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ABSTRACT

The last 18 months, or more, have seen a pro-
found shift in our global experience, with many of
us navigating a once-in-100-year pandemic. To date,
COVID-19 remains a life-threatening pandemic with
little to no targeted therapeutic recourse. The discov-
ery of novel antiviral agents, such as vaccines and
drugs, can provide therapeutic solutions to save hu-
man beings from severe infections; however, there
is no specifically effective antiviral treatment con-
firmed for now. Thus, great attention has been paid to
the use of natural or artificial antimicrobial peptides
(AMPs) as these compounds are widely regarded as
promising solutions for the treatment of harmful mi-
croorganisms. Given the biological significance of
AMPs, it was obvious that there was a significant
need for a single platform for identifying and engag-
ing with AMP data. This led to the creation of the
dbAMP platform that provides comprehensive infor-
mation about AMPs and facilitates their investiga-
tion and analysis. To date, the dbAMP has accumu-
lated 26 447 AMPs and 2262 antimicrobial proteins
from 3044 organisms using both database integra-
tion and manual curation of >4579 articles. In addi-
tion, dbAMP facilitates the evaluation of AMP struc-

tures using I-TASSER for automated protein struc-
ture prediction and structure-based functional anno-
tation, providing predictive structure information for
clinical drug development. Next-generation sequenc-
ing (NGS) and third-generation sequencing have
been applied to generate large-scale sequencing
reads from various environments, enabling greatly
improved analysis of genome structure. In this up-
date, we launch an efficient online tool that can ef-
fectively identify AMPs from genome/metagenome
and proteome data of all species in a short period. In
conclusion, these improvements promote the dbAMP
as one of the most abundant and comprehensively
annotated resources for AMPs. The updated dbAMP
is now freely accessible at http://awi.cuhk.edu.cn/
dbAMP.

INTRODUCTION

The abuse of traditional antibiotics has resulted in the de-
velopment of widespread bacterial drug resistance, which
can cause serious health problems worldwide (1). It is also
becoming increasingly difficult to identify new antibiotics,
making the search for alternatives even more important.
Antimicrobial peptides (AMPs) are a class of peptides com-
posed of cationic and hydrophobic amino acids with direct
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antibacterial activity (2). AMPs range in size from <10 to
hundreds of amino acids. They are an important part of the
innate immune system acting to protect the host from vari-
ous pathogens and viruses (3,4). These cationic AMPs bind
and interact with negatively charged bacterial cell mem-
branes, resulting in changes in their electrochemical poten-
tial, which induces cell membrane damage and allows for
penetration of larger molecules, such as proteins, destroying
cell morphology and ultimately leading to cell death. These
AMPs have been proven to have several advantages over
traditional antibiotics and exhibit broad-spectrum antimi-
crobial activities, including antibacterial, antifungal, antivi-
ral and anticancer activities, with some AMPs even able
to overcome acquired drug resistance (5). Additionally, the
COVID-19 pandemic is unlikely to end until there is a
global rollout of treatment that protects against severe dis-
ease and drives herd immunity. The COVID-19 yields a
severe threat to human health with a high transmission
rate, critical symptoms and relatively high mortality rate
in some areas. Thus, there is an urgent need to search for
effective therapeutic agents targeting the virus. AMPs are
widely recognized as promising solutions for harmful mi-
croorganisms (2) making them an active target for the devel-
opment of novel anti-SARS-CoV-2 therapies. Despite this,
there have been relatively few descriptions of AMPs or an-
tiviral peptides (AVPs) with any documented antiviral ef-
fect. Interestingly, there are a handful of reports describ-
ing prophylactic effects for some AVPs used in the treat-
ments of other coronaviruses (6,7). This includes a paper
by Zhao et al. (8), which showed that a short peptide, called
P9, had robust antiviral effects against a variety of respi-
ratory viruses in vitro and in vivo, including influenza A
virus (H1N1, H3N2, H5N1, H7N7 and H7N9), SARS-
CoV and MERS-CoV (https://awi.cuhk.edu.cn/dbAMP/
information.php?db=dbAMP 19909). In addition to these
peptides, various studies have shown that AMPs from am-
phibian skin, such as caerin (9) and temporin (10–12), have
antiviral activities. A recent in silico study by Liscano et al.
indicated that two amphibian AMPs, caerin 1.6 and caerin
1.10, had a high affinity for the spike protein of SARS-
CoV-2 (13). These results greatly encouraged our expecta-
tions that AMPs could be used as alternative drugs in the
treatment of COVID-19. Moreover, by failing to address the
escalating antimicrobial resistance (AMR) issue, the near-
complete beginning of the post-antibiotic era could lead
to more infectious deaths and global financial uncertainty
by 2050 (14–17). AMPs are a novel class of alternatives
that possess potent activity against a wide range of Gram-
negative bacteria with little or no capacity to induce AMR
(16). This has stimulated the substantial development of
new peptide-based antibiotics with improved therapeutic
indices (18).

With the fast growing number of AMPs, it becomes chal-
lengeable to handle the large quantity of data manually.
Therefore, it is of great help to build databases focused on
AMPs. Over the last decade, many AMP-related databases
have been established to support AMP deposition, query
and mining, as a means to develop computational tools for
AMP prediction and design. These resources may be sepa-
rated into two main groups: general and specific databases.
For those databases that focus on the collection of general

AMPs, the Antimicrobial Peptide Database, established in
2004, is the most popular one, and it acts as a reposi-
tory for natural AMPs and includes >3200 compounds
from a wide variety of organisms (19). Another resource
for general AMPs is CAMPR3, which provides AMP fam-
ily identification based on signature sequences and struc-
tural folds, which can help identify key elements during an-
timicrobial drug design (20). Some other databases for gen-
eral AMPs, such as DRAMP (21) and LAMP (22), were
designed to provide patented peptides and cross-links with
other AMP databases, respectively. There was also a recent
update to DBAASP, which continues to develop novel pre-
diction tools for the de novo design of peptide-based drugs
(23). In addition, many studies have provided experimen-
tal data describing the efficacy of various peptide-based an-
timicrobial agents against Gram-positive or Gram-negative
bacteria (24) and some works focused on AMPs with spe-
cific functional activities. The databases for antiviral pep-
tides [AVPdb (25)], defensins knowledgebase (26), synthetic
peptides [SAPD (27)] and recombinantly produced AMPs
[RAPD (28)] were designed to capture these data. There
are also other specialized databases, such as CancerPPD,
Hemolytik, THPdb, InverPep and AntiTbPdb, which were
designed to facilitate the curation of field-specific data.
The CancerPPD (29) database describes anticancer pep-
tides and proteins, the Hemolytik (30) database curates
data around experimentally confirmed hemolytic and non-
hemolytic peptides, THPdb (31) supplies information on
FDA-approved peptide and protein therapeutics, InverPep
(32) describes the AMPs from invertebrates and the An-
tiTbPdb (33) includes a description of the experimentally
verified antitubercular or antimycobacterial peptides.

The dbAMP launched its first manually annotated AMP
data storage in 2018 (34), focusing on collecting natural
and synthetic AMPs and providing general, structural and
>20 types of functional activities linked to published works.
In addition, given the wide application of next-generation
sequencing (NGS) and third-generation sequencing, the
dbAMP was also designed to provide a platform for AMP
exploration and functional prediction supported by in silico
determination of critical physicochemical properties from
high-throughput data. Here, we describe the updates and
new features in the dbAMP platform, which may serve as
a helpful resource for AMP study and design. dbAMP 2.0
provides a homology-based gene prediction program, an
integrated tool stream that combines open reading frame
(ORF) prediction and AMP classification to identify prob-
ably AMPs directly from genome or proteome sequencing
data. Considering the rapid development of computational
tools, it is expected that highly accurate prediction mod-
els could help researchers improve scoring functions for the
design and prediction of AMP sequences while reducing
their development costs. These updates move us toward a
more harmonized system for AMP production and provide
a powerful unified source for initial AMP investigation.

SYSTEM OVERVIEW AND DATABASE UPDATES

Updated database content and data statistics

Since the first version of dbAMP (34) was released in
2018, the number of natural and artificial AMPs has in-
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creased drastically, along with the attention of global re-
search groups to drug resistance issues. Table 1 describes the
improvements and updated content in dbAMP 2.0. These
improvements include an increase in the number of curated
articles, AMP sequences and source organisms. Addition-
ally, to extract useful information from the curated articles,
a new text mining system was built to enhance the auto-
mated recognition of AMP-related articles through a scor-
ing system. Specifically, natural language processing was
adopted to extract needed information from articles. The
extracted information was then integrated into the updated
database. As of June 2021, this update had significantly in-
creased the number of AMPs, >2-fold when compared with
dbAMPv1, and included a total of 9454 AMP–target in-
teractions between 28 709 entries (including 26 447 AMPs
and 2262 antimicrobial proteins) and 5531 target organisms
as described in 4579 research articles (Figure 1). The dis-
tribution of the AMP source organisms is shown in Sup-
plementary Figure S1 with the most common source or-
ganisms being the amphibia (28.1%), mammals (22.1%),
arthropods (11.1%) and Viridiplantae (10.1%). In addi-
tion, literature and related database records allowed for
the functional characterization of these AMPs within the
dbAMP categorizing the AMP data into eight major func-
tional classes with 53 functional activities. The most pop-
ulated classes were the antibacterial peptides (68.33%), fol-
lowed by new functional peptides (30.88%), antifungal pep-
tides (19.29%), disease-associated peptides (11.48%), an-
tiviral peptides (6.2%), antiparasitic peptides (1.43%), toxic
peptides (0.78%) and new mechanism-associated peptides
(0.63%) (Table 2). It is of interest to note that this update in-
cluded over 180 anticoronavirus peptides, with experimen-
tal validation.

3D structure visualization of AMPs

AMPs have experienced a resurgence in interest resulting
from the increasingly serious problem of antibiotic resis-
tance. These peptides have attracted significant attention
as potential therapeutic agents because they combine the
high selectivity, potency and advantages of biological agents
with the low toxicity, conformational limitation and cost re-
ductions (35–38). Natural AMPs have been applied in tra-
ditional medicine and appear to be reasonable choices for
clinical trials and practical applications (35,39). However,
the structural characteristics of these peptides are often un-
stable, and their pharmacokinetic characteristics are poorly
described, which seriously hinders their further application
as drugs (40). Scientists hope to find an alternative to an-
tibiotics as soon as possible. So far, we have collected 2442
validated AMP structures with 100% sequence identities by
alignment from PDB. Meanwhile, 1002 validated structures
of AMPs are matched with the criteria of sequence identi-
ties ≥90% and E-values ≤10–5. After the sequence align-
ment, totally 1059 AMPs can be mapped onto the 3444 en-
tries of PDB (Table 1). Moreover, certain AMPs [e.g. seg-
ments from most plants (41) or histidine-rich human his-
tatin (42)] are nested on their parent proteins. These AMPs
are consequently extracted and isolated on demand (43). As
a matter of fact, the isolated segments of the parent proteins
possess different structures from the crystallization of their

sources. Therefore, to provide complete AMP structure in-
formation and accelerate the development of these thera-
peutic drugs, there is an urgent need to combine computa-
tional methods with classical functional evaluation to pro-
vide a streamlined approach to novel antimicrobial devel-
opment. The use of simulated structural evaluations would
allow for high-throughput screening and a more robust hit
ratio for downstream development. Due to a lack of val-
idated 3D structures for these stapled peptides, structural
prediction may be an alternative way to realize structure vi-
sualization (44). In this update, the 3D structure for each
AMP without experimentally confirmed PDB entries was
predicted using I-TASSER allowing for automated protein
structure prediction and structure-based functional anno-
tation (45). The I-TASSER server is an online platform for
protein structure and function predictions that can produce
novel structural predictions using known structures or ab
initio using sequence data alone. Thus, we retrieved the rel-
evant structural templates from PDB using the multithread
splitting method and then constructed a novel structure pre-
diction model using segment assembly simulation. We then
matched the predicted structural model to known proteins
in the functional database and added the relevant functional
information. Until now, there are 458 3D structures for the
current entries of the database (Table 1) that have been de-
veloped by this tool and are available for the further utiliza-
tions. Figure 2 reveals that dbAMP 2.0 can provide com-
prehensive functional analysis and predicted structures for
each peptide in the ‘3D structure’ information pages.

A systematic pipeline for the discovery of AMPs on genomic
and transcriptomic data

AMPfinder is a simple, yet accurate, computational pipeline
that processes either whole genome/metagenome or pro-
teome sequences, and combines ORF prediction with accu-
rate AMP classification to facilitate AMP prediction from
protein or nucleotide data. The search for AMPs is based on
alignment searching the existing AMP databases and pre-
dicting the feature model from the amino acid sequences
obtained from the translation of the original transcriptome
sequence data (Figure 3). AMPfinder provides a powerful
alignment tool for both DNA and protein sequences us-
ing the data available in dbAMP. Prodigal is a free, open-
source bioinformatics-based algorithm that efficiently pre-
dicts protein-coding genes (46). AMPfinder predicts ORFs
using Prodigal when queried using a DNA sequence, which
translates the input transcriptome data and selects short
sequences containing ORFs and signal peptide cleavage
sites. If protein sequences are submitted, AMPfinder will
skip the prediction of ORFs and directly use these pro-
tein sequences. Then, BLAST (47) (for the command-line
tool) or Diamond (48) (for dbAMP website) was used
for homology detection and machine learning prediction
model for the search of potential AMPs, in which case all
known or potential motifs will be revealed and classified.
AMPfinder used the AMP prediction module built in the
first release of dbAMP. The training set was adapted from
the dataset proposed by Wang, Hu and coworkers (49,50).
After removing redundant sequences, the training set (con-
taining 2399 AMPs and 26 850 non-AMPs with a ratio of
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Figure 1. Highlighted improvements in dbAMP 2.0. dbAMP is the most comprehensive resource for AMPs with this update bringing the total values for
the AMP sequences and curated articles to >28 000 and >4500, respectively.

∼1:10) was classified into seven common species accord-
ing to their source organisms. As reported by Chung et al.
(51), the random forest was the best classifier for predicting
AMPs in these seven categories of organisms. The accura-
cies of all the predictive models were >93% (Supplemen-
tary Table S1). With the promising performance in predict-
ing AMPs on microorganisms, AMPfinder can effectively
identify AMPs throughout large-scale genome sequences of
all species, whereas current general-purpose gene prediction
programs mainly focus on specific species (52,53). There-
fore, AMPfinder could be an efficient and effective tool for
the rapid screening of potential AMPs.

Enhanced prediction of AMPs using proteomic data

A previous iteration of this database used an alternative
prediction tool to facilitate computer-aided AMP identi-
fication based on different species (51). It only focused
on identifying general antimicrobial activity. However, the
mechanisms of AMP targeting different microbes need to
be emphasized. Thus, we proposed an enhanced predic-
tion scheme for this version of dbAMP that uses a ma-
chine learning-based prediction model to identify specific
targets based on the collected annotations of related AMP
functional activities from the dbAMP. A schematic frame-
work for this enhanced prediction is illustrated in Figure
4. We adopted a two-stage classification scheme (38,54) in

which the first stage distinguished AMPs from regular pep-
tides and the second stage was responsible for character-
izing the specific function that targets different microbes,
including bacteria (Gram-positive and Gram-negative, sep-
arately), viruses, fungi, and cancer and mammalian cells.
This prediction scheme combines several peptide descrip-
tors (55), which can encrypt the combinatorial and physic-
ochemical properties of specific amino acids. The gradient
boosting decision tree (GBDT) algorithm (56) was used at
each of the tasks to establish the classifiers and the im-
balanced learning strategies (57) were applied to improve
the classifier’s performance by reducing the curse of insuf-
ficient positive labels within specific tasks. The prediction
results are confidence values (ranging from 0 to 1) for each
of the input peptides, which indicate the putative activi-
ties against different targets. Statistics about the predicted
confidence value of training/test datasets are summarized
in Supplementary Figure S2 and Supplementary Table S2.
Users can conduct their screening process arbitrarily with
the predicted confidence values, such as choosing the pep-
tides with the largest confidences or directly discriminating
with the default cutoff value (0.5). This prediction scheme
achieved considerable performance in assisting with AMP
design (Table 3). We also introduce our previously devel-
oped machine learning-based prediction scheme, AVPIden,
for antivirus peptide target prediction (58). This method can
characterize the specific targets of AVPs, including six dif-
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Table 1. Comparison between this update and existing AMP databases

Features dbAMP LAMPv2 DBAASPv3 DRAMPv2 dbAMP 2.0

Release date (latest) January 2019 March 2020 November 2020 May 2021 June 2021
Number of AMPs 12 389 23 253 >15 700 22 151 26 447 AMPs and

2,262 antimicrobial
proteins

Organisms 2048 – – – 3044
Tertiary structures (PDB
structure)

1169 – >3600 (molecular
dynamic
trajectory >3200)

283 3444

Tertiary structures (predicted
structure)

– – – 263 458

Number of biological
activities

26 38 – 11 53

Number of target organisms 1737 – 6560 – 5531
Curated AMP–target
interactions

6338 – – – 9454

Text mining technique to
prescreen literature

Text extraction system – – – Enhanced NLP system

Download dataset Yes Yes Yes Yes Yes
Benchmark datasets for
prediction

Yes – – – Yes

Application utilities
Antimicrobial potency
analysis

Yes – – – Yes

Detection of cryptic region in
AMPs

Yes – – – Yes

AMP prediction AMP prediction
models based on
multiple species

– Prediction of
general
antimicrobial
activity/against
activity

– AMPpredictor:
enhance AMP
prediction models

NGS data analysis AMP sequence
alignment based on
Bowtie2

– – – AMPfinder:
genomic/proteomic
data mining
approaches for the
discovery of AMPs

The terms that could not be identified or missing are recorded as ‘–’.

ferent virus families and eight specific viruses, such as coro-
navirus. These prediction tools are provided on the ‘Ana-
lyze’ page.

DISCUSSION

New tools for identifying AMPs in large genomes

In this update, we launched a new integrated online tool
designed to improve the prediction accuracy of small pep-
tides (AMPfinder). This system uses the integrated AMP
information in dbAMP to search for potential AMPs us-
ing genome/metagenome or proteome data and applied ei-
ther via the dbAMP website or as a command-line tool.
AMPfinder provides a preliminary annotation of the sub-
mitted DNA sequences based on the data available in
dbAMP. AMPfinder can accept GenBank accession or
GI numbers, pasted sequences or uploaded nucleotide se-
quence files in FASTA format. These files can contain
more than one FASTA formatted sequence, such as whole
genome sequencing assembly contigs or multiple proteins.
AMPfinder analyzes these sequences and provides a de-
tailed output of the predicted AMPs and source organism
class. The dbAMP website also includes a new AMPfinder
visualization tool for short peptide predictions in envi-
ronmental samples using known AMP detection (Sup-
plementary Figure S3A) and unknown AMP prediction

and includes their source category (Supplementary Fig-
ure S3B). AMPfinder then provides preliminary annota-
tions of AMP sequences based on the data available in
dbAMP.

AMPfinder is the first package specifically designed
for the identification of AMPs in large genomes. Previ-
ous software packages have also included tools for the
prediction of AMPs. However, their main purpose was
limited to plant species (52,53). Given this, we evaluate
the accuracy of AMPfinder classifications using the rep-
resentative Periplaneta americana (American cockroach)
genome (ASM293952v1) as a test case. AMPfinder iden-
tified 11 highly homologous AMPs (Supplementary Ta-
ble S3) in this genome when using the default search E-
value threshold and model prediction values, which was
consistent with previous studies (59). In addition, our pre-
diction identified an additional 16 potential AMPs (Sup-
plementary Table S4), highlighting the value of these
tools.

Collection of the coronavirus targeting peptides

It has been reported that several AVPs have shown some
functional activity against coronavirus (6,60). Due to the
current pandemic, the development of new therapeutic
agents relies on prior knowledge of existing data, includ-
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Table 2. Comparison of the data statistics from this update and the previous version in terms of functional activities

Function classes Against activity dbAMP dbAMP 2.0a (%)

Antibacterial Antibacterial 3006 4837 (18.29)
Anti-Gram-positive 2726 11 652 (44.06)
Anti-Gram-negative 2323 12 405 (46.91)
Antimicrobial 4816 8654 (32.72)
Antibiofilm 40 40 (0.14)
Mollicute – 36 (0.14)
Antiyeast 4 5 (0.02)
Antilisterial – 2 (0.01)

Antifungal Antifungal 1623 5454 (20.62)
Antiviral Antiviral 300 1745 (6.60)

Anti-SARS/CoV – 186 (0.70)
Antiparasitic Antiparasitic 123 186 (0.70)
New function peptides Mammalian cells 308 402 (1.52)

Anuran defense – 7256 (27.44)
Insecticidal 35 1791 (6.77)
Antiprotozoal 6 195 (0.74)
Chemotactic 59 61 (0.23)
Antimalarial 26 46 (0.17)
Antinematode – 46 (0.17)
Antiplasmodial – 35 (0.13)
Cell penetrating – 29 (0.11)
Enzyme inhibitor 26 26 (0.10)
Wound healing 19 21 (0.07)
Antibiotic – 19 (0.07)
Immunomodulant – 17 (0.06)
Spermicidal 13 13 (0.05)
Edema inducer – 11 (0.04)

Disease-associated
peptides

Anticancer 227 2290 (7.98)

Anti-HIV 109 2286 (8.64)
Antitumor 9 1018 (3.85)
Anti-HCV – 67 (0.25)
Antiangiogenesis – 13 (0.05)
Anti-HSV – 10 (0.04)
Antiallodynic – 1 (0.01)

New
mechanism-associated
peptides

Antihypertensive – 1 (0.01)

Anti-MRSA – 874 (3.30)
Antidiabetic – 113 (0.43)
Antioxidant 22 31 (0.12)
Surface immobilized 19 27 (0.10)
Mast cell degranulating – 18 (0.07)
Uterotonic – 6 (0.02)
Anti-inflammatory – 6 (0.02)
Antineurotensive – 4 (0.02)
Plasma anticlotting – 3 (0.01)
Proteolytic – 2 (0.01)
Antinociceptive – 2 (0.01)
Hypotensive – 1 (0.01)
Sodium channel
blocker

2 2 (0.01)

Toxic Cytotoxin – 1 (0.01)
Hemolytica – 115 (0.43)
Cytolytic – 98 (0.37)
Ichthyotoxic – 14 (0.05)

The numbers in parentheses are displayed as theproportion of entries in the dbAMP.

ing existing computer-assisted methods to date (61). We col-
lected a variety of anticoronavirus peptides from various re-
sources and summarized their basic properties compared to
normal AVPs. The length distribution (Figure 5A) of the
regular antivirus peptides is slightly concentrated at <20
amino acids, but some of these AVPs can be longer than 100
residues. The mean value and actual distribution of these
amino acids are shown in Figure 5B and Supplementary

Figure S4, and the high frequency of positively charged and
aliphatic amino acids in both categories of peptides may be
related to their penetration of the viral membrane. More-
over, we computed the latent sequence encodings of these
peptides using tape (62) and performed dimension reduc-
tion using UMAP (63) to inspect the differences between the
anticoronavirus peptides and regular AVPs (Figure 5C). Al-
though there is a clear distinction, the distance between the
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Figure 2. The predicted structure viewer was integrated into the platform during this update. A case study describing the production of AMP, elafin
(dbAMP 00487), which is the major antiviral protein in cervicovaginal lavage fluid, using human �� T cells.

Figure 3. Main pipeline workflow for AMPfinder. AMPfinder is an efficient online tool, which can accurately identify AMPs within genome/transcriptome
and proteome data in a short period of time.
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Table 3. Prediction performance for the test dataset for each of the tasks in two-stage AMP prediction

Stage Prediction task SEN (%) SPEC (%) MeanACC (%)

First AMP 93.34 91.37 92.36
Second Anti-Gram-

positive
91.14 88.42 89.78

Anti-Gram-
negative

89.58 88.79 89.19

Antivirus 88.87 81.05 84.96
Antifungal 93.86 57.92 75.89
Anticancer 84.33 81.24 82.79
Mammalian
inhibition

78.49 79.08 78.79

TP, TN, FP and FN denote true positive, true negative, false positive and false negative, respectively. The sensitivity (SEN), specificity (SPEC) and mean
accuracy (MeanACC) are defined as follows: SEN = TP/(TP + FN); SPEC = TN/(TN + FP); and MeanACC = 0.5(SEN + SPEC). The value 0.5 is a
default cutoff of confidence values used to determine the positive or negative predictions.

Figure 4. The schematic framework underlying AMP target prediction.
First, the user-input sequences are transformed into one of four different
groups of peptide descriptors including amino acid composition (AAC),
dipeptide composition (DPC), pseudo-amino acid composition (PAAC)
and physiochemical properties (PHYC). These descriptors are then used
as the feature vector for processing during the two-stage classification pro-
cess that relies on GBDT and imbalanced learning. This evaluation will
then produce a confidence value (ranging from 0 to 1 as the potency level
for targeting different microbes) for each of the predicted AMPs.

anticoronavirus peptides and regular AVPs remains small.
This collection of anticoronavirus peptides may offer valu-
able information for the development of novel therapeutic
agents against related pathogens.

SUMMARY AND PERSPECTIVES

AMPs are promising candidates for resolving post-
antibiotic effects, with an increasing number of studies
suggesting that AMPs may act as potential therapeutic

agents against various pathogens (64). Some studies have
also suggested that some AMPs may inhibit COVID-19
(65). In silico peptide design can assist and accelerate the de-
velopment process for novel AMPs (61,66), but relies on the
related data stored in large databases and computer-aided
analysis tools. Thus, dbAMP was established to provide a
single platform combining any and all information on and
computational analyses of novel AMPs. This revision of
the dbAMP platform incorporates >28 000 unique AMP
sequence entries from the literature and related databases
with detailed annotations and computation-based phys-
iochemical properties. We have improved the summary
statistics of the entire database in an effort to provide more
valuable perspective for researchers and established a novel
3D structure viewer for validated peptides and compu-
tationally derived putative structures for those without
experimentally validated structures. This tool was designed
to allow users to investigate the crucial mechanisms of
AMP interaction with different pathogens. In addition,
we integrated AMPfinder and AMP functional target
prediction to produce a single platform solution for AMP
development. The combination of these two analytical tools
allows for the application of both proteome and genome
data in the screening and identification of potential AMP
sequences and provides their putative activity scores for a
wide variety of pathogens. Eventually, we hope to maintain
the dbAMP platform in real time to include cutting-edge
developments and studies of novel therapeutic candidates
and will try to establish a comprehensive encyclopedia of
AMPs for scientific research.

DATA AVAILABILITY

The dbAMP data content will be maintained and updated
quarterly via the continuous survey of public resources
and research articles. The database assistant system is now
freely accessed online at http://awi.cuhk.edu.cn/dbAMP
and all manually confirmed AMP resources can be accessed
via the download page (https://awi.cuhk.edu.cn/dbAMP/
download.php), allowing researchers to independently an-
alyze our data. We also provide all previous versions of the
database, which can be accessed through the ‘Previous Re-
lease’ page. Finally, the source code for AMPfinder can be
accessed via https://github.com/BiOmicsLab/AMPfinder.

http://awi.cuhk.edu.cn/dbAMP
https://awi.cuhk.edu.cn/dbAMP/download.php
https://github.com/BiOmicsLab/AMPfinder
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Figure 5. Summary of the properties of the peptides shown to target coronavirus and other viruses. (A) Length distribution of the anticoronavirus peptides
(n = 187) and regular AVPs (n = 1664). To distinguish between AMPs and antimicrobial proteins, the entries with sequence length >100 amino acids (n = 1
for anticoronavirus peptides and n = 57 for other regular AVPs, respectively) are not shown in the histogram. (B) Average amino acid composition. Amino
acids are categorized according to their physicochemical properties. (C) Dimension reduction of peptide sequences as extracted by tape, which reveals the
differences between these peptides and where each point represents a peptide sequence with anticoronavirus (green) or regular antivirus (purple) activity.
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