin positive osteocyte cell bod-
ies through the action of Wnt/Lrp5 (low-density lipoprotein 
receptor-related protein5) signaling (Robling et al. 2008). 
Taken together, Wnt signaling exerts a positive influence on 
osteogenesis and osteogenic differentiation of MSCs.

Notch signaling

Notch, initially discovered in Drosophila melanogaster is 
named so since its inactivation resulted in notches in the 
wing blade. Four different Notch receptors (Notch 1, 2, 3 
and 4) are identified in mammals, and its ligands are mem-
brane-bound proteins mediating canonical or non-canonical 
signaling. Canonical Notch ligands are Jagged like—Jag1 
and 2, Delta-like—Dll1, 2 and 3 that are distinguished by 
multiple tandem EGF repeats in the extracellular domain, 
while non-canonical ligands are Delta homolog-like—Dlk1, 
Delta/Notch-like EGF-related receptor (DNER), and Con-
tactins (Zanotti and Canalis 2010). Following ligand bind-
ing, the receptors undergo sequential proteolytic cleavage; 
consequently, the Notch intracellular domain (NICD) is 
released from the attachment site in the plasma membrane 
and activates canonical and non-canonical signaling path-
ways (Zanotti and Canalis 2010). The importance of Notch 
signaling during skeletogenesis and various diseases associ-
ated with Notch mutations was reviewed extensively else-
where (Zieba et al. 2020).

Notch signaling exhibits dimorphic effects during bone 
homeostasis, and a pathological gain of function of Notch1 
in osteoblasts leads to osteosclerosis due to upregulated 

cyclin D, cyclin E, and Osx (Engin et al. 2008). Conditional 
deletion of Jag1 inhibits mineralization, whereas conditional 
activation of Notch through NICD overexpression in osteo-
cytes increases mineralization and bone formation (Liu et al. 
2016). Conditional deletion of Jag1 in osteochondral pro-
genitors and osteoblasts has a negative effect on the differen-
tiation of MSCs into the osteoblast phase (Youngstrom et al. 
2016) and mice lacking Jag1 shows enhanced osteoblast 
function and differentiation leading to more cells leaving the 
osteoprogenitor cell pool (Lawal et al. 2017). Further, osteo-
sclerotic phenotype characterized by early proliferation and 
arrested maturation of osteoblasts occurs in transgenic mice 
expressing human Notch ligands Dll1 or Jag1 under the con-
trol of ColA1 promoter (Muguruma et al. 2017). However, 
Jag1 is necessary for bone homeostasis and the maintenance 
of osteoprogenitor pool in mice (Lawal et al. 2017). Canalis 
et al. reported that Notch1/2 conditional null mice showed 
increase in osteoblasts, leading to increased trabecular bone 
volume. Nevertheless, conditional Notch1 deletion under 
osteocalcin (Ocn) promoter did not affect the osteogenesis 
and subsequent Notch2 downregulation enhanced osteogen-
esis in vitro (Zanotti et al. 2008). Conditional expression 
of NICD resulted in high trabecular bone volume due to 
increased bone formation through activation of Wnt signal-
ing (Canalis et al. 2013a). Further, conditional expression of 
NICD in committed osteoblasts under collagen α1 promoter 
induced osteosclerosis, which could be rescued by selec-
tive deletion of Rbpj (Tao et al. 2010) (Fig. 3). Conversely, 
Zanotti et al. reported inhibition of osteogenesis, decreased 
bone volume, and osteopenia when NICD was condition-
ally overexpressed under collagen I promoter. (Zanotti et al. 
2008). Several studies found a repressive action of Runx2 on 
Notch through direct physical interaction (Ann et al. 2011; 
Engin et al. 2008; Hilton et al. 2008), and Runx2 expression 
during early stages of osteogenesis might likely contribute 
to Notch inhibition (Canalis et al. 2013a).

Several studies demonstrated the role of Notch signaling 
in the osteogenic differentiation of MSCs. Human MSCs, 
dental pulp and periodontal ligament cells cultured on Jag1 
immobilized surfaces had increased osteogenic differentia-
tion and mineralization (Liang et al. 2019; Sukarawan et al. 
2016). NICD and Jag1 facilitated osteogenic differentiation 
of MSCs in a dose-dependent manner, but at high doses, 
it was found to have an inhibitory effect (Semenova et al. 
2020). Similarly, expression of NICD in mouse MSCs 
enhances ALP expressing osteoblasts (Tezuka et al. 2002), 
however, He et al. found that silencing of Notch1 promoted 
osteogenic differentiation but reduced the viability of murine 
BM-MSCs (He & Zou, 2019). Conditional expression of 
Dlk1 under type I collagen promoter decreases bone pro-
genitors and inhibits the osteogenic capacity of MSCs 
(Figeac et al. 2018). Using a multiple fracture model, Wang 
et al. found that disruption of Notch signaling in skeletal 
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progenitors leads to a reduction in BM-MSCs and fracture 
repair, whereas no negative effect was observed when dis-
rupted in differentiated osteoblasts (Wang et al. 2016a). 
Under hypoxic conditions, activation of Notch signaling 
downregulated osteogenic differentiation of MSCs, and 
Notch1 inhibited the transcriptional activity of Runx2 by 
direct binding (Xu et al. 2013) (Fig. 3). Further, the age-
related decrease in osteogenic ability was due to upregulated 
Notch signaling, and osteogenic differentiation was restored 
when mouse MSCs were treated with γ-secretase (Tang et al. 
2016). Since Notch is downregulated during early differen-
tiation but activated when osteoblasts differentiate into oste-
ocytes, Notch activation inhibits the commitment of MSCs 
into osteoblasts resulting in the accumulation of immature 
pre-osteoblasts. Activation of Notch signaling at the later 

stage of differentiation enhances osteogenesis and minerali-
zation (Ji et al. 2017). Given the contradictory roles reported 
for Notch in osteogenesis, Canalis et al. found that the role of 
Notch in osteogenesis was context-dependent, where activa-
tion in the early osteoblasts inhibited further differentiation 
but was essential for terminal differentiation (Canalis et al. 
2013b) and mineralization in osteocytes (Shao et al. 2018).

Hedgehog signaling

The hedgehog signaling pathway is one of the fundamen-
tal pathways with diverse roles in embryo development, 
skeletogenesis, and bone formation (Yang et al. 2015) and 
three structural homologs, Sonic Hedgehog (Shh), Indian 

Fig. 3   Notch signaling in osteogenesis. Notch signaling inhibits the initial commitment of MSCs to osteolineage, whereas it is required for the 
terminal differentiation of osteoblasts. Notch induces osteocyte mineralization through Wnt signaling activation
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Hedgehog (Ihh), and Desert Hedgehog (Dhh) are present in 
mammals. Shh and Ihh are essential during embryological 
development, and Shh plays a crucial role in skeletogenesis 
(Alman 2015). Mutations in Gli3, a downstream effector of 
hedgehog signaling, leads to Pallister syndrome that affects 
limb, head, face and causes abnormalities such as extra toes 
and fingers (Kang et al. 1997). Gli3 is a known repressor 
of osteogenic activity, and experimental deletion leads to a 
defective condition called Grieg cephalon-polysyndactyly 
syndrome characterized by abnormal skeletal growth (Hui 
and Joyner 1993).

Ihh has an important role in skeletal development and 
regulates endochondral bone formation, and intramembra-
nous ossification (Bitgood and McMahon 1995), and Ihh 
null mice lack mature osteoblasts, exhibit severe dwarfism, 
failed digit segmentation and incomplete joints and die post-
natally (St-Jacques et al. 1999). Gli2 overexpression and Ihh 
treatment induce Runx2 expression and osteogenic activ-
ity through direct physical interaction (Shimoyama et al. 
2007) (Fig. 2). Shh induces Osx expression and enhances 
osteogenic differentiation of BM-MSCs (Cai et al. 2012) and 
murine ADSCs in both Runx2-dependent and independent 
manner (Tian et al. 2012). Transplantation of Shh treated 
ADSCs significantly increased bone regeneration in a tibial 
injury model (James et al. 2010) and combined activation 
of Hh, NELL-1 signaling by Shh-N (Shh, N-terminus pro-
tein) and NELL-1 addition had an additive pro-osteogenic 
effect on human AD-MSCs (James et al. 2012). Shh overex-
pression significantly increases the osteogenic ability in rat 
BM-MSCs in vitro and bone formation in vivo and reverses 
diabetes induced osteogenesis defects (Jiang et al. 2019b). 
Further, Gli1 overexpression reverses oxidative stress-medi-
ated reduction in osteogenic differentiation of murine MSCs 
(Kim et al. 2010). Thus, hedgehog signaling positively regu-
lates osteogenicity of MSCs and might produce a contradic-
tory effect on MSCs from certain tissue sources.

NELL signaling

Neural EGF like proteins are secreted glycoproteins that 
belong to the NELL family with two members NELL-1 and 
NELL-2 (Pakvasa et al. 2017). NELL-1, initially identified 
in neural tissue, has roles in normal growth and development 
of various tissues, especially the bone tissues (Matsuhashi 
et al. 1995), whereas NELL-2 supports neuronal cells in hip-
pocampus and cerebral cortex (Aihara et al. 2003). Unlike 
other signaling pathways whose mechanism of action is well 
documented, the NELL-1 mediated signaling activation and 
its downstream effectors still largely remain to be identified. 
However, receptors such as Integrin β1, Integrin α3 and con-
tactin associated protein family member 4 (Cntnap4) were 

found to be binding targets of NELL-1 (Li et al. 2019; Zhang 
et al. 2010).

A loss of function mutation in Nell-1 induces neonatal 
lethality in mice with several skeletal abnormalities whereas 
Nell-1 heterozygotes are normal at birth (Desai et al. 2006) 
but later develop osteoporosis (James et al. 2015). However, 
in humans, NELL-1 overexpression is associated with cranio-
synostosis (CS) (Ting et al. 1999). The osteogenesis promot-
ing effects of Nell-1 was observed in Runx2 haplo-insufficient 
mice, where Nell-1 overexpression partially rescued the calva-
rial defects through activation of ERK1/2 and JNK1 mitogen 
activated protein kinase (MAPK) pathways and Runx2 phos-
phorylation (Zhang et al. 2011) (Fig. 2). Several transcripts of 
NELL-1 are identified and the full length isoform, NELL‐1810 
is expressed during embryonic development and controls skel-
etal development. A truncated isoform, NELL-1570 expressed 
postnatally, induces osteogenic differentiation and proliferation 
in MSCs (Pang et al. 2015). The mitogenic effect of NELL-
1570 is age-dependent where BM-MSCs from aged mouse does 
not respond to NELL-1570 induction (Meyers et al. 2019) and 
the number of Nell-1 positive bone lining cells decreases sig-
nificantly with increasing age (James et al. 2015).

NELL-1 binds with apoptosis related protein 3 (APR3) 
(Zou et al. 2011) and colocalizes with Cntnap4 on the cell 
surface to promote osteogenic differentiation (Li et  al. 
2018). NELL-1 is also a transcriptional target of Runx2 and 
Osx, where Runx2 increases Nell-1 transcription in a dose-
dependent manner (Truong et al. 2007) and Osx represses 
Nell-1 expression (Chen et al. 2011). Moreover, exogenous 
NELL-1 induces osteogenic differentiation through upregu-
lation of circular RNAs such as circRFWD2 and circINO80 
(Huang et al. 2019). Long noncoding RNAs (lncRNAs) 
induced during NELL-1 signaling inhibits the hedgehog 
pathway and activates the Wnt pathway to induce osteogen-
esis (Xia et al. 2020). Exogenous addition of Nell-1 to pre-
osteoblasts significantly induces osteogenesis on modified 
titanium surfaces through ERK and JNK activation (Shen 
et al. 2018) and mineralization through activation of Pit-1 
and Pit-2 channels (Cowan et al. 2012). NELL-1 application 
promoted bone formation in several animal models (James 
et al. 2016) and induced ectopic bone formation (Askarinam 
et al. 2013). PEGylated NELL-1 formed by adding poly-
ethylene glycol (PEG) to NELL-1, improved proliferation 
of BM-MSCs, accelerated bone regeneration, and fracture 
union (Tanjaya et al. 2018). Altogether, NELL-1 positively 
influences osteogenic differentiation.

Cross‑talk between pathways

Although several pathways individually influence the bone 
formation, osteogenesis is achieved by the coordinated 
action of multiple signaling pathways (Fig. 2). For instance, 
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in rat BM-MSCs, Osx is transcriptionally activated by the 
combined effects of BMP-2 and canonical Wnt3a through 
direct interaction of Smads and β-catenin (Rodríguez-Car-
ballo et al. 2011). Further, during osteogenic differentiation, 
BMP-9 induces Wnt10b expression, which in turn enhances 
BMP-9 induced phosphorylation of Smad1/5/8 (Liao et al. 
2019). Similarly, Wnt3a enhances BMP-9 induced osteo-
genic gene expression and BMP-9 promotes recruitment of 
Runx2 and β‐catenin to the osteocalcin promoter. However, 
when β-catenin is downregulated, it inhibits BMP‐9 induced 
ectopic bone formation in vivo (Tang et al. 2009). An intact 
Notch signaling is essential for osteogenesis promoting 
effect of BMP-9, and activation of Notch signaling augments 
BMP-9 induced Runx2, Col1a1 expression in MSCs (Cao 
et al. 2017). Interestingly, Hey1, a Notch signaling target 
gene, was significantly upregulated during BMP-9 induced 
osteogenesis, and Hey1 expression augmented BMP-9 
induced osteogenesis and found to act upstream of RUNX2 
(Sharff et al. 2009). Furthermore, Wnt and Hh signaling 
pathways regulate each other (Ding and Wang 2017), and 
Ihh signaling is activated during the early stages of osteogen-
esis, whereas Wnt signaling is required for osteoblast matu-
ration (Day and Yang 2008). Further, Shh has an additive 
effect on BMP-2 during osteogenic differentiation and Shh 
signaling induced BMP-2 expression is mediated by Gli2 
(Zhao et al. 2006), indicating a cross-talk between BMP and 
hedgehog pathways. Cowan et al. found a synergistic effect 
of Nell-1 on BMP-2 in inducing osteogenic differentiation 
in murine myoblasts (Cowan et al. 2007) and co-treatment of 
NELL-1 and BMP-2 enhanced fracture union, bone strength 
in mouse bone defect model, and augmented osteogenesis 
of human BM-MSCs. This co-treatment also enhanced the 
nuclear accumulation of β-catenin, thus activating canonical 
Wnt signaling to facilitate osteogenesis (Shen et al. 2016). 
In human AD-MSCs, recombinant NELL-1 enhanced osteo-
genesis and inhibited adipogenesis by activating the hedge-
hog signaling pathway (James et al. 2011); thus a cross-talk 
between these two pathways is required for osteogenesis. 
Further, fibroblast growth factor-2 (FGF-2) induces osteo-
genesis through ERK mediated TAZ expression (Byun et al. 
2014), and FGF-2 promotes TAZ and RUNX2 interaction 
to induce Ocn expression in murine and human MSCs (Zhu 
et al. 2018).

Hormone signaling in osteogenesis

Hormones such as PTH, melatonin, and triiodothyronine 
play integral roles in determining the osteogenic fate of 
MSCs. PTH enhances osteogenesis by inducing BMP 
signaling (Yu et al. 2012); PTH treatment increases Smad 
phosphorylation, antagonizes the inhibitory effect of Nog-
gin, and increases the endocytosis of PTH1R/LRP6, which 

further increases the access of BMPs to its receptors. Trans-
genic mice with PTH/-Parathyroid hormone-related protein 
(PTHrP) receptor (PTH1R) deletions in MSCs have low 
bone formation, high resorption, and increased levels of adi-
pose tissue in the bone marrow (Fan et al. 2017). Intermit-
tent administration of PTH activates Wnt and BMP signaling 
(Ogura et al. 2016), enhances osteogenesis (Kuo et al. 2017) 
by inhibiting adipogenesis (Yang et al. 2019), and increases 
osteoblast numbers in vivo (Balani et al. 2017). The anabolic 
action of PTH is exerted mainly through the activation of 
Wnt signaling by downregulation of SOST expression (Silva 
& Bilezikian, 2015). Continuous PTH treatment, however, 
causes proteasomal degradation of Runx2 (Bellido et al. 
2003). Several studies have reported osteoinductive effects 
of estrogen, and Zhao et al. found that estrogen treatment 
induces osteogenic differentiation over chondrogenic dif-
ferentiation and activates ERK, JNK signaling in rat BM-
MSCs (Zhao et al. 2016). Activation of estrogen receptor 
signaling in mouse MSCs through estradiol treatment or 
ERα expression increases the Wnt3a induced osteogenic 
differentiation and matrix mineralization (Gao et al. 2013). 
A synergy between BMP-9 and melatonin was observed in 
inducing osteogenic differentiation of mice MSCs where it 
enhances late osteogenic markers expression, matrix miner-
alization, and ectopic bone formation (Jiang et al. 2019a). In 
addition, BMP-9 and triiodothyronine, a thyroid hormone, 
synergistically induces AMPK/p38 signaling and enhances 
osteogenesis of MSCs (Chen et al. 2020).

Physical factors inducing osteogenesis

Mechanical signals such as matrix elasticity and cyclic 
strain induce osteo-lineage commitment and related gene 
expression in MSCs. When rat MSCs were subjected to 
oscillatory fluid flow, Runx2 and Sox9 expression were 
upregulated, leading to increased osteogenesis (Arnsdorf 
et al. 2009). Further, stiffer matrices enhance α2-integrin 
expression, which in turn activates ERK1/2 through 
ROCK and FAK, leading to increased osteogenesis in 
human MSCs (Shih et al. 2011). Yes-associated protein/
Transcriptional coactivator with PDZ binding motif (YAP/
TAZ) mediated Hippo signaling induces osteogenesis in 
MSCs during physical stimuli such as matrix stiffness 
and surface topography modifications. Rough surfaces 
and increased extracellular matrix (ECM) stiffness acti-
vate YAP/TAZ leading to higher substrate adhesion, 
cell spreading through increased actin polymerization, 
cytoskeletal tension and enhanced osteogenic differentia-
tion (Dupont et al. 2011; Heng et al. 2020). Barreto et al. 
found that mechano-sensitivity of MSCs was linked to the 
skeletal maturity and age, where MSCs from children had 
higher mechanosensitivity and showed better osteogenesis 
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compared to adult MSCs (Barreto et al. 2017). Simmons 
et al. found that cyclic strain induced the osteogenic line-
age commitment of hMSCs by enhancing MAPK signal-
ing (Simmons et al. 2003). In contrast, Shi et al. reported 
that under continuous cyclic mechanical tension, human 
as well as rat MSCs had significantly low expression of 
osteogenic markers such as ALP, Opn, Col1, and Runx2 
(Shi et al. 2011). Sugimoto et al. recently demonstrated 
that hydrostatic pressure enhances osteogenesis of MSCs 
by activating the calcium channel protein Piezo1 (Sugi-
moto et al. 2017). Actin modification, cell density, cell 
shape, and composition of ECM have all been implicated 
in regulating the osteogenic differentiation potential of 
MSCs (McBeath et al. 2004; Somaiah et al. 2015; Sonowal 
et al. 2013).

Conclusions

Multiple signaling pathways interact in intricate ways 
to regulate osteogenic differentiation and mineralization 
in MSCs. BMP signaling pathway plays a major role in 
regulating osteogenic differentiation of MSCs (Bessa 
et al. 2009; Edgar et al. 2007) and shows synergy with 
NELL-1 (Cowan et al. 2012; Shen et al. 2016), Wnt (Liao 
et al. 2019; Rodríguez-Carballo et al. 2011; Tang et al. 
2009), and Hedgehog (Yuasa et  al. 2002; Zhao et  al. 
2006) signaling to enhance osteogenesis. Wnt (Bennett 
et al. 2007; Bilkovski et al. 2010; Gaur et al. 2005) and 
hedgehog (James et al. 2012; Jiang et al. 2019b) path-
ways have positive effects on osteogenic differentiation 
of MSCs, whereas Notch has a context-dependent role in 
modulating osteogenesis. Activation of the Notch pathway 
inhibits the initial commitment of MSCs into osteoblasts, 
however, it is necessary for osteocyte maturation (Canalis 
et al. 2013b). In addition, several hormones (Chen et al. 
2020; Fan et al. 2017; Jiang et al. 2019a) and physical fac-
tors such as matrix elasticity and mechanical stress (Shih 
et al. 2011; Sugimoto et al. 2017) promote osteogenesis, 
and a combinatorial application of these factors might 
enhance osteoblastogenesis and thus bone formation under 
therapeutic conditions. Given the positive influence of sev-
eral signaling pathways, MSCs can be pre-conditioned or 
genetically modified to activate osteo-promoting signaling 
before transplantation to enhance the therapeutic benefits.
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