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Deep learning approach for automatic 
segmentation of ulna and radius in dual‑energy 
X‑ray imaging
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Abstract 

Background:  Segmentation of the ulna and radius is a crucial step for the measurement of bone mineral density 
(BMD) in dual-energy X-ray imaging in patients suspected of having osteoporosis.

Purpose:  This work aimed to propose a deep learning approach for the accurate automatic segmentation of the ulna 
and radius in dual-energy X-ray imaging.

Methods and materials:  We developed a deep learning model with residual block (Resblock) for the segmentation 
of the ulna and radius. Three hundred and sixty subjects were included in the study, and five-fold cross-validation was 
used to evaluate the performance of the proposed network. The Dice coefficient and Jaccard index were calculated 
to evaluate the results of segmentation in this study.

Results:  The proposed network model had a better segmentation performance than the previous deep learning-
based methods with respect to the automatic segmentation of the ulna and radius. The evaluation results suggested 
that the average Dice coefficients of the ulna and radius were 0.9835 and 0.9874, with average Jaccard indexes of 
0.9680 and 0.9751, respectively.

Conclusion:  The deep learning-based method developed in this study improved the segmentation performance of 
the ulna and radius in dual-energy X-ray imaging.

Keywords:  Ulna and radius segmentation, Dual-energy X-ray imaging, Deep learning, Residual block

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Keypoints

•	 Segmentation of the ulna and radius is important for 
quantifying osteoporosis.

•	 The present network model had a better segmenta-
tion performance than previous methods.

•	 Development of deep learning-based method has 
potential application in clinical practice.

Background
Osteoporosis is a chronic skeletal disease that is caused 
by bone loss and can harm bone health and increase the 
risk of fracture [1]. Osteoporosis has a high incidence 
rate among middle-aged and elderly people, especially 
women [2, 3]. In addition, osteoporosis is a systemic 
bone disease that predisposes patients to fracture and 
is associated with a high disability rate, long treatment 
cycle, and high cost, which incur a heavy burden on 
families and society [4]. According to the latest epi-
demiological survey in China, the prevalence rate of 
osteoporosis in people over 50  years of age is 19.2% 
(6% men and 30% women) [5]. Although the incidence 
rate and disability rate of osteoporosis are high, early 
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diagnosis, improved diet, exercise, and drug treatment 
can effectively prevent the occurrence of fractures 
[6–9].

Currently, osteoporosis is often diagnosed by meas-
uring the bone mineral density (BMD) of patients. The 
methods commonly used for BMD measurement include 
ultrasound, dual-energy X-ray imaging and quantitative 
computed tomography (QCT) [10]. Among these, dual-
energy X-ray imaging has a higher accuracy than ultra-
sound and a smaller radiation dose than QCT. The World 
Health Organization considers the BMD obtained by 
dual-energy X-ray absorptiometry (DEXA) as the gold-
standard for the diagnosis of osteoporosis [11]. Dual-
energy X-ray imaging is often applied to the diagnosis of 
osteoporosis and to predict fracture risk by measuring 
the BMD of the ulna and radius, lumbar (L1–L4) verte-
brae, and femur [12–14]. The segmentation of the bone 
region, followed by the calculation of the BMD according 
to the principle of DEXA (the energy attenuation inten-
sity of low-energy and high-energy X-ray passing through 
human tissue is different) [15, 16], is important steps in 
BMD measurement.

The accurate segmentation of the ulna and radius, for 
BMD measurement to diagnose osteoporosis, could be 
helpful for the early diagnosis and treatment of distal 
radius fracture, which may be the initial presentation 
of osteoporosis [17]. For ulna and radius segmentation, 
many researchers have used image processing technology 
to solve the segmentation problem. The modified adap-
tive clustering of the radius and ulna segmentation algo-
rithm was proposed for bone-age assessment [18]. An 
improved edge-based segmentation technique was used 
for the segmentation of the radius and ulna bones [19]. 
The local entropy method was developed for the detec-
tion and segmentation of the radius and ulna bones [20]. 
Furthermore, the dynamic programming algorithm was 
applied to segment the ulna and radius for single-energy 
X-ray absorptiometry BMD measurement [21]. How-
ever, those methods are easily affected by noise. There-
fore, the accuracy and stability of segmentation need 
to be improved. Recently, a deep learning method has 
been widely used in medical image analysis [22, 23]. A 
previous study has reported a deep learning segmenta-
tion model for the ulna and radius on DEXA [24]; how-
ever, that method did not distinguish between the ulna 
and radius regions. The U-Net model [25] was used for 
radius segmentation in wrist X-ray imaging [26]. A fully 
convolutional network was also applied for distal radius 
and ulna segmentation from hand X-ray images [27]. 
Those methods were mainly used for the analysis of sin-
gle-energy X-ray images; thus, the segmentation perfor-
mance on dual-energy X-ray images needs to be verified 
and improved.

As mentioned above, this work presented a deep 
learning segmentation network for the automatic and 
accurate segmentation of the ulna and radius using 
dual-energy X-ray imaging. The designed residual block 
(Resblock) was combined in U-Net to improve the 
accuracy of the segmentation procedure.

Materials and methods
Materials
The study was approved by the institutional Review 
Board of Guizhou Medical University. The data 
obtained from dual-energy X-ray imaging per-
tained to 360 subjects (171 males; 189 females) aged 
36 ± 13 years, with a total of 720 images that were col-
lected using a DEXA-iMAX imaging instrument (Kan-
rota, Co., Ltd., China). Three hundred subjects with a 
total of 600 images were used for five-fold cross-vali-
dation, and an additional 60 subjects with a total of 120 
images were used for independent testing. Each subject 
yielded two images, i.e., low-energy (45  kV) and high-
energy (75 kV) X-ray images (refer to Fig. 1). The ulna 
and radius regions of each subject were labeled by an 
experienced radiologist using MIPAV (Medical Image 
Processing, Analysis, and Visualization) V9.0.0 (https://​
mipav.​cit.​nih.​gov/). All images had a uniform size of 
576 × 768 pixels. The radius, ulna, and background 
were labeled as 2, 1, and 0, respectively.

Methods
A schematic diagram of the proposed network is shown 
in Fig.  2. The network architecture consisted of two 
stages: encoding and decoding. In the encoding stage, the 
network included five Resblock modules, four 2 × 2 max-
pooling layers, with a size of input the image of 576 × 768 
pixels. The Resblock was designed based on ResNet [28] 
and included four 3 × 3 convolutional layers and two 
1 × 1 convolutional layers, which were appended by batch 
normalization layer (BN) [29] and Rectified Linear Unit 
layer (ReLU) [30] (see Fig. 2). In the decoding stage, the 
network included four convolutional blocks (Convblock) 
and four 2 × 2 transposed convolution layers (Trans-
Conv). Each Convblock consisted of two 3 × 3 convolu-
tional layers, BN layers, and ReLU layers, respectively. 
The number of channels (ch) of each Resblock and Con-
vblock is indicated in Fig. 2. Four skip connections were 
used to concatenate feature maps along the third channel 
dimension between the encoding and decoding stages. A 
3-channel 1 × 1 convolutional layer was used to map the 
32 feature channels to 3 classes (ulna, radius, and back-
ground), followed by a softmax layer and loss function 
layer, to calculate the loss value.

https://mipav.cit.nih.gov/
https://mipav.cit.nih.gov/
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Loss function
In this work, Generalized Dice Loss [31] was used 
to compute the total loss of the proposed network. It 
could alleviate the problem of class imbalance in the 
image segmentation task. The loss function was as 
follows:

where P and G denote the predicted image and the 
corresponding ground truth, respectively; C is the 
number of classes; M is the number of elements along 
the first two dimensions of P or G; and wc is the class 
weighting factor for each class.
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Implementation details
In the implementation stage, the 300 subjects (600 
images) were randomly divided into five folds, three folds 
for training (180 subjects, 360 images), one fold for vali-
dation (60 subjects, 120 images), and one fold for testing 
(60 subjects, 120 images). Five-fold cross-validation was 
used to evaluate the performance of the proposed net-
work model. An additional 60 subjects (120 images) were 
used for independent testing without training. Data aug-
mentation methods were used for all images (360 images) 
in training sets to prevent overfitting during the training 
process. The augmentation parameters were as follows: 
horizontal and vertical translation between − 60 and 60 
pixels, horizontal and vertical scaling between 0.9 and 
1.1, rotation between − 20° and 20°, and gamma transfor-
mation between 0.5 and 1.5.

The network was optimized using the Adam optimizer 
[32] and model parameters were initialized using He ini-
tialization [33]. The network was trained by 500 epochs 
with an initial learning rate of 0.001, which was reduced 

Fig. 1  Dual-energy X-ray images and corresponding labeled images. The two images in the first row are the low-energy image and the 
corresponding labeled image (ground truth). The remaining two images in the second row are the high-energy image and the corresponding 
labeled image (ground truth). The radius, ulna, and background are labeled as 2, 1, and 0, respectively



Page 4 of 9Yang et al. Insights into Imaging          (2021) 12:191 

by multiplying 0.98 per five epochs, and a mini-batch size 
of 16. The training set was shuffled in each epoch, and 
the Dice curve of the mini-batch was used to observe 
the performance of the training and validation steps. The 
training process was stopped when no improvement in 
the Dice score was observed at 500 epochs. The training 
of 500 epochs for each model required 6⁓7 h for comple-
tion. The proposed segmentation network was imple-
mented using the deep learning toolbox of MATLAB 
2021a, and our network was trained on a server computer 
with two Intel® Xeon® Silver 4210 CPUs (2.20 GHz), four 
NVIDIA RTX 3090 GPUs with 24 GB of memory each, 
and 128 GB RAM.

Evaluation metrics
The mean value and standard deviation of the Dice coef-
ficient and Jaccard index were used to evaluate model 
performance on validation and testing sets. The Dice 
coefficient was calculated as follows:

where Pc and Gc denote the predicted image and 
ground truth of each class (C = 1, 2). The Jaccard index 
for each class was given by:

(3)Dice = 2
Pc ∩ Gc

Pc + Gc

,

Results
Results of segmentation on the validation and testing sets
Five-fold cross-validation was used to evaluate the per-
formance of segmentation on the validation and testing 
sets. Figure  3 reports the representative segmentation 
results obtained for the ulna and radius in dual-energy 
X-ray images using the highest mean Dice score model 
(yellow and cyan indicate the ulna and radius, respec-
tively). Based on the visual results, the segmentation 
accuracy of the ulna and radius using the proposed 
method was comparable to that of manual segmentation, 
both in low-energy and high-energy X-ray images on the 
validation and testing sets.

Comparison with other deep learning‑based methods
In references [24] and [27], U-Net and FCN were used 
to segment the ulna and radius, respectively. We com-
pared those two deep learning-based methods with our 
network model. All networks were implemented in the 
same server computer with the same loss function and 
were trained using the same training options (as detailed 
in the “Implementation details” subsection). Five-fold 

(4)Jaccard =
Pc ∩ Gc

Pc ∪ Gc

.

Fig. 2  Schematic diagram of the proposed segmentation network for the ulna and radius. The network consists of encoding and decoding stages. 
The inner structure of the designed Resblock module in the encoding stage is shown in the bottom-left corner of the figure
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cross-validation was also used to evaluate the compared 
methods. Figure 4 provides a visualization of segmenta-
tion results obtained using FCN, U-Net, and our method 
on the testing set. Based on the visual results, our method 
had a lower segmentation error than did the U-Net and 
FCN networks (the segmentation error is marked with a 
red circle symbol in Fig. 4). Table 1 summarizes the seg-
mentation performance with the evaluation metrics on 
the validation and testing sets. The Dice coefficient and 
Jaccard index are the average value of five-fold cross-val-
idation. According to the results, the proposed network 
model had a better Dice and Jaccard score than that of 
previous deep learning-based methods for ulna and 
radius segmentation.

Ablation experimental results
In this section, we conducted an ablation experiment on 
Resblock to justify the effectiveness of the designed net-
work architecture. Our method redesigned the encod-
ing stage of the U-Net network and replaced it with the 
Resblock structure. Therefore, we compared the U-Net 
network (with an initial number of filters of 32 and use 
of a BN layer after each convolutional layer) with the 
redesigned network. The same training parameters and 

loss function (as detailed in the “Implementation details” 
section) were used without data augmentation. Five-fold 
cross-validation was also utilized to evaluate the segmen-
tation performance. The experimental results are listed in 
Table 2. The U-Net with Resblock afforded a higher accu-
racy than did U-Net without Resblock, according to the 
Dice coefficient and Jaccard index. This demonstrated the 
effectiveness of the Resblock architecture on the ulna and 
radius segmentation performed in this study.

Results of segmentation on the independent testing set
To assess the robustness of our method, 60 subjects were 
used for independent testing without training. Table  3 
shows that our algorithm had a better segmentation per-
formance than did other methods, according to the Dice 
and Jaccard scores.

Results of the statistical analysis
We used a one-tailed paired t test for the evaluation of 
the results of the validation, testing, and independent 
testing sets between our method and others. Table 4 lists 
the results of the statistical analysis, which showed that 
the proposed method was superior to the previous meth-
ods (all p values < 0.05).

Fig. 3  Visualization of the segmentation results for the validation and testing sets. The first and third rows show low-energy X-ray images, and the 
second and fourth rows show high-energy X-ray images. The first and fourth columns are the input images. The second and fifth columns are the 
ground truth. The third and sixth columns are the segmentation results obtained using the proposed method. Yellow and cyan denote the ulna and 
radius, respectively
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Discussion
In this work, we designed a deep learning network with 
Resblock for accurate ulna and radius segmentation 
on dual-energy X-ray images. The experimental results 
based on five-fold cross-validation illustrated that our 
method had a better segmentation accuracy than did 

previous deep learning-based methods for ulna and 
radius segmentation. The proposed method was fully 
automated without requiring any pre-processing and 
prior knowledge, and the model could segment about 
15 images per second on a NVIDIA RTX 3090 GPU 
instrument.

Fig. 4  Visual comparison of the ulna and radius segmentation results using different methods on the testing set. Columns from left to right: input 
image, ground truth, U-Net, FCN, and proposed method. The first and second rows show the low-energy X-ray images, and the third and fourth 
rows show the high-energy X-ray images. The red circle denotes the region of segmentation error

Table 1  Quantitative comparison of the validation and testing sets among different methods

The results are expressed as the mean ± standard deviation. Bold values indicate the best score obtained for ulna and radius segmentation

Methods Validation set (Dice) Testing set (Dice)

Ulna Radius Ulna Radius

U-Net 0.9799 ± 0.0228 0.9857 ± 0.0100 0.9804 ± 0.0208 0.9859 ± 0.0093

FCN 0.9786 ± 0.0101 0.9840 ± 0.0061 0.9787 ± 0.0100 0.9841 ± 0.0063

Ours 0.9838 ± 0.0136 0.9874 ± 0.0071 0.9835 ± 0.0142 0.9874 ± 0.0073

Validation set (Jaccard) Testing set (Jaccard)

Ulna Radius Ulna Radius

U-Net 0.9615 ± 0.0400 0.9720 ± 0.0187 0.9624 ± 0.0365 0.9724 ± 0.0176

FCN 0.9582 ± 0.0187 0.9685 ± 0.0115 0.9585 ± 0.0185 0.9688 ± 0.0119

Ours 0.9684 ± 0.0245 0.9752 ± 0.0135 0.9680 ± 0.0257 0.9751 ± 0.0139
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The previous methods focused mainly on ulna and 
radius segmentation on single-energy X-ray images or 
the segmentation of the ulna and radius as one class in 
dual-energy X-ray images. Therefore, it is important 
to propose an accurate segmentation method based 
on deep learning that segments the ulna and radius 
as two classes for BMD measurement in dual-energy 
X-ray imaging. Because the U-Net and FCN networks 
were previously used in ulna and radius X-ray image 
segmentation [24, 27], we selected the two networks 
for comparison with the method proposed here. As 
the previous data were unavailable, we evaluated these 

methods based on our dataset. All compared methods 
used the same training parameters and loss function. 
Our method designed a Resblock and integrated it into 
the U-Net network. The Resblock helped the network 
to alleviate the problem of vanishing gradients and 
improve the performance of feature extraction. Because 
of the limited training data, we used a data augmen-
tation strategy during the training, to address the 
problem of lack of data. The results revealed that the 
designed network had a lower segmentation error and 
higher evaluation metrics compared with the U-Net 
and FCN networks in low-energy and high-energy 

Table 2  Quantitative comparison in the presence and absence of Resblock

The results are expressed as the mean ± standard deviation. Bold values indicate the best score obtained for ulna and radius segmentation

Methods Validation set (Dice) Testing set (Dice)

Ulna Radius Ulna Radius

U-Net 0.9753 ± 0.0291 0.9832 ± 0.0126 0.9751 ± 0.0309 0.9828 ± 0.0133

with Resblock 0.9782 ± 0.0214 0.9850 ± 0.0103 0.9785 ± 0.0214 0.9852 ± 0.0100

Validation set (Jaccard) Testing set (Jaccard)

Ulna Radius Ulna Radius

U-Net 0.9534 ± 0.0481 0.9670 ± 0.0233 0.9532 ± 0.0488 0.9665 ± 0.0242

with Resblock 0.9581 ± 0.0368 0.9707 ± 0.0192 0.9589 ± 0.0369 0.9711 ± 0.0186

Table 3  Quantitative comparison of the independent testing set among different methods

The results are expressed as the mean ± standard deviation. Bold values indicate the best score obtained for ulna and radius segmentation

Methods Independent testing set (Dice) Independent testing set (Jaccard)

Ulna Radius Ulna Radius

U-Net 0.9767 ± 0.0258 0.9836 ± 0.0114 0.9557 ± 0.0444 0.9681 ± 0.0213

FCN 0.9755 ± 0.0113 0.9824 ± 0.0070 0.9525 ± 0.0212 0.9655 ± 0.0134

Ours 0.9806 ± 0.0164 0.9860 ± 0.0076 0.9624 ± 0.0295 0.9725 ± 0.0142

Table 4  Statistical analysis between the proposed method and other methods

There was a significant difference between the methods when p values < 0.05

Comparison with 
methods

Validation set (Dice, p value) Testing set (Dice, p value) Independent testing set (Dice, 
p value)

Ulna Radius Ulna Radius Ulna Radius

U-Net 0.0072 0.0219 0.0110 0.0032 0.0174 0.0070

FCN 0.0004 0.0006 0.0003 0.0002 7.42 × 10–5 0.0005

Validation set (Jaccard, p value) Testing set (Jaccard, p value) Independent testing set 
(Jaccard, p value)

Ulna Radius Ulna Radius Ulna Radius

U-Net 0.0078 0.0205 0.0102 0.0038 0.0158 0.0057

FCN 0.0003 0.0005 0.0002 0.0002 3.78 × 10–5 0.0006
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X-ray images. Furthermore, the current method used 
smaller datasets and achieved a higher segmentation 
accuracy compared with the previous methods [24, 27].

BMD is the main method of diagnosing osteoporosis 
and predicting the risk of fracture [1]. BMD measure-
ment depends on the accuracy of bone segmentation 
in dual-energy X-ray images. A higher accuracy of the 
segmentation method may help obtain a more accurate 
BMD for the diagnosis of osteoporosis using DEXA. 
Moreover, by collecting more data and combining our 
segmentation method with regression and classification 
networks, it will be possible to measure BMD directly 
and diagnose osteoporosis without segmentation.

The segmentation of the ulna was one of the limita-
tions of this study. The shape of the ulna is more diverse 
than its radius in different dual-energy X-ray images. The 
structure of the styloid process of the ulna had a lower 
segmentation accuracy compared with radius segmen-
tation. The fact that the experimental data of this study 
were obtained using the same device was another limi-
tation of this study. Uneven exposure also affects the 
segmentation. The collection of a larger dataset using 
different dual-energy X-ray imaging devices might help 
enhance the accuracy and stability of the segmenta-
tion process. In addition, the older population who have 
osteoporosis may have unclear image boundary on ulna 
and radius compared to younger population in some 
subjects. It may affect the segmentation accuracy of the 
proposed method for ulna and radius. However, even if 
this problem existed, the dice coefficient was only slightly 
lower than the image with clear boundary. For the deep 
learning method, collecting similar datasets with unclear 
boundary or the same age group will help to solve this 
problem. Further studies could include the application of 
deep learning for BMD measurement and the diagnosis 
of osteoporosis.

Conclusion
This work presented a deep learning segmentation net-
work equipped with Resblock for ulna and radius seg-
mentation in dual-energy X-ray images. The designed 
Resblock aimed to alleviate the problem of vanishing gra-
dients and help improve the performance of the segmen-
tation of the ulna and radius. We evaluated our network 
and the recent methods using the same dataset and train-
ing parameters. The experimental results showed that 
presented method segmented the ulna and radius more 
accurately than did previous methods. We will continue 
to improve the segmentation accuracy and apply our 
method to the measurement of BMD and the diagnosis of 
osteoporosis in future studies.
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