Skip to main content
. 2021 Nov 12;3(6):e1981–e1990. doi: 10.1016/j.asmr.2021.10.001

Table 2.

Model Assessment on Internal Validation Using .632 Bootstrapping With 1,000 Resampled Datasets, n = 1,276

Metric Area under the Curve
Calibration Slope Calibration Intercept Brier Score
Apparent Internal Validation
GLM .697 (.695-.701) .678 (.676-.680) .932 (.920-.943) .01 (.008-.012) .12 (.107-.133)
Elastic net .684 (.680-.687) .664 (.662-.666) .993 (.981-1.005) .001 (−.001-.003) .188 (.179-.197)
Random forest .835 (.831-.839) .707 (.704-.710) 1.03 (1.02-1.04) −.004 (−.006-.003) .107 (.095-.119)
XGBoost .824 (.819-.827) .708 (.702-.720) 1.01 (1.003-1.02) −.001 (−.003-0) .106 (.093-.118)
Adaptive boost .827 (.823-.831) .725 (.723-.727) 1.056 (1.049-1.063) −.008 (−.01-.007) .107 (.095-.12)
Ensemble .850 (.846-.854) .709 (.710-.712) .993 (.981-1.005) .001 (−.001-.003) .068 (.057-.079)

GLM, generalized linear model. Null model Brier score = .085.